Performance Evaluation of Polypropylene Fiber Reinforced Concrete With Quarry Dust

Prajakta N. Haramkar

^{1, 2} Dept of Civil Engineering
²Ass Professor, Dept of Civil Engineering
^{1, 2} K.D.K. College of Engineering, Nagpur-440009, India

Abstract- In Indian scenario, fine aggregate is obtained from the river bed. But due to huge time gap between formation of natural sand and its rate of consumption, the ecological balance of the rivers has been disturbed and huge crises and scarcity of natural sand is observed. Now a day's District Administrator is facing the serious problem from 'sand mafia' due to large storage of illegal sand. In the present study, emphasis is made to investigate the utilization of quarry dust in Polypropylene Fiber reinforce concrete. The outcomes of this research work will promote the optimum application of quarry dust& Polypropylene Fiber and to conserve the natural resources for sustainable development of concrete industry.

Keywords- fine aggregate, polypropylene fibre, quarry dust, natural sand.

I. INTRODUCTION

Concrete is a miraculous and most widely utilized man made material for civil engineering construction. Concrete is a backbone of infrastructural development in the whole world due to strength, structural stability, high mold ability and low cost. India has taken major initiative in developing infrastructures such as Airports, Power Projects, Express Highways, Bridges, Dams, Commercial and Residential housing projects, Sky Scrapers, and industrial structures etc. to meet the requirement of globalization.

As compared to other construction material such as structural steel, aluminium and glass, the production of concrete involves least amount of energy consumption. Also concrete saves energy during the entire service life of a building due to its excellent thermal capacity, which enables it to absorb, store and radiate heat, stabilizing the internal temperature in a building. Concrete is a recyclable material and aggregates extracted after recycling can be reused. The admirable environmental and the profile of concrete is enhanced further due to its ability to use waste product from other industries such as fly ash, granulated blast furnace slag, silica fume, ferrosilicon and stone crusher dust from stone crusher etc. This paper is parted as optimum percentage replacement of quarry dust with natural sand and addition of polypropylene fiber as replacement of cement in concrete for optimum replacement of sand. The conclusion has summarized key results the end of the paper.

II. REASERCH

> Testing of Materials

1) Cement

Sr.no 1	Properties Normal Consistency	Standard values		
2	Initial Setting Time (minutes)	22	Not be less than 30 mmutes	
3	Final Setting Time (minutes)	329	Not be greater than 600 minutes	
4	Soundness (mm)	2.4	<10	
э	Fmeness	8.6	<10	
Ó	Specific gravity	3.15	(*) (*)	

Physical Properties of Cement.

2) Fine Aggregate

Sr. No.	Properties	Results obtained
1	Туре	Natural
2	Specific Gravity	2.45
3	Dulking	5.26 %
4	Dry Loose Bulk Density	1460 kg/m²
5	Fineness Modulus	3 18
6	Water Absorption	1.5 %
7	Surface Texture	Smooth
8	Farticle Shape	Rounded
9	Grading Zone (Based on percentage passing 0.60 mm)	Zonc I

.PhysicalProperties of Fine Aggregates

	Percentage passing by weight for						
18 Sieve Designation	Grading Zone I	Grading Zone II	Grading Zone III	Grading Zone IV			
10 mm	100	100	100	100			
4.75 mm	90 100	90 100	90 100	95 100			
2.36-mm	60-93	73-100	\$5-100	95-100			
1,18 mm	30 70	15 90	75 100	90 100			
600 micron	15 34	35 39	60 79	30 100			
30 <mark>0 micron</mark>	3 20	8 30	12 40	13 30			
120 micron	0.10	0.10	0 10	0.15			

www.ijsart.com

Grading Limit for Fine Aggregate IS: 383-1970

IJSART - Volume 7 Issue 2 – FEBRUARY 2021

TO Chan Darlan and a	Percentage by weight pa	sing for all-aggregate	
IS Sieve Designation	40 mm Normal size	20 mm Normal siz	
80 cur	100	*	
40 cm.	95-100	100	
20 mm.	43-75	95-100	
4.75 mm	25-45	30-50	
600 micron	8-30	10-35	
150 micron	06	06	

Grading limit of all -in- aggregate IS: 383-1970

The aggregates were sieved through a set of sieves to obtain sieve analysis and the same is presented in Table.

Total weight taken = 1000gm

	Retained on Each	1 Sieve	Cumulative %	Passing Through
Sieve	Wt(gms)	9/8	Retained	96
40.00 mm	0	0	0	100
20.00mm	0	0	U	100
10.00mm	0	0	0	100
4 75 mm	31	3 5	4 5	95 5
2. 36 mm	40	4.0	8.5	91.5
1.19mm	200	20.0	31.5	68.5
600 mieron	430	43.0	74.5	25.5
300 micron	290	24.0	98.5	1.5
150 mieron	10	1.0	99.5	0.5
Pan	05	0.5	1.0	99
Total	1000	100	318	

Fineness Modulus of Fine Aggregates

Fineness Modulus of sand = (Cumulative % Wt. Retained)/100

= 318/100 =3.18

3) Coarse Aggregate

Sr. No	Properties	Results obtained
1	Туре	Natural
2	Specific Gravity	2.67
3	Dry Loose Bulk Density	1530 Kg/m²
4	Fineness Modulus	đ 86
5	Water Absorption	0.6 %
6	Surface Texture	Rough
)	Particle Shape	Angular

Physical Properties of Coarse Aggregates (20 mm)

Total weight taken = 5000gm

	Retained on	Each Sieve	Cumulative	
Sieve	Wi(kg)	96	% Retained	Passing Through
90	0	0	0	100
50	0	U	0	100
40	0	0	0	100
20	1.379	27.58	27.58	/2.42
12.5	2.529	50.58	78.16	21.84
10	0.201	4.08	\$2.24	17.76
4.75	0.734	15.68	97.92	2.08
2.36	0.101	2.08	100	0
600 u	0	0	100	0
300 u	0	U	100	0
150 u	0	0	100	0
Total	5000	100	686	

Fineness Modulus of Coarse Aggregates

F.M. = (Cumulative % Wt. Retained)/100 = 686/100

=6.86

4) Quarry dust

Sr.no	Properties	Results obtained		
1	Specific Gravity	2.50		
2	Bulking	5.33%		
3	Dry Loose Bulk Density	1800 Kg/m²		
4	Fmeness Modulus	2.90		
5	Water Absorption	0.5 %		
6	Surface Texture	Rough		

Physical Properties of Quarry Dust

5) Fibers

Sr. No	Property	ValueForm		
1	Material	Polypropylene (Fabricated stabilized)		
2	Water absorption	NIL		
3	Specific gravity	0.921		
4	Demer	1050		
1	Dispersion	Excellent		
6	Cut Length	20 mm, 30mm		
7	Tensile strength	0.67 KN/3q.mm		
8	Melting point	7165 °C		
9	Acid and solt resistance	High		
10	Alkali resistance	Excellent		
11	Color	Naniral white		

Properties of Polypropylene Fiber (Bajaj Reinforcement LLP, Nagpur)

6) Details of Specimen

Table 4.10: Details of Test Specimen

Test property	Specimen	Size in mm
C		
Compressive strength	Cube	150 x 150 x 150
Split tensile strength	Cylinder	150 (dia) x 300
Flexural strength	Prism	100 100 x 500

Performance Analysis

ISSN [ONLINE]: 2395-1052

IJSART - Volume 7 Issue 2 – FEBRUARY 2021

Sr.	Artificial Sand	Natural Sand	Concrete	Water Cement		Slump in m	m	Average slump in
No	(%)	(%)	Grade	Ratio	18	2	3	mm
1	00	100	M30	0.45	101.72	97.88	86.30	95.3
2	40	60	M 10	045	100.41	82.9	91 36	97 19
3	60	10	M 30	0.15	94.4	93.49	\$1.8	59.89
4	100	00	M 30	0.45	64.86	61 52	58 57	62.95

Shump Test

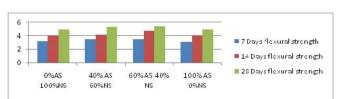
Artificial	Natural	Concrete	Water	Compa	ction Fac	tor	Average
(%)	Safety Safe	Grade	Ratio	1	2	3	Compaction Factor
00	100	1.130	0.15	0.91	0.8	0.93	0.88
40	60	M30	0.45	0.92	0.81	0.89	0.87
60	40	M30	0.45	0.87	0.8	0.92	0.86
100	00	M30	0.45	0.83	0.82	0.83	0.83
		1002-050	atrona a			6125	
	Sand (%) 00 40 60	Sand (%) Sand (%) 00 100 40 60 60 40	Sand (%) Sand (%) Concrete Grade 00 100 M30 40 60 M30 60 40 M30	Sand (%) Sand (%) Concrete Grade (Ratio Cement Ratio 00 100 M30 0.15 40 60 M30 0.45 60 40 M30 0.45	Sand Sand Concrete Grade Cement Ratio 1 00 100 2300 0.45 0.91 40 60 M30 0.45 0.92 60 40 M30 0.43 0.97	Sand (%) Sand (%) Concrete Grade (Ratio Cement Ratio 1 2 00 100 230 0.15 0.91 0.8 40 60 M30 0.45 0.92 0.81 60 40 M40 0.45 0.97 0.8	Sand (%) Sand (%) Concrete Grade (%) Cement (Ratio 0.15 1 2 00 100 2300 0.15 0.91 0.9 0.95 40 60 M30 0.45 0.92 0.81 0.85 60 40 M49 6.42 0.87 0.8 0.92

Compaction factor

Compressive Strength

		Artificial Sand	Natural Sand	Conct. Grade	Compre	ssive Streng	th N/mm2	
SN	Days	(%)	(%)	Conct. Grade	Cube 1	Cube 2	Cube 3	Avg.
1		0	100	1430	28.15	25.17	28.74	27.36
2	/ Days	40	60	1430	30.16	29.84	27 81	29.27
3		00	10	1430	30.14	31.05	27.49	29.56
4	1	100	0	1430	27.55	29.20	25.13	27.29
2	1 1000 00	0	100	1430	3410	31.50	3518	15.02
6	14 Days	40	60	1430	31.60	34.60	3613	35.47
12	1	00	10	1430	38.14	37.50	37.19	37.61
3	1	100	0	1.130	34.15	34.28	35.60	34.67
9	2 Contraction of the	0	100	1430	39.45	41.83	\$5.97	19.09
10	28 Days	10	60	1430	49.20	44 93	38.05	11.86
11		00	10	1430	44.03	44,91	38.14	12.30
12	1	100	D	L130	4134	31.45	40 16	39.99

Table 6.3: - Results of Compressive Strength withDifferent Replacement Percentage of sand

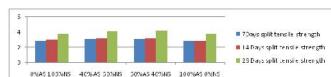


Results of Compressive Strength with Different Replacement Percentage of sand

Flexural Strength

	100	Artificial Se	andNatural Sar	d	Flexural	Strength N	/mm2	
SN	Days	(%)	(%)	Conct. Grade	Prism 1	Prism 2	Prism 3	Avg.
1	· .	0	100	MSD	3.33	3.30	2.97	3.20
2	/ Days	40	60	M30	3.61	3.24	3 71	3.52
3	, Days	60	40	MSO	9.50	\$ 22	3.61	3 51
4		100	0	MSD	3.20	3.21	2.82	3 0.8
2		<u>_</u> 9	100	M30	3.95	4.12	4.20	4.09
6	14 Days	40	60	MD0	4.15	4.20	4.05	4.15
7	1.000	60	40	MDO	4.65	4 88	4 70	4.74
8		100	0	MSD	3.95	4.06	1.21	4 09
ų		5.Q.S	100	M30	110	5.06	4 51	4.89
10	25 Days	40	60	M30	105	\$ 49	1.60	1 18
11		60	40	MBO	5.65	5.10	5.60	545
12		100	0	M30	4.95	1.60	5.10	4.88

Results of Flexural Strength With Different Replacement Percentage Of Sand



Flexural Strength With Different Replacement Percentage Of Sand

Split Tensile strength

SN		Artificial Sand	Natural Sand			Split Stren;	gth N/mm2	
0.0	Days	(%)	(%)	Conct. Urrace	Cylinder 1	Cylinder 2	Cylinder 3	Arg
1	100	U	100	M30	2.93	2.87	2.74	2.85
2	7 Days	10	60	M30	3.14	3.22	2.80	3.05
3		60	40	M30	3.20	3.16	2.95	3.11
4		100	0	MD0	2.09	2.87	2.17	2.79
5		0	100	MSD	2.97	3.10	2.89	2.98
6	14 Days	40	60	M30	3.12	3.14	3.25	3.16
1		60	10	M30	3.10	0.20	3.24	3.19
9		100	0	MD0	2 69	2.61	2.89	2.90
0		D	001	MBD	3 90	3.54	3.64	3 79
10	28 Days	40	60	MBD	4 15	4 18	3.95	4 10
11		60	40	M30	4.23	4.4)	3.84	4.18
12		100	0	M30	3.8.1	3.83	3.65	3.79

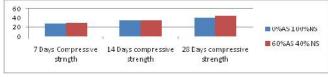
Results of Split Tensile Strength With Different Replacement Percentage of sand

Results of Split Tensile Strength With Different Replacement Percentage of sand

- > Polypropylene Fibre Reinforce Concrete (PFRC)
- 1. Slum cone test

Slump of fresh concrete with PP Fiber for M30

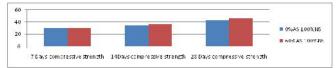
Sr.	Artificial	Natural	Concrete	Water Cement	Slum	p in mm
No	Sand (%)	Sand (%)	Grade	Ratio	0.25%	0.5%
1	00	100	M30	0.4*	92	38
2	60	40	34 30	0.45	86	76


2. Compressive Strength

		Artificial Sam	Natural Sand	Concl. Gr	Cu	mpressive &	Strength N/m	m2
SN -	Days	(%i)	(46)	Ade	Cube 1	Cube 2	Cube 3	Avg
1		υ	100	DEM	29.14	26 \$6	2.7.88	27.99
>	7 Days	60	40	DEM	30.11	29.55	29.98	29.00
3	14.12	U	100	MEO	31.09	33.42	31.18	34.20
4	14 Days	60	40	1410	34.88	35.45	34.54	35.06
5	28 Days	C	100	M30	44.30	38.26	43.14	41.90
8	28 Days	60	40	M30	48.64	41.76	47.27	45.85

Compressive Strength with PP Fiber 0.25%

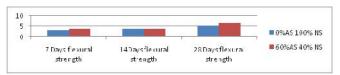
ISSN [ONLINE]: 2395-1052


IJSART - Volume 7 Issue 2 – FEBRUARY 2021

Compressive Strength with PP Fiber 0.25%

SN		Artificial Sand	Natural Sand	Conct. Gr	Ce	mpressive S	strength N/m	m2
27.4	Days	(%)	(%)	Ade	Cube I	Cube 2	Cube 3	Avg
1.2	and the second	0	100	M30	29.86	30.12	29.14	29.70
2	7 Daya	60	40	M30	31.24	29,85	30.14	30,42
3		9	100	M30	34.80	33.80	35.40	34.65
4	14 Days	60	10	M30	35.80	16.65	\$1.49	36.00
5		0	100	M30	43.96	40.85	44.29	43.00
ú	28 Days	60	10	M30	43.05	50.07	47.26	16.79

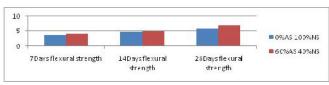
Compressive Strength with PP Fiber 0.5%



Compressive Strength with PP Fiber 0.5%

3. Flexural Strength

		Artificial Sand	Natural Sand	Conct. Grade	Flexural Strength N/mm2				
SN	Days	(%)	(%)	Conct. Grade	Prism 1	Prism 2	Prism 3	Avg	
1	2.2	D	100	M30	3.29	3 14	2.68	\$17	
2	7 Daye	60	10	M30	0.55	3.67	1.98	3.81	
з	117	0	100	5400	413	3.98	1.88	199	
4	14 Daya	60	40	M30	4.15	0.97	4.23	4.13	
2	- 26 Days	D	100	MERO	5.43	5.60	5.65	5.55	
6	10 10 10	60	40	M30	7.10	6.10	5.89	6.60	

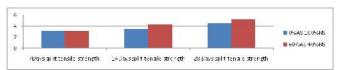

Flexural Strength with PP Fiber 0.25%

Flexural Strength with PP Fiber 0.25%

-		ArtificialS	andNatural San	d Conct. Grade	Flexural	Strength N	/mm3	
SN	Days	(%)	(%)	Concr. Grade	Prism 1	Prism 2	Prism 3	Avg.
1		0	100	M30	9.67	3 98	3 74	3 66
2	7 Days	60	19	M30	3.98	1.20	1.13	4.10
3	2264	0	100	M20	4.59	5.01	4.67	4.96
4	14 Days	60	40	M30	4 6R	5 13	5 22	5.01
5	- control -	0	100	M20	6.25	5.6	5.96	5.94
6	28 Days	60	40	M90	6.05	6.20	7.45	6.01

Flexural Strength with PP Fiber 0.5%

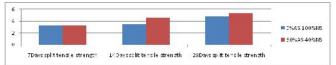
Flexural Strength with PP Fiber 0.5%


4. Split Tensile STrength

Artificial SandNatural Cand Split Strength N/mm2	plit Strength N/mm2	Artificial SandNatural Sand Conct. Grade			
--	---------------------	---	--	--	--

ISSN [ONLINE]: 2395-1052

SN	28			Conct. Grade							
004	Hays	(%)	(%)			Cylinder 2	Cylinder 3	Avg.			
1	7 Dava	a	100	MDD	3 2.7	9.17	2.56	3.09			
2	7 Daya	60	40	M30	3.18	3.24	2.10	3.17			
3	I4 Days	U	100	M30	3.09	3.22	1.98	3.40			
4	14 1/191	50	40	M30	4.29	3.98	1.61	4 29			
5	28 Days	0	100	M30	1.59	1.09	1.50	4.51			
6	28 Days	60	40	MG0	: 22	1.78	2.24	5.18:			


Split Tensile Strength with PP Fiber 0.25%

Split Tensile Strength with PP Fiber 0.25%

-		Artificial SandNatural Sand		Conci, Grade	Split Strength N/mm2				
SN	Days	(%i)	(%)	Canci. Grade	Cylinder 1	Cylinder 2	Cylinder 3	Avg.	
1		0	100	M30	314	3 18	3.27	319	
2	7 Days	60	-40	M30	3.31	3.26	3.17	3 26	
3	14 Days	0	100	M30	3.31	1.54	0.62	3.49	
4	14 Days	60	40	MI30	4.23	4.59	4.96	4 19	
5	28 Dave	0	100	M30	4 03	4 88	4 98	4.70	
ó	12 134	60	40	M30	5.69	1.89	5.35	5.33	

Split Tensile Strength with PP Fiber 0.5%

Split Tensile Strength with PP Fiber 0.5%

III. CONCLUSION

Optimum Replacement of sand & Strength Effect

- Non availability of sand at reasonable cost as finer aggregate in cement concrete for various Reasons, search for alternative material stone crusher dust qualifies itself as a suitable sub- stitute for sand at very low cost
- The measured slump values of quarry dust concrete with constant water cement ratio 0.45 are found to be 95.3, 92.39, 89.89 and 62.98mm for different mixes such as 0% quarry dust, 40% quarry dust, 60% quarry dust, 100% quarry dust respectively. It was observed that the slump value decreases with increase in percentage replacement of sand with quarry dust. The above slump value correspond to low degree of workability, suitable for construction of tiles and bricks as per IS 456-2000.
- The measured compaction factor value for quarry dust concrete with constant w/c ratio 0.45 are found to be 0.88,0.87,0.86 and 0.83 for different mixes such as 0% quarry dust, 40% quarry dust, 60% quarry dust , 100% quarry dust respectively. The above

values shows concrete give adequate workability with the increase of quarry dust as fine aggregate.

- It is observed that optimum replacement of natural sand by artificial sand is 60 %.
- There is consistent increase in strength of concrete by replacing natural sand with artificial sand up to 60% and then after the strength reduces.
- For optimum replacement, Using 60% artificial & 40% natural sand, there is maximum % increase is 8.37% in compressive strength, 11.45% in Flexural strength and 10.29% in Split tensile strength for M30 grade of concrete.

Strength Behaviour With Polypropylene Fiber

- The measured slump values of quarry dust concrete with constant water cement ratio 0.45 are found to be 92 and 86 mm for different mixes such as 0% quarry dust ,60% quarry dust and 100% quarry dust respectively. For 0.25% replacement of cement with PP fiber similarly 88,76 and 56 mm for different mixes such as 0% quarry dust , 60% quarry dust and 100% quarry dust respectively For 0.5% replacement of cement with PP fiber It was observed that the slump value decreases with increase in percentage replacement of sand and PP fiber with quarry dust and cement respectively.
- The Compressive Strength is increased up to 20% for 100% Natural sand and 18.19 % for combination of 60% Artificial & 40% Natural sand with PP Fiber.
- The % increase in compressive strength is maximum for 0.5% Volume Fraction and 20mm Fiber length of PP Fiber..
- The Flexural Strength is increased up to 24.80% for 100% Natural & 0% Artificial sand and 29.94% for combination of 60% Artificial & 40% Natural sand with PP Fiber.
- The Split Tensile Strength is increased up to 30% for 100% Natural & 0% Artificial sand and 29.58% for combination of 60% Artificial & 40% Natural sand with PP Fiber.

IV. APPLICATIONS

- a) Concrete Slabs, beams and columns
- b) Concrete Roads / Pavements
- c) Structural Repairs & Restoration
- d) Precast Products Pipes
- e) Water Storage Tanks,, Swimming Pools
- f) Pre-stressed concrete electricity poles
- g) Canal Lining Works

- ISSN [ONLINE]: 2395-1052
- h) Internal & External Plaster
- i) Tunnel Lining Works
- j) Industrial / Residential / Commercial Flooring
- k) Brickbat Coba, Rooftops
- 1) Mine Lining Works
- m) Roofing Sheets
- n) Bridges Wearing Coat

V. SCOPE FOR FUTURE STUDY

- 1) High strength concrete may be studied with same Fiber.
- 2) Combined application of this Fiber and other Fiber (Hybrid fiber) may be considered.
- 3) Various types of Fiber may be used with different length of fiber.
- 4) Behavior under creep and shrinkage may be studied.
- 5) Detailed durability, Bond strength and impact resistance studies of Polypropylene Fiber reinforced concrete.
- 6) Different grades of concrete may be studied with the same fiber.

REFERENCES

- [1] Sayyed Mahdi Abtahi , Milad Ghorban Ebrahimi, Mehmet M. Kunt, Sayyed Mahdi Hejazi and Saman Esfandiarpour, 2017, "Production of polypropylenereinforced asphalt concrete mixtures based on dry procedure and superpave gyratory compactor", Iranian Polymer Journal, Vol. 20, No. 10, pp. 813-823
- [2] Aly T., Sanjayan J. G., Collins F., 2016, "Effect of polypropylene fibers on shrinkage and cracking of concretes", Materials and Structures, Vol. 41, pp. 1741– 1753.
- [3] Singh S.P., Singh A.P. and Bajaj V., 2015, "Strength and flexural toughness of concrete Reinforced with steel – polypropylene hybrid fibers", Asian Journal of Civil Engineering (Building and Housing), Vol. 11, No. 4, pp. 495-507
- [4] Vasconcelos Raimundo E., QueirozSyme S., Ferreira Itamar, Carnio Marco A., Uehara Andre Y., "Toughness Factor of Polypropylene Fiber Reinforced Concrete in Aggressive Environment", International Conference on Experimental Mechanics, Paper Ref: 3811,Porto/Portugal, 22-27 July 2015
- [5] Khan Saman, Khan Roohul Abad, Khan Amadur Rahman, Islam Misbahul and Nayal Saman, 2016, "Mechanical properties of polypropylene fiber reinforced concrete for m 25 & m 30 mixes: A comparative study", International Journal of Scientific Engineering and Applied Science (IJSEAS) – Vol. 1, No. 6, pp. 327-340.
- [6] Ezeokonkwo, J. C and Nwoji, C. U, 2015, "Uniaxial compressive strength of Polypropylene fiber reinforced

sandcrete cubes", Journal of Emerging Trends in Engineering and Applied Sciences, Vol. 2. No. 6, pp. 1020-1025.

- [7] Horbanova uba, Ujhelyiova Anna, RybaJozef, Lokaj Jan and Michlik Peter, 2015, "Properties of composite polypropylene fibers for technical application", Acta Chimica Slovaca, Vol.3, No.2, pp. 85-92
- [8] Deshpande N.K., Kulkarni S.S. and Pachpande H., 2014, "Strength characteristics of concrete with recycled aggregates and artificial sand", International Journal of Engineering Research and Applications (IJERA), Vol. 2, No. 5, pp.038-042.
- [9] Veera Reddy M., 2014, "Investigations on stone dust and ceramic scrap as aggregate replacement in concrete", International journal of civil and structural engineering, Vol. 1, No. 3, pp. 661-666.
- [10] Kapgate Sudhir S. And Satone S.R., 2013, "Effect of quarry dust as partial replacement of sand in concrete", , Indian Streams Research Journal, Vol. 3, No. 5, pp. 1-8.
- [11] A.P. Sathe and A.V. Patil, "Experimental Investigation on Polypropylene Fiber Reinforced Concrete With Artificial" IJSR journal, Volume 4 Issue 6, June 2015
- [12] K.Anbuvelan,"strength and behavior of polypropylene fibers in impact characteristic in impact characteristic of concrete", American Journal of engineering research, volume 3 Issue June 2014.
- [13] Salahaldein Alsadey, Muhsen Salem, "Influence Of Polypropylene Fiber on Strength Of Concrete", American journal of Engineering research, Volume-5, Issue-7, 2016.
- [14] Anthony Nkem Ede and Abimbola OluwabambiIge, "Optimal Polypropylene Fiber Content for improved Compressive and Flexural Strength of Concrete", IOSR Journal of Mechanical and Civil Engineering, Volume 11 , Issue 3, May-2014.
- [15] Najilah Faroukh, I Padmanabad, "Experimental Study of Polypropylene fiber Reinforced Self Compacting Concrete", International Journal of ChemTech Research, Volume-10,2017