
IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 482 www.ijsart.com

Hybrid Metaheuristic Algorithm & QoS in Cloud

Computing Environment

Gold Mine1, Jaspal Singh2
1Dept of Computer Science and Engineering

2Assistant Professor, Dept of Computer Science and Engineering
1, 2 SLIET Longowal, India

Abstract- The attractive features of Cloud Computing (CC)

has become popular. With the development of new

applications, the cloud load increases tremendously. Load

Balancing (LB) is an important part of the Cloud Computing

environment that ensures that all devices or processors work

at the same time. Various LB models and algorithms have

been developed in CC to make cloud resources easily

accessible to the end-users. In our research, we used HIDE

for cloud computing to tackle Load Balancing. To increase the

performance of an algorithm, a dynamic pitch-adjusting rate

has also been implemented in the terms of QoS like cost based

on service. Our work is more relevant than the Previous work

is being conducted in less time with the clouds and more

effectively perform LB.

Keywords- Differential algorithm, Harmony search, Cloud

computing, Task scheduling, Hybrid meta-heuristic.

I. INTRODUCTION

 The cloud computing is a computing standard that

provides an on-demand, extremely manageable, elastic

platform and robust with the collection of geographically

separate information centers for multiple distributed

computing applications. Also, the number and distinct kinds of

VM resources can be given in clouds on demand for workflow

execution. Due to advances in mobility, the hit rate of internet

applications such as Google, Facebook, Amazon, etc. is

increasing exponentially.

According to "Cloud Computing" all programs and

their data required for the remote server on the Internet are

initiated and output results of research in the normal web

browser window on a local PC. The cloud computing

advantages include a reduction in computing power

requirements of PCs, improved FT (Fault Tolerance) &

protection, often increasing data processing speed, the expense

of software and hardware decreased power, decreased repair

costs, and saved disk space.

The load balancing is the process of changing the

workload between the processors to improve system

performance. The workload of a machine refers to the total

time it takes for a machine to perform all tasks[1]. The load

balancing is done to increase throughput & minimize response

time for each VM (Virtual Machine) in the cloud system

throughout the entire time. LB is one of the key factors for

increasing cloud service providers' working performance. VM

load balancing ensures that no machine is idling or partly

loaded during the fast loading of other machines. The dynamic

allocation of workload is one of the major issues of cloud

computing. The advantages of distributing the workload

include an improvement in the use of resources, which further

improves overall efficiency and achieves optimum customer

satisfaction.

WHY BALANCING IN CLOUD COMPUTING?

The load balancing is an extremely complex local

workload spread uniformly over all nodes in clouds. It is

utilized to maintain resource utilization ratio and high user

satisfaction [3], meaning that the system's total output is not

overshadowed by a single node. Proper load balancing will

allow efficient use of available resources, thereby reducing the

consumption of resources. It also helps to manage failure,

enable scalability, reduce response time, prevent bottlenecks

& over-supply, etc. Load Balancing is also important to

achieve green cloud computing.

Figure 1: Load balancing in cloud computing

Factors responsible for it are:

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 483 www.ijsart.com

• Limited Energy Consumption: The load balancing can

reduce energy consumption by preventing undue workload

due to the center of nodes or virtual machines.

• Reducing Carbon Emission: 2 sides of a similar coin are coal

consumption and carbon emissions. They are also strictly

related. Load Balancing helps minimize energy consumption

and reduces carbon emissions automatically, which thus

makes Green Computing possible.

LOAD BALANCING: It's a GOAL

Goals of Load Balancing are:

• To have a backup plan in case the system faces even

a small failure

• To enhance performance considerably

• Accommodation of future modification in a system

• To maintain system stability.

II. RELATED WORK

The related research and task scheduling are

discussed in this section. The job schedule is to ship jobs to

optimal resources and can be split into several activities. The

role of Load Balancing is to balance the load that is distributed

between workers and optimal resources. The Load Balancing

working in the geo-distributed cloud currently focuses on

raising the workload time and maintaining the device load

balance.

Different methods have been suggested in various

experiments using the methodology of clustering and logging,

but also some limitations. In [4] the authors propose to place it

at any Data Center (DC), using the K-Means approach

depends upon clustering VMs. In the clustering algorithm, an

attribute is only the RAM size of the VM. They utilize a

mathematical model to illustrate the proposed system concept.

The proposed architecture of authors in [5] uses

clustering technologies for the distribution of cloud resources.

They utilize Google's cluster tracks to build task groups and

project them out to virtual machines, taking into consideration

each cluster's real resource usage and do not rely on the

services the users are looking for. The method of mapping is

focused on patterns of task usage got from historical data.

In [6], the authors suggest a Data Center web-

business development model for cloud loading to extract

behavioral patterns of individual users and to help network

analyzes and simulation phases. They are using graphical and

statistical model testing models, but the model does not accept

any constraints such as consumer arrival and daily cycle

characteristics. Furthermore, the model does not determine the

effect on large metrics of various sizes of users. Authors

examine that user behavior in workload modeling should be

assumed to reflect actual situations, provided that the form of

user profile has a significant effect on the use of resources.

In [7], a dynamic VM allocation policy is developed

by the use of clustering techniques to set up groups of VMs. In

compliance with user specifications, this approach takes the

VMs and generates VMs using K-Means, which are then

transmitted for delivery to the closest accessible data center. In

[8], the Google Monitoring Data Collection is used to define

and coordinate tasks depend upon the usage of tasks across

people. The proposed method aims to the placement of VMs

allocated by clusters on the same hosts.

 In [8], suggested throttled Load Balancing algorithm

that reduces cost & response time in multi-datacenter VMs as

well as optimizes response time. The algorithm described in

this paper was that the customer first requests a load balance

system to find an adequate virtual machine that can operate

the incoming process. Several virtual machine instances can

occur in cloud computing. These VMs may be clustered as per

the type of request. It works correctly according to the

incoming requests. When a customer transmits a request, the

load balancer firstly checks the package as well as will

delegate the request when he is ready to accept & process the

request.

In [9], the suggested min-min algorithm, that chooses

maximum completion time task as well as assigns to its

suitable resource for improved exploitation and resource

management. When no. of tasks in meta-task exceeds no. of

big tasks, the Min-Min algorithm does not adequately

schedule tasks; as well as the structure of the scheme is

comparatively large. Moreover, a load-balanced system does

not provide. This algorithm provides higher priority to small

tasks also increases the time for large tasks to respond.

Therefore, this algorithm's downside is that several jobs can

experience starvation.

In [10], the proposed stochastic hill-climbing

algorithm i.e. utilized to delegate incoming jobs to servers or

VMs. Cloud Analyst analyzes the algorithm's performance

qualitatively & quantitatively. Cloud observer is a cloud-based

virtual modeler for web device and application analysis. In

this paper, the author explains the method in the cloud

computing environment for load distribution. The downside is

that in many situations this strategy has not been properly

optimized.

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 484 www.ijsart.com

III. RESEARCH METHODOLOGY

In this part, we illustrate our method to involuntarily

make VMs group in cloud datacenter depends upon their

source custom use and to involuntarily make users task groups

depend upon their resource requirements.

Problem Definition: The Load Balancing goal is to identify

the needs of customers simply and without delay data and

information can be sent and received. The Load Balancing in

cloud storage is one of the main challenges because it can be a

network, memory because CPU load without delay while load

balancing applications. The Load Balancing can have time-

consuming system responses. Cloud computing provides a

comprehensive array of shared tools, software packages,

information, storage, and various applications at any time

according to user demands. Better Load Balancing in the

cloud network enhances the efficiency and usage of resources

through the dynamic distribution of workload across different

cloud nodes.

Proposed Model:

To overcome the above problems, we have proposed

a new methodology which is "Harmony Inspired Differential

Evolution Algorithm"(HIDE) which tends to the problem of

existing research technique and provide the overwhelming

result by sorting out the problems of the Genetic algorithm

which was applied in the previous research methodology.

HARMONY SEARCH ALGORITHM:

HS model is based on the principle of swarm

intelligence, suggested in the optimization of particle swarm

[1], in which the current harmony would memorize the

knowledge from the harmony that has been strongest. To

increase the performance of an algorithm, a dynamic pitch-

adjusting rate[8] has also been implemented. At GHS, three

methods were used to create a new harmony: memory

analysis, global pitch adjustment, and random search.

Random Search: Search space spontaneously generates the

components of the current harmony as follows:

 (1)

where is the jth element of new harmony, as well as r, is a

real number consistently partitioned in [0,1].

Memory Consideration: Novel harmony components are

unorderly selected from harmony memory is shown here:

 = , j = 1,…n (2)

where xm is harmony partially selected from HM

Global Pitch Adjustment (GPA): Memory vector is passing

with a PAR(Pitch Adjusting Rate) likelihood on its neighbor

by imitating the finest harmony in Harmony Memory (HM):

= , j =1….n (3)

Where xbest represents worth harmony in HM also k is numeral

randomly selected amid 1 & n

In GHS, 2 parameters HMCR (Harmony Memory

Considering Rate) & PAR(Pitch Adjusting Rate) being

utilized for managing the ratio of various methods, these 2

characters help searching technique for widely and locally

elucidation, correspondingly [10]. Random search is utilized

in GHS with a probability of 1 and with an HMCR probability

of HMCR. GPA is used over components created using the

PAR likelihood of memory, which decreases linearly in the

searching procedure:

 = PARmin + t (4)

where NI means the total number of increments. The major

process of GHS starts, where fi represents function value of

harmony i, n represents decision vector dimension, U(0,1)

represents static partition amid 0 & 1. Pseudocode 1 is a

stepwise demonstration of HSA (Harmony Search algorithm).

Pseudocode HAS

1: In favor of every Harmony in HM:

1.1: Randomly input Xi as per (2);

1.2: Calculate fi ;

1.3 Initiate Xbest with the worth harmony.

2: For all magnitudei([1,n]) :

2.1: Change PAR(t) as per (4);

2.2: Produce as follows:

If U(0,1) ≤ HMCR then

Memory management as per (2);

If U(0,1) ≤ PAR(t) then

GPA as per (3);

Endif

Else

Random electionas per (2);

Endif

Step 3: New harmony will change unuseful harmony in HM i

only when it’s improved.

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 485 www.ijsart.com

Step 4: Go back to step 2 if the stopping criterion is not

satisfied, else stop.

DIFFERENTIAL EVOLUTION (DE):

DE is population dependent stochastic global

optimizer capable of maintaining a non-linear & multimodal

environment. DE performs several additional optimization

techniques in terms of convergence as well as stability over

general benchmark & real-world applications. Many variants

have been suggested for the classical DE. DE represented as

DE/rand/1/bin is accepted into this work. Usually speaking,

DE power may be recognized to 4 mechanisms: differential

operator, greedy selection, parent choice & discrete crossover.

Parent choice: Both people in the community have a fair

chance of developing candidates. For each Xi individual, three

more individuals from the present population are randomly

selected, such that four individuals vary. A pool of 4 parents

has therefore been established.

Differential Operator: An individual Vi is produced after a

mutation from 3 individuals in orderly selected in origin

choice as follows:

Vi = Xr1 + F(Xr2 − Xr3) (5)

where r1,r2,r3(r1≠ r2 ≠ r3 ≠ i) are 3 in orderly elected index

of inhabitants. As well as F is +ve real number which is often

less than 1.0.

Discrete Crossover: A testing individual Ti is created by

elements combination of Xi andVi one by one as follows:

ti,j = (6)

where ti,jis j the element of trial entity Ti , r is a static odd

number in [0,1], cr is an original number in [0,1] that manages

the proportion of selection among inherent and vector after

mutation. As well as sn is an arbitrarily selected index to make

sure that a minimum of 1component of Vi will be produced.

Greedy Selection: It is applied between trial vector Ti & Xi, as

well as one with worth fitness function, will be encouraged to

the next level.

The process of DE is shown in pseudocode 2, where

fi represents the functional cost of individual i.

Pseudocode DE

1: For each entity in population:

1.1: Load Xi randomly;

1.2: Calculate fi ;

1.3:Obtain the best entity Xbest ;

2: For each entity Xi in population:

2.1: Randomly select 3values r1,r2,r3, such that r1 ; ≠ r2 ≠ r3

≠ I;

2.2: Get mutation value Vi as per (5);

2.3: Get trial value Ti as per (6);

2.4: Greedy selection between Ti & Xi.

3: Return to step 2 if the above criteria are not satisfied, else

terminate.

ALGORITHM:

Step 1. Begin

Step 2. Choose process

Step 3. Arrange process as per cost (cost based on service)

Step4.If ((Distance && resource requirement && process

length) <= Threshold value)

// Let threshold value =35% of cost effective procedure for

VM

Else

Costly process // search subsequent vm

Step 5. Now opt for shortlisted VM as well as process them by

applying Harmony Inspired Differential Evolution

Step 6. Generate chromosome // using process & VM

Step 7. Apply crossover over chromosomes

Step 8. If (the distance of VM and process < threshold)

If (VM have sufficient space for process run)

Process assign to VM

Else

Search next VM for process

Else

Not sufficient

Step 9. Repeat step from 2 to 8, all new arrival process

Step 10. Exit

IV. PERFORMANCE EVALUATION

In this paper, we have worked on 10 maximum

virtual machines and 20 cloudlets. The implementation is done

on a cloud simulator tool.

Table 1: Configuration settings

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 486 www.ijsart.com

Figure 2: No. of VMs selected

Figure 3: No. of Cloudlets selected

Figure 4: Cloudsim showing result of GA

Figure 5: Cloudsim showing result of HIDE

Table 1: Result visualization of GA and HIDE

Figure 6: A comparison chart of Base and Proposed

methodologies

V. CONCLUSION

Due to the growing demand for high-performance

computing resources, energy-efficient methods have recently

been regarded to be of prime significance in cloud computing.

Cloud Computing load balancing is a complicated issue of

optimization that belongs to the NP-hard problem class. Meta-

heuristic methods have proved to be an extremely efficient

solution in this situation. We measured the issue of scheduling

in heterogeneous virtualization of cloud environment

wherever the number of tasks is scheduled on obtainable VMs

by the goal of minimum energy consumption through

preserving or civilizing the performance of cloud applications.

By well-known nature-inspired Harmony Search algorithm

and Differential Evolution algorithm, we have suggested a

fresh hybrid strategy named HIDE.

HIDE offers rapid convergence by identifying

whether or not the algorithm is in the local trap & removing

the algorithm from a local trap, skipping iterations to decrease

the performance period, and trying to move the worst

alternatives from the finest alternatives. It combines the DE

algorithm's exploration capacity with the harmony search

algorithm's exploitation capacity with some extra

characteristics associated with population enhancement. The

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 487 www.ijsart.com

simulation experiments showed the efficiency of our technique

in terms of less timing and more profitability.

REFERENCES

[1] Chavan, V. (2014). "Clustered Virtual Machines for

Higher Availability of Resources with Improved

Scalability in Cloud Computing", IEEE.

[2] Piraghaj, S. F., Calheiros, R. N., Chan, J., Dastjerdi, A.

V., &Buyya, R. (2017). "Virtual Machine Customization

and Task MappingArchitecture for Efficient Allocation of

Cloud Data Center Resources", 59(2), 208–224.

[3] Narkhede S., Baraskar T. Mukhopadhyay D. (2014),

"Analyzing Web Application Log Files to Find Hit Count

Through the Utilization ofHadoop MapReduce in Cloud

Computing Environment". 978-1-4799-3064-7/14. IEEE.

[4] Piraghaj, S. F., Dastjerdi, A. V., Calheiros, R. N.,

&Buyya, R. (2015). "Efficient Virtual Machine Sizing

For Hosting Containers as aService", 78-1-4673-7275-6,

IEEE.

[5] Magalhães, D., Calheiros, R. N., Buyya, R., & Gomes, D.

(2015). "Workload modeling for resource usage analysis

and simulation in cloudcomputing", 47, 69–81.

[6] Adrian, B., & Computing, A. C. (2015). "Analysis of K-

means Algorithm For VM Allocation in Cloud

Computing", 48–53.

[7] Panchal, B., & Kapoor, P. R. K. (2013). Dynamic VM

Allocation Algorithm using Clustering in Cloud

Computing, 3(9), 143–150.

[8] Yousif, S. A., & Al-dulaimy, A. (2017). Clustering Cloud

Workload Traces to Improve the Performance of Cloud

Data Centers, I, 7–10.

[9] Ghomi, E. J., &Rahmani, A. M. (2017). "Load-balancing

algorithms in cloud computing: A survey. Journal of

Network and ComputerApplications", 88, 50–71.

[10] Prakash, P. G. O. (2016). "Analyzing and Predicting User

Behavior Pattern from Weblogs", 11(9), 6278–6283.

[11] Singh, Jaspal & Goraya, Major. (2019). Multi-Objective

Hybrid Optimization based Dynamic Resource

Management Scheme for Cloud Computing

Environments. 386-391.

10.1109/ICSSIT46314.2019.8987760.

[12] Thakur, A. (2017). PRIMARY ISSUES AND

CHALLENGES IN CLOUD COMPUTING: A BRIEF

NOTE. International Journal of Advanced Research in

Computer Science, 8(7), 436–438.

https://doi.org/10.26483/ijarcs.v8i7.4274

[13] Yadav, Neeraj. (2019). A Ranking Based Model for

Selecting Optimum Cloud Geographical Region. Journal

of Engineering Design and Technology. 8. 793-797.

10.35940/ijitee.J8908.0881019.

[14] Neeraj, Goraya, M. S., & Singh, D. (2020). Satisfaction

aware QoS-based bidirectional service mapping in cloud

environment. Cluster Computing, 23(4), 2991–3011.

https://doi.org/10.1007/s10586-020-03065-7

[15] Agarwal, R., Baghel, N., & Khan, M. A. (2020). Load

Balancing in Cloud Computing using Mutation Based

Particle Swarm Optimization. 2020 International

Conference on Contemporary Computing and

Applications (IC3A).

doi:10.1109/ic3a48958.2020.233295

https://doi.org/10.1007/s10586-020-03065-7

