Analysis of Seismic Retrofitting on RC Building

Aditya Beohar¹, Satyendra Dubey²

¹Dept of Structural engineering

²Assistant Professor, Dept of Civil Engineering

^{1, 2} Gyam gamga Institute of Technology and Sciences, Jabalpur

Abstract- The world has observed a large scale destruction due to frequent earthquakes, resulting in loss of mane lives and imparting failure of structures. It is the need of the hour to offer utmost attention to the adequacy of structures, specially RC framed structure keeping seismic situation into consideration. To represent the same, in this project a Fifty year old, fourstorey building is taken as the base of this study. The structure is constructed in Zone II as specified in IS 893:2000. The non structural members are considered to be infilled with brick masonary.

The structure considered for this study has been modeled in STAAAD.Pro V8i taking into conisideration M15 grade concrete and Fe 250 grade steel. The structure is designed once without considering seismic loading and also considering seismic loading. The resulting moments and shear forces have been opted from the software analysis and thean a comparative study has been undergone with the capacity of the considered structure.

The most efficient method of retrofitting, FRP jacketing, is then applied of the failing members of considered 4-storey framed structure. For design of retro fittings, the specifications prescribed in ACI 440 2R.02 have been followed. The same code is used in the design calculations. Not only Serviceability checks but also creep rupture limit check are performed for the FRP strengthening system, as the structure is designed based on Limit State Method.

The only limitation involved with this thesis is that the code does not provide a specific method for the design of columns

I. INTRODUCTION

India is segmented into four seismic zones, Zone II, Zone III, Zone IV and Zone V, based on Indian Standard 1893:2002. Different zone factors are assigned to respective zones mentioned above, based on intensity of earth quake and importance factors associated with it. Importance factor can be defined as a factor used to get the plan seismic power contingent upon the practical utilization of the construction, portrayed by hazardous consequences of its failure, its postseismic tremor useful need, notable worth, or on the other

Page | 224

hand financial significance. On the other hand, intensity of earthquake is defined as "The intensity of an earthquake at a spot is a measure of the strength of shaking during the earthquake, and is demonstrated by a number as indicated by the adjusted Mercalli Scale or M.S.K. Size of seismic powers". Based on IS 1893:2002, the sieimic intensities of various zones are indicated below, with reference to mentiond IS code.

Table 2 Zone Factor, Z

(Crause 0,4.2)							
Seismic Zone	П	ш	IV	v			
Seismic Intensity	Low	Moderate	Severe	Very Severe			
Ζ	0.10	0.16	0.24	0.36			

A 4-storey building is considered for the study in this project. The building is designed and analysed as Ordinary Moment Resisting Frame (OMRF), located in zone II (as prescribed in IS 1893:2002), having seismic intensity 0.10. The existing structure is considered to be at-least fifty years old and is not designed for resisting earthquake or seismic shakes. Since, the existing structure is not designed to resist seismic forces, it may fail when subjected to moderate or strong earthquake. On carrying out the seismic analysis of existing structure, it was found vulnerable to earthquakes and suitable retrofitting methods are suggested on priority basis.

FOURTH STOREY

To make any existing framed structure perform better under seismic situations, seismic retrofitting is the best and most popular method. Seismic retrofitting can be described as the procedure of modifying any existing framed structure, to make them less prone to failure under seismic situations. This resistance for earthquakes can be attained easily by following following mentioned practices-

- By reducing the seismic demands on members and the structures as a whole
- By increasing the member capacities

For performing the seismic analysis, an existing fourstorey building is been considered. The existing structures consist of eight bays (rooms) spanning 3.5 meters . A projected slab cantilevered for 1.2 meters is provided in the structure. Floor height of existing structure is considered as 3.3 meters (clear span).

The structure is situated in Seismic Zone II, as specified in IS 1893:2002 Seismic zones classifications, which has the seismic intensity of 0.10. The structure is considered as Ordinary Moment Resisting Frame (OMRF). Also, the structure is built on medium soil.

The structure is then analyzed under seismic loading and the failing members are then retrofit using FRP Jacketing. The method of analysis used in the project is Equivalent Static Method. The initial part of analysis to determine the members that fail under earthquake loading is done by calculating the Demand- Capacity Ratio (DCR) for each member individually. Determining which members will fail is essential because it gives a rough idea about which retrofit technique to proceed with- global or local. The detailed evaluation of the building involves equivalent static lateral force procedure, load with response reduction factors and Demand Capacity Ratio (DCR) for ductility as in IS 13920:1993. Since the building dates back to a period 50 years early, the grade of concrete is assumed to be M15 and for steel Fe250.

Checks done:

- 1. DCR for moments of resistance in sagging and hogging for beams
- 2. DCR for shear capacity in beams
- 3. DCR for moment of resistance in columns
- 4. DCR for shear capacity in columns

Demand stands for the forces or loads applied to the structural element under seismic loading.

Capacity of the structural element can be defined as permissible strength of the same

DCR= Demand/Capacity

The member is said to be passing if the demand to capacity ratio does not exceeds unity (one).

Conversely, The member is said to be failed if the demand to capacity ratio exceeds unity (one).

The demand to capacity ratio is proved to be an important and key feature in determining whether the structural element is passed or failed under given loading exposure. In this project, flexure and shear checks are performed for all the structural members for which demand to capacity ratio is exceeding unity (ONE).

II. RESULTS AND OBSERVATIOBS

Moment Capacity of Beams

Table 1 First Storey

					Capacit		
Bea	Deman	Capacity		Result	У	DCR	Result
m	d	Sagging	DCR	Saggin	Hoggin	Hoggin	Hoggin
No.	(kNm)	(kNm)	Sagging	9	9	9	g
					(kNm)		
1	44.184	34.011	1.29910911	FAIL	34.011	1.2991091	FAIL
2	42.166	34.012	1.23973891	FAIL	34.012	1.2397389	FAIL
3	42.105	34.012	1.23794543	FAIL	34.012	1.2379454	FAIL
4	41.664	34.012	1.22497941	FAIL	34.012	1.2249794	FAIL
5	41.785	34.012	1.22853698	FAIL	34.012	1.228537	FAIL
6	42.158	34.012	1.23950370	FAIL	34.012	1.2395037	FAIL
7	41.522	34.012	1.22080442	FAIL	34.012	1.2208044	FAIL
8	44.431	34.01	1.30640987	FAIL	34.01	1.3064099	FAIL
11	44.328	35.622	1.24439952	FAIL	58.201	0.7616364	PASS
13	101.59	58.086	1.74895844	FAIL	125.645	0.8085479	PASS
14	102.405	50.328	2.03475202	FAIL	123.639	0.8282581	PASS
15	99.518	50.329	1.97734904	FAIL	112.7	0.8830346	PASS
16	92.931	40.971	2.26821410	FAIL	108.49	0.8565859	PASS
17	92.767	40.971	2.26421127	FAIL	108.49	0.8550742	PASS
18	98.034	50.328	1.94790176	FAIL	123.639	0.7929052	PASS
19	100.109	50.329	1.98909177	FAIL	110.541	0.9056278	PASS
20	92.615	44.856	2.06471820	FAIL	93.613	0.9893391	PASS
23	400.526	243.567	1.64441816	FAIL	460.281	0.8701771	PASS
24	109.261	75.889	1.43974752	FAIL	141.761	0.7707409	PASS
25	112.292	72.906	1.54022988	FAIL	127.291	0.8821676	PASS
26	106.209	69.672	1.52441439	FAIL	125.197	0.848335	PASS
27	97.311	51.021	1.90727347	FAIL	110.859	0.8777907	PASS
28	97.158	55.001	1.76647697	FAIL	111.248	0.873346	PASS
29	105.714	69.673	1.51728790	FAIL	126.993	0.8324396	PASS
30	107.219	69.673	1.53888880	FAIL	126.993	0.8442906	PASS
31	97.257	57.234	1.69928713	FAIL	122.974	0.7908745	PASS
35	306.418	301.599	1.01597817	FAIL	373.599	0.8201789	PASS
36	448.541	556.128	0.80654273	PASS	560.128	0.800783	PASS
37	294.079	190.597	1.54293614	FAIL	366.239	0.8029702	PASS
38	291.341	190.597	1.52857075	FAIL	366.239	0.7954942	PASS
39	292.528	190.597	1.53479855	FAIL	366.239	0.7987353	PASS
40	446.49	521.15	0.85673990	PASS	521.15	0.8567399	PASS

Table 2 Second Storey

		Capacit			Capacit		
Bea	Deman	У		Result	У		
m	d	Saggin	DCR	Saggin	Hoggin	DCR	Result
No.	(kNm)	g (khim)	Sagging	9	g (kblm)	Hogging	Hogging
77	41.635	33,966	1 225784608	FAII	33,966	1 225784608	FAII
78	39.868	33,966	1 173761997	FAIL	33,966	1 173761997	FAIL
70	20.240	22.955	1 150402011	EAU	22.966	1 150402011	EAU
13	00.004	33.300	1.100402011	FAIL	33.300	1.100402011	FAIL
80	38.981	33.900	1.14/04/048	FAIL	33.900	1.14/04/048	FAIL
81	38.954	33.900	1.140852735	FAIL	33.900	1.140852735	FAIL
82	39.358	33.900	1.158/40982	FAIL	33.900	1.158/40982	FAIL
83	39.193	33.966	1.153889183	FAIL	33.966	1.153889183	FAIL
84	41.485	33.966	1.221368427	FAIL	33.966	1.221368427	FAIL
87	39.57	16.443	2.406495165	FAIL	16.297	2.428054243	FAIL
89	94.49	69.548	1.358630011	FAIL	48.516	1.947604914	FAIL
90	97.854	69.548	1.406999482	FAIL	48.516	2.016942864	FAIL
91	94.792	69.548	1.362972336	FAIL	48.516	1.953829664	FAIL
92	87.456	69.548	1.257491229	FAIL	48.516	1.802621815	FAIL
93	87.048	69.548	1.251624777	FAIL	48.516	1.794212219	FAIL
94	93.008	69.548	1.337320987	FAIL	48.516	1.91705829	FAIL
95	95.088	69.548	1.367228389	FAIL	48.516	1.959930744	FAIL
96	86.691	69.548	1.246491632	FAIL	48.516	1.786853821	FAIL
99	394.924	970.763	0.406818142	PASS	409.104	0.965338887	PASS
100	99.675	40.446	2.464396974	FAIL	40.446	2.464396974	FAIL
101	106.372	40.446	2.62997577	FAIL	40.446	2.62997577	FAIL
102	100.11	40.446	2.475152055	FAIL	40.446	2.475152055	FAIL
103	90.447	40.446	2.236240914	FAIL	40.446	2.236240914	FAIL
104	90.01	40.446	2.225436384	FAIL	40.446	2.225436384	FAIL
105	99.33	40.446	2.455867082	FAIL	40.446	2.455867082	FAIL
106	100.827	40.446	2.492879395	FAIL	40.446	2.492879395	FAIL
107	89.468	40.446	2.212035801	FAIL	40.446	2.212035801	FAIL
111	302.934	480.549	0.63039149	PASS	313.796	0.965385155	PASS
112	440.714	137.43	3.206825293	FAIL	136.211	3.235524297	FAIL
113	290.215	136.436	2.127114545	FAIL	135.57	2.14070222	FAIL
114	287.427	129.37	2.221743836	FAIL	128.566	2.235637727	FAIL
115	288.638	129.37	2.231104584	FAIL	128,566	2.245057014	FAIL

Table 3 Third Storey

Bea m No. Deman (kNm) Y (kNm) DCR Saggin 9 (kNm) Res Lt Sagg ing Y Hoggin 9 (kNm) DCR Hoggin 9 (kNm) Result Hoggin 9 (kNm) Result Hoggin 9 (kNm) Result Hoggin 9 (kNm) Result Hoggin 9 (kNm) Result Hoggin 9 153 32.794 33.966 0.965494907 PASS 33.966 0.9656494907 PASS 154 32.611 33.966 0.950107166 PASS 33.966 0.95056989 PASS 155 32.977 33.966 0.95056989 PASS 33.966 0.95056989 PASS 156 32.877 33.966 0.9576859212 PASS 33.966 0.956567322 PASS 158 32.859 33.966 0.967408585 PASS 33.966 0.967408585 PASS 160 32.423 33.966 0.976859212 PASS 33.966 0.967408585 PASS 163 2.127 16.443 1.9534054 FAIL 48.516 1.56688927 FAIL 166 80.358 69.548 1.014978413 FAIL			Capacit			Capacit		
m d Saggin (kNm) DCR Saggin (kNm) Dtr Saggin (kNm) DCR Saggin (kNm) DCR Hogging (kNm) Hogging g 153 32.794 33.966 0.965494907 PASS 33.966 0.965494907 PASS 154 22.611 33.966 0.970676559 PASS 33.966 0.9650494907 PASS 155 32.97 33.966 0.970676559 PASS 33.966 0.950676559 PASS 156 32.597 33.966 0.95567322 PASS 33.966 0.9567402585 PASS 158 32.859 33.966 0.976405856 PASS 33.966 0.967402585 PASS 159 33.18 3.966 0.976405856 PASS 33.966 0.964572219 PASS 163 32.127 16.443 1.95634045 FAIL 48.516 1.56688327 FAIL 166 80.358 69.548 1.014507966 FAIL 48.516 1.456303735 FAIL 166 80.5548 1.0241598	Bea	Deman	У		Res	У		Result
No. (kNm) 9 (kNm) Sagg (g, Nm) Pagging (g, Nm) 9 (kNm) 153 32.794 33.966 0.965494907 PASS 33.966 0.966191766 PASS 154 32.611 33.966 0.970676559 PASS 33.966 0.970676559 PASS 155 32.97 33.966 0.950674989 PASS 33.966 0.950674989 PASS 156 32.597 33.966 0.95567322 PASS 33.966 0.95657322 PASS 158 32.859 33.966 0.967408585 PASS 33.966 0.967408585 PASS 159 33.18 33.966 0.976859212 PASS 33.966 0.967408585 PASS 160 32.427 16.443 1.95384054 FAIL 16.297 1.971344419 FAIL 165 7.4554 69.548 1.014507966 FAIL 48.516 1.56688927 FAIL 166 80.554 1.002415588 FAIL 48.516 1.561436608247	m	d	Saggin	DCR Sagging	ult	Hoggin	DCR	Hoggin
Ing (MAR) Ing (MAR) <th)< th=""> (MAR) (MAR)<td>No.</td><td>(kNm)</td><td>(khim)</td><td></td><td>Sagg</td><td>9 (khlm)</td><td>Hogging</td><td>9</td></th)<>	No.	(kNm)	(khim)		Sagg	9 (khlm)	Hogging	9
154 32.51 33.966 0.960107166 PASS 33.966 0.960107166 PASS 155 32.97 33.966 0.970676559 PASS 33.966 0.970676559 PASS 156 32.97 33.966 0.95057322 PASS 33.966 0.955657322 PASS 157 32.457 33.966 0.95657322 PASS 33.966 0.956557322 PASS 158 32.859 33.966 0.957858212 PASS 33.966 0.967408585 PASS 159 33.18 3.966 0.954572219 PASS 33.966 0.967408585 PASS 160 32.423 33.966 0.978859212 PASS 33.966 0.967408585 PASS 163 32.127 16.443 1.95384054 FAIL 48.516 1.566319565 FAIL 165 74.554 69.548 1.071979065 FAIL 48.516 1.656319565 FAIL 166 80.358 69.548 1.02415698 FAIL <td>153</td> <td>32 794</td> <td>33 966</td> <td>0 965494907</td> <td>Ing PASS</td> <td>33.966</td> <td>0 965494907</td> <td>PASS</td>	153	32 794	33 966	0 965494907	Ing PASS	33.966	0 965494907	PASS
155 32.97 33.966 0.970676559 PASS 33.966 0.970676559 PASS 156 32.57 33.966 0.970676559 PASS 33.966 0.950676559 PASS 157 32.457 33.966 0.95567322 PASS 33.966 0.95567322 PASS 158 32.859 33.966 0.970408585 PASS 33.966 0.9764708585 PASS 159 33.18 3.966 0.9764708585 PASS 33.966 0.96472219 PASS 160 32.423 3.3966 0.9764702585 PASS 33.966 0.96472219 PASS 163 32.127 16.443 1.958446 FAIL 48.516 1.56368827 FAIL 166 80.358 69.548 1.014507966 FAIL 48.516 1.454303735 FAIL 167 7.532 69.548 1.00241598 FAIL 48.516 1.454303735 FAIL 168 70.557 69.548 1.00241598 FAIL	154	32 611	33,966	0.960107166	PASS	33 966	0.960107166	PASS
105 <td>155</td> <td>32.97</td> <td>33,966</td> <td>0.970676559</td> <td>PASS</td> <td>33 966</td> <td>0.970676559</td> <td>PASS</td>	155	32.97	33,966	0.970676559	PASS	33 966	0.970676559	PASS
100 21.50 71.50 71.50 71.50 71.50 71.50 157 32.457 33.966 0.95557322 FASS 33.966 0.967408585 PASS 158 32.859 33.966 0.9567322 FASS 33.966 0.967408585 PASS 159 33.18 33.966 0.976859212 PASS 33.966 0.967408585 PASS 160 32.423 33.966 0.976859212 PASS 33.966 0.96567322 PASS 163 32.127 16.443 1.95384054 FAIL 48.516 1.536688927 FAIL 165 74.554 69.548 1.071979065 FAIL 48.516 1.53668927 FAIL 166 80.358 69.548 1.014507966 FAIL 48.516 1.454303735 FAIL 168 70.557 69.548 1.002415588 FAIL 48.516 1.4329708247 FAIL 170 76.755 69.548 1.092415588 FAIL 48.516	156	32 597	33,966	0.959694989	PASS	33,966	0.959694989	PASS
Display <t< td=""><td>157</td><td>32 457</td><td>33,966</td><td>0.95557322</td><td>PASS</td><td>33 966</td><td>0.95557322</td><td>PASS</td></t<>	157	32 457	33,966	0.95557322	PASS	33 966	0.95557322	PASS
159 33.18 33.366 0.976859212 PASS 33.966 0.976859212 PASS 160 32.423 33.966 0.976859212 PASS 33.966 0.976859212 PASS 163 32.127 16.443 1.95384054 FAIL 16.297 1.971344419 FAIL 165 74.554 69.548 1.0171979065 FAIL 48.516 1.55668927 FAIL 166 80.358 69.548 1.014507966 FAIL 48.516 1.55807074 FAIL 168 70.557 69.548 1.014507966 FAIL 48.516 1.436969247 FAIL 170 75.755 69.548 1.002415988 FAIL 48.516 1.561443047 FAIL 170 75.755 69.548 1.002415988 FAIL 48.516 1.56143047 FAIL 171 77.453 69.548 1.089247714 FAIL 48.516 1.43959247 FAIL 172 69.493 69.548 1.0892217714 FAI	158	32,859	33,966	0.967408585	PASS	33 966	0.967408585	PASS
100 23.423 33.366 0.954572219 PASS 33.966 0.954572219 PASS 163 32.423 33.366 0.954572219 PASS 33.966 0.954572219 PASS 163 32.427 16.443 1.95384054 FAIL 16.297 1.971344419 FAIL 165 74.554 69.548 1.071979065 FAIL 48.516 1.56688927 FAIL 166 80.386 69.548 1.014507966 FAIL 48.516 1.4563059247 FAIL 167 77.552 69.548 1.014507966 FAIL 48.516 1.454303735 FAIL 170 75.755 69.548 1.002415598 FAIL 48.516 1.561443647 FAIL 171 77.453 69.548 1.0129201719 PASS 48.516 1.561443647 FAIL 172 69.493 69.548 1.01493863 FAIL 48.516 1.432372825 FAIL 176 76.084 40.446 1.881125451	159	33.18	33,966	0.976859212	PASS	33,966	0.976859212	PASS
163 32.127 16.443 1.95384054 FAIL 16.297 1.971344419 FAIL 165 74.554 69.548 1.071970065 FAIL 48.516 1.536688927 FAIL 166 80.358 69.548 1.071970065 FAIL 48.516 1.536688927 FAIL 167 77.532 69.548 1.014507966 FAIL 48.516 1.58907074 FAIL 168 70.557 69.548 1.014507966 FAIL 48.516 1.436908247 FAIL 170 76.755 69.548 1.002415588 FAIL 48.516 1.436968247 FAIL 170 76.755 69.548 1.089247714 FAIL 48.516 1.597060763 FAIL 171 77.483 69.548 0.99920179 PASS 48.516 1.432972825 FAIL 175 362.301 970.763 0.373212017 PASS 409.104 0.885596328 PASS 176 76.084 40.446 1.881125451 <td< td=""><td>160</td><td>32 423</td><td>33,966</td><td>0.954572219</td><td>PASS</td><td>33,966</td><td>0.954572219</td><td>PASS</td></td<>	160	32 423	33,966	0.954572219	PASS	33,966	0.954572219	PASS
105 10.154 10.156 <td>163</td> <td>32 127</td> <td>16 443</td> <td>1 95384054</td> <td>FAII</td> <td>16 297</td> <td>1 971344419</td> <td>FAII</td>	163	32 127	16 443	1 95384054	FAII	16 297	1 971344419	FAII
105 <td>165</td> <td>74 554</td> <td>69 548</td> <td>1.071979065</td> <td>FAIL</td> <td>48 516</td> <td>1 536688927</td> <td>FAIL</td>	165	74 554	69 548	1.071979065	FAIL	48 516	1 536688927	FAIL
167 77.532 69.548 1.114798413 FAIL 48.516 1.59807074 FAIL 168 70.557 69.548 1.014507966 FAIL 48.516 1.454303735 FAIL 168 70.557 69.548 1.014507966 FAIL 48.516 1.454303735 FAIL 170 75.755 69.548 1.002415598 FAIL 48.516 1.454303735 FAIL 170 75.755 69.548 1.002415598 FAIL 48.516 1.454303735 FAIL 171 77.483 69.548 0.114033863 FAIL 48.516 1.45297060763 FAIL 172 69.493 69.548 0.999209179 PASS 40.9104 0.885596328 FAIL 175 362.301 970.763 0.373212617 PASS 409.104 0.885596328 FAIL 176 76.084 40.446 1.881125461 FAIL 40.446 1.881125461 FAIL 177 85.568 40.446 1.981011719	166	80.358	69 548	1 155432219	FAIL	48 516	1.656319565	FAII
101 <td>167</td> <td>77 532</td> <td>69 548</td> <td>1 114798413</td> <td>FAIL</td> <td>48 516</td> <td>1 59807074</td> <td>FAIL</td>	167	77 532	69 548	1 114798413	FAIL	48 516	1 59807074	FAIL
105 <td>168</td> <td>70.557</td> <td>69 548</td> <td>1.014507966</td> <td>FAIL</td> <td>48 516</td> <td>1 454303735</td> <td>FAIL</td>	168	70.557	69 548	1.014507966	FAIL	48 516	1 454303735	FAIL
170 75.755 89.548 1.089247714 FAIL 48.516 1.561443647 FAIL 171 77.755 69.548 1.089247714 FAIL 48.516 1.597060763 FAIL 172 69.493 69.548 1.14093863 FAIL 48.516 1.597060763 FAIL 172 69.493 69.548 0.999209179 PASS 48.516 1.432372825 FAIL 175 362.301 970763 0.373212617 PASS 48.9104 0.885596328 PASS 176 76.084 40.446 1.881125451 FAIL 40.446 1.881125451 FAIL 177 85.568 40.446 1.81011719 FAIL 40.446 1.81011719 FAIL 178 80.124 40.446 1.761583346 FAIL 40.446 1.761583346 FAIL 180 70.217 40.446 1.966856055 FAIL 40.446 1.9568660565 FAIL 181 79.147 40.446 1.964028087 <td< td=""><td>169</td><td>69 716</td><td>69 548</td><td>1.002415598</td><td>FAIL</td><td>48 516</td><td>1 436969247</td><td>FAIL</td></td<>	169	69 716	69 548	1.002415598	FAIL	48 516	1 436969247	FAIL
171 77.483 69.548 1.114093863 FAIL 48.516 1.597060763 FAIL 172 69.493 69.548 0.999209179 PASS 48.516 1.432372825 FAIL 175 362.301 970.763 0.373212617 PASS 40.9104 0.885596328 PASS 176 76.084 40.446 1.881125451 FAIL 40.446 1.881125451 FAIL 177 85.568 40.446 1.981011719 FAIL 40.446 1.981011719 FAIL 178 80.124 40.446 1.981011719 FAIL 40.446 1.981011719 FAIL 179 71.249 40.446 1.761583346 FAIL 40.446 1.761683364 FAIL 180 70.217 40.446 1.761583346 FAIL 40.446 1.956856055 FAIL 181 79.147 40.446 1.956856055 FAIL 40.446 1.984028087 FAIL 182 80.246 40.446 1.96856055 <	170	75.755	69.548	1.089247714	FAIL	48.516	1.561443647	FAIL
172 69.493 69.548 0.999209179 PASS 48.516 1.432372825 FAIL 175 362.301 970.763 0.373212617 PASS 409.104 0.885596328 PASS 176 76.084 40.446 1.881125451 FAIL 40.446 1.881125451 FAIL 177 85.568 40.446 1.15610338 FAIL 40.446 1.15610938 FAIL 178 80.124 40.446 1.981011719 FAIL 40.446 1.981011719 FAIL 179 71.249 40.446 1.761583346 FAIL 40.446 1.76158346 FAIL 180 70.217 40.446 1.956856055 FAIL 40.446 1.956856055 FAIL 181 79.147 40.446 1.956856055 FAIL 40.446 1.984028087 FAIL 182 80.246 40.446 1.968656055 FAIL 1.704395895 FAIL 183 68.336 40.446 1.968028087 FAIL 4	171	77.483	69.548	1,114093863	FAIL	48.516	1,597060763	FAIL
175 362.301 970.763 0.373212617 PASS 409.104 0.888596328 PASS 176 76.084 40.446 1.881125451 FAIL 40.446 1.881125451 FAIL 177 85.568 40.446 1.881125451 FAIL 40.446 1.881125451 FAIL 178 80.124 40.446 1.81011719 FAIL 40.446 1.81011719 FAIL 179 71.249 40.446 1.761583346 FAIL 40.446 1.761583346 FAIL 180 70.217 40.446 1.7566856055 FAIL 40.446 1.761583346 FAIL 181 79.147 40.446 1.956856055 FAIL 40.446 1.956856055 FAIL 182 80.246 40.446 1.966856055 FAIL 1.840.446 1.70439585 FAIL 183 68.936 40.446 1.70439585 FAIL 40.446 1.70439585 FAIL 184 22.971 17.43 3.124288729 <t< td=""><td>172</td><td>69,493</td><td>69.548</td><td>0.999209179</td><td>PASS</td><td>48.516</td><td>1.432372825</td><td>FAIL</td></t<>	172	69,493	69.548	0.999209179	PASS	48.516	1.432372825	FAIL
176 76.084 40.446 1.881125451 FAIL 40.446 1.881125451 FAIL 177 85.568 40.446 2.115610938 FAIL 40.446 2.115610938 FAIL 178 80.124 40.446 1.981011719 FAIL 40.446 1.981011719 FAIL 179 71.249 40.446 1.761583346 FAIL 40.446 1.761583346 FAIL 180 70.217 40.446 1.736067844 FAIL 40.446 1.956656055 FAIL 40.446 1.956656055 FAIL 40.446 1.956856055 FAIL 40.446 1.956856055 FAIL 40.446 1.956856055 FAIL 40.446 1.95402087 FAIL 181 79.147 40.446 1.956856055 FAIL 40.446 1.98402087 FAIL 182 80.246 40.446 1.970439585 FAIL 40.446 1.98402087 FAIL 183 88.936 40.446 1.70439585 FAIL 136.211 3.1522490	175	362.301	970,763	0.373212617	PASS	409,104	0.885596328	PASS
177 85.568 40.446 2.115610938 FAIL 40.446 2.115610938 FAIL 178 80.124 40.446 1.981011719 FAIL 40.446 1.981011719 FAIL 179 71.249 40.446 1.981011719 FAIL 40.446 1.981011719 FAIL 180 70.217 40.446 1.761583346 FAIL 40.446 1.73067844 FAIL 180 70.217 40.446 1.956856055 FAIL 40.446 1.956856055 FAIL 181 79.147 40.446 1.96826085 FAIL 40.446 1.9584028087 FAIL 182 80.246 40.446 1.964028087 FAIL 40.446 1.984028087 FAIL 183 68.936 40.446 1.704395855 FAIL 40.446 1.704395856 FAIL 187 275.402 480.549 0.573098685 PASS 313.776 0.877646624 PASS 188 429.371 137.43 3.124288729	176	76.084	40,446	1.881125451	FAIL	40,446	1.881125451	FAIL
178 80.124 40.446 1.981011719 FAIL 40.446 1.981011719 FAIL 179 71.249 40.446 1.761583346 FAIL 40.446 1.761583346 FAIL 180 70.217 40.446 1.761583346 FAIL 40.446 1.761583346 FAIL 180 70.217 40.446 1.736067844 FAIL 40.446 1.736067844 FAIL 181 79.147 40.446 1.956856055 FAIL 40.446 1.956856055 FAIL 182 80.246 40.446 1.965856055 FAIL 40.446 1.984028087 FAIL 40.446 1.984028087 FAIL 183 68.936 40.446 1.984028087 FAIL 40.446 1.704395895 FAIL 187 275.402 480.549 0.573098685 PASS 313.796 0.877646624 PASS 188 429.371 137.43 3.124288729 FAIL 136.57 1.947399867 FAIL 189 <	177	85.568	40,446	2.115610938	FAIL	40,446	2.115610938	FAIL
179 71.249 40.446 1.761583346 FAIL 40.446 1.761583346 FAIL 180 70.217 40.446 1.736067844 FAIL 40.446 1.736067844 FAIL 181 79.147 40.446 1.356057844 FAIL 40.446 1.736067844 FAIL 182 80.246 40.446 1.98628056 FAIL 40.446 1.98628607 FAIL 183 68.936 40.446 1.704395985 FAIL 40.446 1.704395985 FAIL 187 275.402 480.549 0.573098685 FAIL 40.446 1.704395985 FAIL 188 429.371 137.43 3.12428729 FAIL 136.211 3152249084 FAIL 189 264.009 136.436 1.935039139 FAIL 135.57 1.947399867 FAIL 190 262.013 129.37 2.025299528 FAIL 128.566 2.037964936 FAIL 191 263.65 193.72 2.025299528	178	80.124	40.446	1.981011719	FAIL	40.446	1.981011719	FAIL
180 70.217 40.446 1.736067844 FAIL 40.446 1.736067844 FAIL 181 79.147 40.446 1.956856055 FAIL 40.446 1.956856055 FAIL 182 80.246 40.446 1.968856055 FAIL 40.446 1.956856055 FAIL 183 88.936 40.446 1.984028087 FAIL 40.446 1.984028087 FAIL 183 68.936 40.446 1.704395985 FAIL 40.446 1.704395985 FAIL 187 275.402 480.549 0.573098685 FAIL 136.211 3.152249084 FAIL 188 429.371 137.43 3.124288729 FAIL 136.211 3.152249084 FAIL 189 264.009 136.436 1.935039139 FAIL 135.57 1.947399867 FAIL 190 262.013 129.37 2.025299528 FAIL 128.566 2.0379649365 FAIL 191 26.56 19.372 2.025299528	179	71.249	40.446	1.761583346	FAIL	40.446	1.761583346	FAIL
181 79.147 40.446 1.956856055 FAIL 40.446 1.956856055 FAIL 182 80.246 40.446 1.984028087 FAIL 40.446 1.984028087 FAIL 183 68.936 40.446 1.704395985 FAIL 40.446 1.704395985 FAIL 187 275.402 480.549 0.573098685 FASS 313.796 0.877646624 FASS 188 429.371 137.43 3.124288729 FAIL 136.211 3.152249084 FAIL 189 264.009 136.436 1.935039139 FAIL 135.57 1.947399867 FAIL 190 262.013 129.37 2.02529928 FAIL 128.566 2.037964936 FAIL 191 265.6 19.372 2.0252928 FAIL 128.566 2.037964936 FAIL	180	70.217	40.446	1.736067844	FAIL	40.446	1.736067844	FAIL
182 80.246 40.446 1.984028087 FAIL 40.446 1.984028087 FAIL 183 68.936 40.446 1.704395985 FAIL 40.446 1.704395985 FAIL 187 275.402 480.549 0.573098685 PASS 313.796 0.877646624 PASS 188 429.371 137.43 3.124288729 FAIL 136.211 3.152249084 FAIL 189 264.009 136.436 1.935039139 FAIL 135.57 1.947399867 FAIL 190 262.013 129.37 2.025299528 FAIL 128.566 2.037964936 FAIL 191 265.65 19.37 2.025299528 FAIL 128.566 2.04791959 FAIL	181	79.147	40.446	1.956856055	FAIL	40.446	1.956856055	FAIL
183 68.936 40.446 1.704395985 FAIL 40.446 1.704395985 FAIL 187 275.402 480.549 0.573098685 PASS 313.796 0.877646624 PASS 188 429.371 137.43 3.124288729 FAIL 136.211 3.152249084 FAIL 189 264.009 136.436 1.935039139 FAIL 135.57 1.947399867 FAIL 190 262.013 129.37 2.025299528 FAIL 128.566 2.037964936 FAIL 191 265.65 129.37 2.025299528 FAIL 128.566 2.04794959 FAIL	182	80.246	40.446	1.984028087	FAIL	40.446	1.984028087	FAIL
187 275.402 480.549 0.573098685 PASS 313.796 0.877646624 PASS 188 429.371 137.43 3.124288729 FAIL 136.211 3.152249084 FAIL 189 264.009 136.436 1.935039139 FAIL 135.57 1.947399867 FAIL 190 262.013 129.37 2.025299528 FAIL 128.566 2.037964936 FAIL 191 25.65 129.37 2.025299528 FAIL 128.566 2.04794595 FAIL	183	68.936	40.446	1.704395985	FAIL	40.446	1.704395985	FAIL
188 429.371 137.43 3.124288729 FAIL 136.211 3.152249084 FAIL 189 264.009 136.436 1.935039139 FAIL 135.57 1.947399867 FAIL 190 262.013 129.37 2.025299528 FAIL 128.566 2.037964936 FAIL 191 25.65 129.37 2.025299528 FAIL 128.566 2.04791696 FAIL	187	275.402	480.549	0.573098685	PASS	313.796	0.877646624	PASS
189 264.009 136.436 1.935039139 FAIL 135.57 1.947399867 FAIL 190 262.013 129.37 2.025299528 FAIL 128.566 2.037964936 FAIL 191 26.56 1.9372 2.0322339 FAIL 128.566 2.04794959 FAIL	188	429.371	137.43	3.124288729	FAIL	136.211	3.152249084	FAIL
190 262.013 129.37 2.025299528 FAIL 128.566 2.037964936 FAIL	189	264.009	136.436	1.935039139	FAIL	135.57	1.947399867	FAIL
	190	262.013	129.37	2.025299528	FAIL	128.566	2.037964936	FAIL
101 E02.00 (20.01 E.00022000 (ALC) 20.000 E.04201000 FAIL	191	262.65	129.37	2.03022339	FAIL	128.566	2.04291959	FAIL

Table 4 Fourth Storey

		Capacit			Capacit		
Bea	Deman	У		Re	У		Result
m	d	Saggin	DCR Sagging	sult	Hoggin	DCR	Hoggin
No.	(kNm)	9 (kNm)		Sag	9 (kNm)	Hogging	9
	17.000	(((((()))))))))))))))))))))))))))))))))		ging	(Kikin)		24.00
229	17.820	33.900	0.524818937	PASS	33.966	0.524818937	PASS
230	22.182	33.966	0.65306483	PASS	33.966	0.65306483	PASS
231	21.204	33.900	0.020037803	PASS	33.900	0.020037803	PASS
232	20.986	33.966	0.617853147	PASS	33.966	0.617853147	PASS
233	20.92	33.966	0.615910028	PASS	33.966	0.615910028	PASS
234	21.106	33.966	0.621386092	PASS	33.966	0.621386092	PASS
235	21.8	33.966	0.641818289	PASS	33.966	0.641818289	PASS
236	17.114	33.966	0.503856798	PASS	33.966	0.503856798	PASS
239	26.452	16.443	1.608708873	FAIL	16.297	1.62312082	FAIL
241	32.311	20.766	1.555956853	FAIL	20.766	1.555956853	FAIL
242	37.358	20.766	1.798998363	FAIL	20.766	1.798998363	FAIL
243	34.641	20.766	1.668159491	FAIL	20.766	1.668159491	FAIL
244	29.257	20.766	1.408889531	FAIL	20.766	1.408889531	FAIL
245	29.388	20.766	1.41519792	FAIL	20.766	1.41519792	FAIL
246	33.476	20.766	1.612058172	FAIL	20.766	1.612058172	FAIL
247	35.213	20.766	1.695704517	FAIL	20.766	1.695704517	FAIL
248	28.521	20.766	1.373446981	FAIL	20.766	1.373446981	FAIL
251	181.786	124.965	1.454695315	FAIL	124.361	1.46176052	FAIL
252	34.818	40.446	0.860851506	PASS	40.446	0.860851506	PASS
253	42.967	40.446	1.06233002	FAIL	40.446	1.06233002	FAIL
254	38.097	40.446	0.941922563	PASS	40.446	0.941922563	PASS
255	31.638	40.446	0.782228156	PASS	40.446	0.782228156	PASS
256	31.923	40.446	0.789274588	PASS	40.446	0.789274588	PASS
257	37.402	40.446	0.924739158	PASS	40.446	0.924739158	PASS
258	39.093	40.446	0.96654799	PASS	40.446	0.96654799	PASS
259	30.256	40.446	0.748059141	PASS	40.446	0.748059141	PASS
263	177.643	129.279	1.374105617	FAIL	128.6	1.381360809	FAIL
264	182.458	106.074	1.720101062	FAIL	105.328	1.732283913	FAIL
265	170.208	140.375	1.212523598	FAIL	139.656	1.218766111	FAIL
266	168.496	140.375	1.200327694	FAIL	139.656	1.206507418	FAIL

III. CONCLUSION

The analysis of beams by Equivalent Static Method revealed that most of the beams failed in flexural capacity. The number of failing beams decreased with increasing storeys. However, the number of beams failing in shear capacity were very less i.e. beams 23, 36, 40 in 1st storey; 112, 116, 118 in 2nd storey; 188, 192 in 3rd storey.

Based on the above observations, the immediate need to counter deficiency in flexural capacity was identified and the FRP jacketing scheme was suggested only for beams, failing in flexure. Due to the high tensile strength and stiffness, stability under high temperatures and resistance to acidic/alkali/organic environments, carbon fiber was chosen as the FRP material to be used.FRP strips that are commercially available are not made to a universal standard but a localized standard as set by the manufacturing company. Thus, the dimensions considered for the strips were strictly as per a design example in ACI 440.2R-02. The code states though, that wider and thinner FRP strips have lower bond stresses and hence, provide higher level of strength. The FRP design method used in this project is essentially trial and error where the value of the depth of neutral axis has to be assumed and compared with the value obtained. Thus, efforts were made so that the number of plies to be applied to a continuous series of beams, say in the longitudinal or transverse direction, would remain the same. This would ensure feasibility of application of the FRP system to the beams.

REFERENCES

- [1] Agarwal, P. and Shrikhande, M. (2004), Earthquake Resistant Design of Structures, PHI Publication
- [2] Fardis, Michael N. (2009), Seismic Design, Assessment and Retrofitting of Concrete Buildings, Springer
- [3] Fukuyama, H., Sugano, S. (2000), Japanese seismic rehabilitation of concrete buildings after the Hyogoken-Nanbu Earthquake, Cement and Concrete Composites, Vol. 22 Issue 1
- [4] Griffith, M. C. and Pinto, A. V. (2000), Seismic Retrofit of RC Buildings - A Review and Case Study, The University of Adelaide, Adelaide, Australia and European Commission, Joint Research Centre, Ispra Italy.
- [5] Kumar, E. S, Murugesan, A, Thirugnanam, G.S. (2010) Experimental study on behaviour of Retrofitted with FRP wrapped RC Beam-Column Exterior Joints Subjected to cyclic loading, International Journal of Civil and Structural Engineering, Vol. 1 No. 1.
- [6] Oliveto, G. and Marletta, M. (2005), Seismic Retrofitting of RC Building using Traditional and Innovative Techniques, ISET Journal of Earthquake Technology, 454(42).
- [7] Rai, Durgesh C. (2005), Seismic Evaluation and Strengthening of Existing Buildings, IIT Kanpur and Gujarat State Disaster Mitigation Authority
- [8] Sarno, L. D. and Elnashai, A. S. (2004), Bracing Systems for Seismic Retrofitting of Steel Frames, 13th World

Conference on Earthquake Engineering, Vancouver B.C., Canada.

- [9] Syal, I.C., Goel, A.K. (2010), Reinforced Concrete Structures, S. Chand Publications
- [10] Thermou, G. E. and Elnashai, A. S. (2006), Seismic retrofit schemes for RC structures and local–global consequences, Prog. Struct.Engng Mater, 8
- [11] Wang, Y. P. (1998), Fundamentals of Seismic Base Isolation, International Training Programs for Seismic Design of Building Structures
- [12] Wha Bai, J. (2003), Seismic Retrofit for Reinforced Concrete Building Structures, Texas A&M University, Mid-America Earthquake Center, CM-4: Structure Retrofit Strategies
- [13] BIS, IS 13920:1993, Ductile detailing of reinforced concrete structures subjected to seismic forces — Code of practice, Bureau of Indian Standards, Second revision
- [14] BIS, IS 456:2000, Plain and reinforced concrete code of practicel Bureau of Indian Standards, Fourth revision.