
IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 561 www.ijsart.com

Evaluation of Hypertext Transfer Protocol (HTTP)

And Message Queuing Telemetry Transport Protocol

(MQTT) Based On Required Network Resources For

IoT

Dr. Kalaivazhi Vijayaragavan1, R. Giritharan2, M. Hariharan3, S Johnprince4
1Associate Professor, Dept of Information Technology

2, 3, 4Dept of Information Technology
1, 2, 3, 4 Anjalai Ammal Mahalingam Engineering College, Thiruvarur, India

Abstract- The standard and real-time communication

technology has an unalloyed inevitability for the development

of Internet of Things (IoT) applications. However, the

selection of standard and effective messaging protocol is a

challenging task, since it depends on the nature of the IoT

system and its messaging requirements. All type of IoT system

not able to support all messaging requirements. Messaging

protocol is an ongoing problem for the IoT industry;

consequently, it is important to understand the pros and cons

of the widely accepted and emerging messaging protocols for

IoT systems to determine their best-fit scenarios. Therefore,

this paper presents an evaluation of the two established

messaging protocols MQTT, and HTTP for IoT systems. HTTP

has been widely applied for data transfer. However, in

networks for IoT, this protocol causes a large overhead. This

problem, can be solved by named based transfer protocols has

been discussed. This paper compares the performance of

HTTP with that of MQTT, a type of named based transfer

protocol. Also, this paper suggests enhancements to MQTT for

better performance

Keywords- IoT, HTTP, MQTT, NDN, ICN, Performance

Evaluation, Protocol Overhead

I. INTRODUCTION

 The Internet of Things (IoT) is a concept aims to

extend the benefits of continuous internet connection for

various things such as remote control, and data monitoring.

IoT is the idea of researchers who need to optimize

equipment’s such as sensor, radio frequency identification

(RFID), wireless sensor network, and all equipment’s

connected to the Internet network to communicate with

humans. Collect physical data using sensors such as

temperature and humidity, and then send it to the server to be

stored in database or be displayed on the application interface

[3]. Although Internet Protocol (IP) has been adopted for

most types of communication, it will have some problems

when it is applied to IoT.

Presently, Internet access needs application protocols

over TCP/IP or UDP/IP. One of the application protocols is

Hyper Text Transfer Protocol (HTTP), which have been

standardized in IETF, e.g., [2] (initial version) and [1] (the

latest version), and has been applied for general

communication over Internet. However, when HTTP is

applied to communication in IoT, in which a huge number of

petite data blocks are transferred, protocol overhead and

resulting performance degradation are a serious problem.

 Moreover, IP addressing depends on physical

location, which causes the problem of complexity of network

control. To solve these problems, name- based architectures,

such as Named Data Networking (NDN), Content Centric

Networking (CCN), and Information Centric Networking

(ICN) have been discussed; see e.g., [4] – [10]. Some of the

examples focus on adopting these architectures to IoT; see

e.g., [11] － [12].

In these architectures, MQ Telemetry Transport

(MQTT) is one of the protocols, as described in [13]. MQTT

reduces protocol overheads and provides high efficiency

communication for IoT. It also invokes “Name based routing,”

and mitigates IP address based routing for IoT traffic flows.

This paper discusses the possibility of considering

MQTT as a candidate for the communication protocols on the

IoT platform. It evaluates the performance of MQTT with that

of HTTP. Moreover, it proposes new mechanisms to enhance

the current MQTT specifications.

II. HTTP FOR IoT COMMUNICATION

It has been assumed that HTTP can be applied to

communication for IoT. The HTTP transfer a large number of

miniature packets. Protocol overhead of HTTP may cause

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 562 www.ijsart.com

serious problems, such as consumption of network resources

and large delays.

Communication using HTTP has been configured as

shown in Figure 1. Sequence charts are also shown in Figure

1.

Meanwhile HTTP is operated over TCP/IP, reliable

communication is provided. TCP established connections are

released on every access, since accessed data is transferred

based on IP address and URL and their relationship is changed

dynamically. In general, after various times of establishment

of release of a connection, communication is completed.

Therefore, communication for IoT causes serious overhead

and consumption of network resources during the

communication.

Fig. 1. System configuration using HTTP

Fig. 2. Communication sequences on HTTP

III. MQTT AND ITS PERFORMANCE

MQTT moderates such protocol overheads in HTTP.

This section describes sequence process by MQTT for IoT

communication.

Summary of operations in MQTT

Three types of transfer modes of MQTT are based on

reliability: QoS0 (Non assured transmission), QoS1 (Assured

transmission), and QoS2 (Assured service on applications).

QoS1 is alike to HTTP from a reliability point of view.

Whereas HTTP is a symmetric protocol, MQTT has

an asymmetric architecture for lightweight. Generally

communication for IoT are non-intelligent distributed devices

communicate with a server with intelligent ability, asymmetric

communication is provided. Due to this point, MQTT is more

suitable than HTTP.

MQTT encompasses of two message sets on a

connection, “Publish” and “Subscribe.” Data blocks are sent

by Publish message and are received by Subscribe message.

To identify the data blocks “topic” is used. Data blocks

received are identified by the topics registered by Subscribe

message, in advance.

The system configuration is shown in Figure 3. In

this configuration, communication sequence in monitor of

devices by a user is shown in Figure 3. Sequence of

communication to control devices on MQTT are shown in

Figure 4

Fig3. System Configuration Using MQTT

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 563 www.ijsart.com

Fig. 4. Communication sequences in monitor of

a device on MQTT

Fig. 5. Communication sequences to control a device on

MQTT

IV. EXPERIMENTAL SETUP

Experiment has been carried out by collecting metrics

on response time and packet size when sending identical

payload through MQTT and HTTP, and by the variation of

payload size and number of messages over one connection

session has been done. This helps to analysis the

characteristics of protocols and differences between the two

protocols.

The approach used is by having a single registry in

Cloud IoT Core that accepts both HTTP and MQTT

connections. The device messages are routes by the registry to

a single Pub/Sub topic which has one Cloud Functions

endpoint as the subscriber: the Cloud Function simply writes

the payload to log.

The end device is simulated in laptop, which runs

both a MQTT client and a HTTP client, and then measures the

response time and tracks the packets sent over the wire.

Fig 6 Experiment Setup

 Properties of the protocols

Before implementation , the review of MQTT and

HTTP shows the influence, how the tests can setup..

MQTT (Message Queuing Telemetry Transport),

describes as a publisher subscriber pattern, in which clients

connect to a broker and the remote devices publish messages

to a shared queue. Optimization of this protocol is based on

message size, for efficiency.

HTTP adheres to the standard request response model.

To have comparison between the two protocols, the

steps in the authentication process (handshake) need to be

taken into account. Connect and disconnect messages are

measured sequentially with the actual data messages in the

case of MQTT. Since there will be the overhead for the

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 564 www.ijsart.com

MQTT case, we have to send a different number of data

messages between one connect-disconnect cycle and the next.

Trace packets sent over wire

To have detailed view of the packet size being

transmitted for both protocols, we used Wire shark.

Locust client implementation

We used Locust.io to perform load tests and to

compile the metrics. Locust.io gives a simple HTTP client

from which to collect your timing data, whereas for the MQTT

profiling, we tested with the Eclipse Paho MQTT client

package, authenticated via JWT with Cloud IoT Core. The

source code for the test is available here.

Let take a closer look of the MQTT Locust client.

First, an initial connect and disconnect is issued in the

`on_start` function to preload the MQTT client with all the

credentials it needs to connect with Cloud IoT Core, so that

credentials can be reused in each measurement cycle.

def on_start(self):

self.client.get_client()

self.client.connect_to_server()

self.client.disconnect()

While publishing messages, we check the qos=1 flag

to ensure that the message has beeen delivered by waiting for

a pub_ack from Cloud IoT Core, which can compared to the

request response cycle of the HTTP protocol. Likewise the

Paho MQTT client publishes thel messages asynchronously,

which forces to call the wait_for_publish() function on the

MQTT Message Info object to block execution until a

PUBACK response is received for each message.

self.client.reconnect()

self.client.loop_start()

for i in range(1, numberOfMsg+1):

 msgInfo = self.client.publish(mqtt_topic, payload, qos=1)

msgInfo.wait_for_publish()

self.client.disconnect()

V. TEST CASES

MQTT

Varying the number of messages:

To measure the response time, the system uses the

following scenario by sending 1, 100, and 1000 messages over

a single connection cycle each, and also captured the packet

sizes that were sent over the wire.

Varying the size of messages:

Here we measured the response time for sending a

single message with 1, 10, and 100 property fields over a

single connection cycle each, and then capture the packet size

sent.

HTTP

Average response time is measured for sending a

payload with 1, 10, and 100 property fields and then captures

the packet size over the wire.

Results

MQTT response time

Below are the results of running both the HTTP and

MQTT cases with only one simulated Locust user. The

message transmitted is a simple object containing single key-

value pair.

Variation in number of messages:

Variation in payload size:

MQTT response time:

HTTP response time

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 565 www.ijsart.com

Fig 7 Response Time Comparision

Packet size capturing results

To get a more accurate view of what packets are

actually being sent over the wire, we used Wire shark to

capture all packets transferred from and to the TCP port used

by Locust.io. The sizes of each packet were also captured to

give a precise measure on the data size overhead of both

protocols.

MQTT

MQTT over TLS connecting procedure log

The wire log shows the handshake process that sets

up a TLS tunnel for MQTT communication. The main part of

this process consists of the exchange and verification of both

certificates and shared secret.

Single message publish cycle

The wire log over single message publishing cycle

shows that there’s a MQTT publish message from client to

server, a MQTT publish ACK message back to the client, plus

the client also sends back a TCP ACK for the MQTT ACK

received.

Disconnect procedure log

HTTP

Handshake procedure for establishing the TLS connection

The initialization procedure for setting up the TLS

tunnel is the same for the HTTP case as it is for the MQTT

case, and the now established secure tunnel is re-used by all

subsequent requests.

Single publish event log

The HTTP protocol is connectionless, meaning that

the token is sent in the header for every publish event request

and the Cloud IoT Core HTTP bridge will respond to every

request.

Table summarizes the sums of the packet size sent

during each of the transfer states for both MQTT and HTTP:

Fig 8 Packet Size and Transfer State

And this table shows how variation in payload size affects

packet size over wire:

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 566 www.ijsart.com

Fig 9 Variation in payload size affect packet size

Summary

Case study: Measuring the amount of data received over

the wire

MQTT is often called a protocol for the Internet of Things.

Which means that it must be more lightweight for network

usage? The experts in MQTT solutions also note that it’s

especially efficient in wired data transmission. Let’s see what

network-related data we can get from packet sniffers to

compare MQTT over SSL and HTTPS.

Test 1. Comparison of protocols service part

Measured the number of bytes and packets required

to establish a connection, send/receive data (simple JSON

{"test":1234}) and close the connection. Here’s the result:

Inference : MQTT service part requires only 10% less

traffic than HTTP. The advantage of MQTT service part over

Ethernet vs Wireless is negligible.

VI. CONCLUSION

Considering the result that compares response time

for one connection cycle of MQTT, we can clearly see

that the response time increases during the initial

connection setup for sending single messages. The level that

equals the response time of sending a one message over

HTTP, which in our case rounds up to 120 ms per

message. The influence in terms of data amount sent over

wire is even more significant for MQTT in which

about 6300 bytes is sent for one message, this is better

than for HTTP, which sums up to 5600 bytes. By

observing at the packet traffic log, we can see that the

dominant part — more than 90% of the data transmitted is

for setting up and tearing down the connection.

The benefit of MQTT over HTTP happens when the

single connection is reused for sending multiple messages

in this case the average response per message meets to

around 40ms and the data amount per message meets to

around 400 bytes. In case of HTTP, these

reductions simply aren’t possible.

From the result of the test for variation in payload

size, we could perceive that response times were kept constant

as the payload size went up. The description here is that since

the payloads being sent are small, the full network capacity

isn’t utilized and as the payload size increases, more of the

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 567 www.ijsart.com

capacity is being used. Another remark we can make looking

at the network packet log is that even as the amount of

information packed into the payload improved by 10x and

100x, the amount of data actually transferred only increased

by 1.8x respective 9.8x for MQTT and 1.2x and 3.4x for

HTTP, which shows the effect of the protocol overhead when

publishing messages.

The conclusion we have appeal is that when choosing

MQTT over HTTP, it’s really important to reuse the same

connection as much as possible. If connections are set up and

torn down regularly just to send individual messages, the

efficiency gains are not significant compared to HTTP. The

supreme efficiency can be achieved through MQTT’s by

increase in information density for each payload message. The

most honest approach is to reduce the payload size where

more data can be transmitted in each payload, which can be

realized through choosing proper compression and package

approaches based on the type of the data being generated.

For streaming applications, time-window bundling

can upturn the number of data points sent in each message,

whereby choosing the window length wisely in relation to the

data generation pace and available network bandwidth, you

can transmit more information with lesser latency. In most of

the IoT applications, the earlier methods mentioned cannot

easily be applied due to the hardware restrictions of the IoT

devices. Depending on the functional requirements from case

to case, a feasible solution would be the usage of gateway

devices, with advanced capabilities in terms of processing and

memory. The payload data is firstly delivered from the end

device to the gateway, whereby different optimizing measures

can be applied before added delivery to Google Cloud.

REFERENCES

[1] M. Belshe, R. Peon, M. Thomson, “Hypertext Transfer

Protocol Version 2 (HTTP/2)”, IETF RFC 7540, 2015

[2] T. Berners-Lee, R. Fielding, H. Frystyk, “Hypertext

Transfer Protocol -- HTTP/1.0”, IETF RFC 1945, 1996

[3] Suresh P, Daniel J V, Aswathy R H 2014 A state of the

art review on the Internet of Things (IoT) History,

Technology and fields of deployment

[4] J. Luo, C. Wu, Y. Jiang, J. Tong, “Name Label Switching

Paradigm for Named Data Networking”,

IEEE Communications Letters, Vol. 19, pp.335 - 338,

2015

[5] S. Eum, K. Nakauchi, Y. Shoji, N. Nishinaga, M.

Murata, “CATT: Cache aware target identification for

ICN”, IEEE Communications Magazine, Vol. 50,

No.12, pp. 60 – 67, 2012

[6] C. Fang, R. Yu, T. Huang, J. Liu, Y. Liu, “A Survey of

Green Information-Centric Networking: Research Issues

and Challenges”, IEEE Communications Surveys &

Tutorials, Vol. 17, No.3, pp. 1455 – 1472, 2015

[7] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher,

B.Ohlman, “A survey of information-centric networking”,

IEEE Communications Magazine, Vo. 50, No.7, pp. 26 －

36, 2012

[8] G. Xylomenos, C. Ververidis, V. Siris, N. Fotiou,

C. Tsilopoulos, X. Vasilakos, K. Katsaros, G. Polyzos, “A

Survey of Information-Centric Networking Research”,

IEEE Communications Surveys & Tutorials, Vol. 16,

No.2, pp. 1024 – 1049, 2014

[9] M. Yamamoto, “Research trends on In-Network

caching in content oriented networks”, IEICE Technical

Report., Vol. 115, No.461, pp. 23 －28, 2015

[10] Md. F. Bari, S. Chowdhury, R. Ahmed, R. Boutaba,

B. Mathieu, “A survey of naming and routing in

information-centric networks”, IEEE Communications

Magazine, Vol. 50, No.12, pp.43 －52, 2012

[11] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo,

A. Molinaro, A. Iera, R. Aguiar, A. Vasilakos,

“Information-centric networking for the internet of

things: challenges and opportunities”, IEEE Network,

Vol. 30, No.2, pp. 92 - 100, 2016

[12] H. Yue , L. Guo, R. Li, H. Asaeda, “Yuguang

FangDataClouds: Enabling Community-Based Data-

Centric Services Over the Internet of Things”, IEEE

Internet of Things Journal, Vol. 1, pp. 472 － 482, 2014

[13] I. Sato, T. Kurira, K. Fukuda, T. Tsuda, “A extention

of information centric for IoT applications”, Repeort

of 3rd Technical committee on information centric

networking (ICN), in IEICE, 2015

[14] [14] IBM, “MQTT V3.1 Protocol

Specification”, 2012,

http://public.dhe.ibm.com/software/dw/webservices/ws-

mqtt/mqttv3r1.html

[15] T. Fujita, Y. Goto, A. Koike, “M2M architecture trends

and technical issues”, The Journal of IEICE, Vol.96,

pp.305 － 312,2013

[16] “Network performance objectives for IP-based

services”, ITU-T Recommendation, Y.1541, 2011

[17] L. Kleinrock, “Queuing Systems, Volume 1:

Theory”, Wiley Inter science, ISBN 0-471-49110-1, 1980

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 568 www.ijsart.com

BIBLIOGRAPHY

KalaivazhiVijayaragavan obtained

her Bachelor’s degree in Electronics

and Communication Engineering

from REC – Trichy (Presently NIT –

Trichy) in 1996 and her Master’s

Degree in Computer Science and

Engineering from SASTRA

University, Thanjavur in 2003. She

obtained her Doctoral Degree from

Anna University, Chennai.She is

currently working as an Associate

Professor in the Department of

Information Technology at

AnjalaiAmmalMahalingam

Engineering College, Kovilvenni.

Her areas of interest include Machine

Learning, Data Analytics, IoTMobile

Communication and Computer

Networks.

R. GIRITHARAN, Pursuing B.Tech

– Information Technology (IT) Final

year in ANJALAI AMMAL

MAHALINGAM ENGINEERING

COLLEGE,Thiruvarur

M. HARIHARAN, Pursuing B.Tech

– Information Technology (IT) Final

year in ANJALAI AMMAL

MAHALINGAM ENGINEERING

COLLEGE,Thiruvarur

S. JOHNPRINCE, Pursuing B.Tech –

Information Technology (IT) Final

year in ANJALAI AMMAL

MAHALINGAM ENGINEERING

COLLEGE,Thiruvarur

