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Abstract- The interaction of phonons with other phonons is an 

extremely important scattering mechanism in most 

semiconducting material. This scattering mechanism is vital in 

describing two thermal properties of system such as the mean-

free path of the phonons and the thermal conductivity. 

Generally, Phonon interactions occur due to the enharmonic 

regime of the crystal potential and because of this it is 

possible for phonons to be created and destroyed via these 

interactions. In the present study, we discussed about the 

phonon-phonon interactions, which is the study of the lifetime 

of phonon modes. The results show that the relaxation rate of 

a phonon mode (that is the rate at which phonons interact) is 

equal to the inverse of the phonon mode’s lifetime, which 

includes three-phonon interactions based on the dispersion 

relation. A detailed derivation of the three-phonon scattering 

relaxation rate is presented in this paper. A qualitative 

analytic expression for the relaxation rate of all acoustic 

phonon modes and an exact analytic expression for the decay 

rate of the two zone-center optical modes, in nanostructures 

are also derived.These results also discuss the importance of 

particular phonon branches in the relaxation rates of the 

phonon modes and what effects α change in the size of 

temperature of the nanotube have on the relaxation rate. 
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I. INTRODUCTION 

 

 Phonon-phonon interactions can be viewed as a 

perturbation on the harmonic system [1]. As this perturbation 

is small, these interactions can be described using Fermi’s 

Golden Rule [2]. From the Golden Rule, one can calculate the 

lifetime of a phonon mode as a function of temperature. The 

theory of phonon-phonon interactions has been studied for 

over half a century. The theoretical treatment of these 

interactions is linked to the modelling of the enharmonic 

potential, a complicated and difficult term which can be 

approximately determined using second-order and third-order 

elastic constants, which are exceptionally hard to measure 

experimentally. This applies especially for nanostructures. As 

such, there have been several different approaches to modeling 

these interactions in bulk materials, but only recently has there 

been any progress in nanostructures [3,4]. In 1954, Herring 

was the among the first to use a relaxation time approach to 

understand and explore these interactions in bulk materials [5]. 

In his approach, based loosely on Fermi’s Golden Rule, and 

the linear Debye relations), he showed that the relaxation rate 

of phonon modes undergoing three-phonon processes was 

directly proportional to the temperature [6]. However, this 

approach relies on the condition that the temperature is higher 

than the Debye temperature and uses a simplified form for the 

potential cubic enharmonic term v3. This relaxation time 

approach was adopted by Liebfried and Schlomann who had 

previously developed an enharmonic potential as part of their 

specific heat calculations in 1952 [7,8]. This enharmonic 

potential was calculated using a Debye-like continuum 

approach to modeling the potential. Using their potential, were 

able to calculate the lifetime of the acoustic phonon modes 

undergoing three-phonon interactions for bulk 

semiconductors. This potential was advantageous in that it had 

only one adjustable parameter, but was disadvantageous in 

that it required linear dispersion relations. This theory was 

then applied to several semiconductors and showed good 

agreement with experiment though in result it was a necessity 

to vary at learnt one adjustable parameter with temperature to 

match high and low temperature experimental results. 

Klemens, in 1958, proposed a second form for the enharmonic 

potential in bulk which also only applied in the long 

wavelength limit to acoustic phonons, by applying symmetry 

arguments [9-11]. The advantage of Klemens potential was 

that it applied to non-linear dispersion curves, which is the 

case in most real systems. The disadvantage of this potential 

was that it required one to have knowledge of the average 

velocity of the phonon modes (with no clear definition of how 

to calculate this) and had two scalable parameters. Also, 

Klemen’s expression, like Leibfried’s, had an arbitrary 

coupling between the interacting phonon modes. However, 

Klemens and Liebfrieds models did not agree on the low 

temperature relaxation rates. Later, in 1966 Klemens improved 

and generalized this potential and the resultant expression for 

the relaxation rate of phonon modes by including the effects of 

optical modes, but still the two theories could not agree [12]. 

Hamilton and Parrott in 1988, re-adapted and improved the 

form of the Leibfried’s potential by expanding the potential in 

terms of the isotropic continuum model based upon the 

relations derived by Landau and Lifschitz [13-15]. By 

applying this approach, they showed that these scattering 

processes could explain the thermal conductance of 

germanium as a function of temperature using the Vibrational 
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Principle. Later, on this basis, Parrott applied this potential 

using the knowledge gained from the variastional approach to 

a Relaxation time approach. In 1994, Srivastava presented a 

detailed description of the relaxation rate of phonon modes 

[16-17]. Previous arbitrary parameters and coupling constants 

were replaced with measurable quantities and a clear 

description of the difference between Class 1 and Class 2 

events was presented (Class 1, Class 2 events and Normal and 

Umklapp processes are defined in the following section). 

Also, by removing arbitrary coupling parameters, Srivastava 

was able to shoe that at high temperatures, Umklapp processes 

would dominate in bulk materials and at low temperature 

Normal processes would dominate. In his approach, he was 

able to discuss the exact contributions from different phonon 

modes, and only applied one semi-adjustable parameter, the 

Griineisen constant, which did not need to change with 

temperature. Later, in 1996, Srivastava improved upon the 

potential which Parrott had applied by re-moving the necessity 

to use linear dispersion relations and correcting the potential to 

show a similar form to that of Klemens, but with only one 

semi-adjustable parameter (the Gruneisin constant) and no 

arbitrary coupling factor. Later, by applying this relaxation 

time approach to germanium, Srivastava showed excellent 

agreement with experiment and explained the thermal 

conductivity in all regimes [16,18-21]. This included the high 

temperature regime which is dominated completely by three-

phonon events. In 2011, Lax et al. showed, using momentum 

and energy conservation conditions, that certain decay routes 

of phonon modes (such as a high energy transverse acoustic 

phonon mode decaying into two lower energy transverse 

acoustic phonon modes) were impossible due to momentum 

and energy conservation conditions [22-23]. These conditions 

have been shown to apply to linear systems and also near the 

Brillouin zone center for non-linear systems where the 

dispersion curves are approximately linear. This is especially 

interesting when one considers nanotubes. 

 

1.1. General expression 

 

Here a clear derivation of the lifetime of three-

phonon processes for selected phonon modes are presented. 

The expression for the lifetime of phonon modes is formulated 

for a one-dimensional system, whilst the three-dimensional 

approach is also given to enable direct comparison. Such a 

derivation is very complicated and as such some 

simplifications are used, though these are kept to a minimum. 

These expressions are derived based upon an approach known 

as the single mode relaxation time method (smrt). In this 

approach on assumes that all modes except the scattered are 

populated according to their Bose-Einstein equilibrium 

distribution [24-25]. The three-phonon scattering lifetime is 

calculated using Fermi’s Golden Rule. Fermi’s Golden Rule 

describes the transition probability  of an event as where 

Ei and Ef are the initial and final energy state of the system 

respectively,  and  are the initial and final states of 

the system respectively and V3 is the lowest order enharmonic 

part of the crystal potential. Higher order enharmonic terms 

lead to multi-phonon processes involving more than three 

phonons. These processes are considered too weak to strongly 

change the relaxation rate. Equation (1) requires one to 

evaluate the form of V3, the cubic enharmonic part of the 

crystal potential. Within an elastic continuum approach, V3 

can be written as 

 

 
 

For a three-dimensional continuum it can be readily shown 

that the displacement vector is of the form 

 

 
 

Where, p is the mass density per unit volume, s 

indicates the phonon branch and q is the wave vector. Vo is 

the volume of the material and aqs and  are the phonon 

creation and annihilation operators respectively. For a one-

dimensional system, Eq. (2) is modified by Vo  Lo and p 

 p’ where Lo is 

 

 

the length of the nanostructure and p’ is the mass per 

unit length. It is important to note here that the vectors, u, q 

and e are maintained irrespective of whether the system is 

one-, tow- or three-dimensional. Differentiating Eq. (2) with 

respect to r, and substituting into Eq. (2), the form of potential 

becomes 

 

 
 

for three-dimensional systems, where ,  and 

 are the magnitudes of the wave vectors q, q’, and q” 

respectively and ,  and  are the polarization 

vectors of the phonon mode, Similarly, for a one-dimensional 

system one obtains 
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 (5) 

 

It in now possible to solve the integration in Eqs. (4) 

and (5) using the Fourier theorem 

 

(6) 

 

where ς is the reciprocal lattice vector for Umklapp 

processes and ς = 0 for Normal processes. D is the number of 

dimensions. For one dimensional system L1 = Lo and for three 

dimensional systems L3 =Vo Using this identity, it is possible 

to rewrite Eq. (5) as 

 

 
 

To simplify this expression further, one applies the following 

substitution to simplify  

  

 
 

where V, V’ V” are the unit vectors along q, q’ and q” 

respectively. 

 

1.1.2 Analytic model for relaxation rate in carbon nanotubes 

 

 

For a qualitative analytic expression, it is necessary that one 

applies the linear Deye model to carbon nanotubes. As this is a 

simplistic model, for explaining trends and features of the 

relaxation rate of phonon modes undergoing three-phonon in-

teractions, the effect of the optical modes shall be discarded 

immediately as their consideration should not change the form 

of the expressions derived. Thus, this leaves the acoustic 

branches TA,LA, and WA of the form (Kz)= csKz wher cs 

is the group velocity of mode ϑ. To simplify this model further 

let m = 0 for all modes. Using this relation, one obtains the 

density of states for each of these modes as: 

 

 
Figure 1: The phonon dispersion curves of the six lowest 

branches for a carbon nanotube of radius R. B is the 

frequency of the breathing mode at the zone centre. Here the 

letter corresponds to the phonon branch: L = Longitudinal, T = 

(doubly degenerate) Transverse, W = Twist, Br = Breathing 

and σ = σ (the lowest non-zero mode). 

 

Table 1: The allowed combinations of phonon polarization 

branches within the simple analytic model. 

 
 

III.  RESULTS 

 

3.1 Lifetime of zone-center optical modes in carbon nan-tubes 



IJSART - Volume 6 Issue 9 – SEPTEMBER 2020                                                                            ISSN  [ONLINE]: 2395-1052 

 

Page | 31                                                                                                                                                                       www.ijsart.com 

 

For the feasibility of the study presented above calculations 

were performed for armchair (n, n) carbon nanotubes, with n 

ranging from 5 to 20. The nanotube radius r is related, for an 

(n,n) tube, to n by  where ac-c = 0.144 nm. It was 

assumed that the confined modes ( ) and ( B) can decay 

into the four acoustic mode (the longitudinal L, doubly 

degenerate transverse T and the twist W).  

 

 
Figure 2: The variation of the lifetime of the lowest non-zero 

zone-centr confined mode and the breathing mode in (n,n) 

carbon nanotubes at 300 K.  

 

The acoustic speeds for all n values are cL = 21.6 

km/s, cT = 10.0 km/s, cW =14.5 km/s.   For   the   (10,10)   

nanotube    THz   and  THz. 

For other sizes of the nanotubes both wq and wB scaleas 1/n. 

From Fig 2 one observes a steady increase in the lifetime of 

both modes with an increase in the nanotube radius. The Fig.3 

increases linearly with temperature in the entire presented 

range which is what would be expected for the high 

temperature behavior of a phonon mode. This is due to the 

very low frequencies of these modes, making hw/kT much 

smaller that unity for all the temperatures considered. This can 

be contrasted with the intrinsic lifetime of the zone-centre 

optical modes in bulk diamond, which due to their high 

frequency shows a linear variation only above the Debye 

temperature. 

 

 
Figure 4: The lifetime of the lowest non-zero zone-centre 

confined mode and the breathing mode and the breathing 

mode as a function of temperature for a (10,10) carbon 

nanotube. 

 

While the trend in the variation of the lifetime of the 

two modes is correctly described by Figs. 3 and 4, the 

numerical results of the lifetimes are subject to the choice of 

the acoustic speeds and the frequencies of the modes.  

 

Table 3: The frequencies of the lowest non-zero zone- centre 

confined mode and the acoustic speeds of the longitudinal and 

doubly transverse modes for a silicon nanowire of thickness d. 
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is that these low lying optical modes in carbon nanotubes have 

lifetimes comparable with those of acoustic modes in bulk 

materials. 

 

3.2 Lifetime of zone-center optical modes in silicon nanowires 

Calculations were made for square thin silicon nanowires 

whose cross section area varied in size from 0.543 nm × 0.543 

nm to 3.801 nm × 3.801 nm. The frequency  and 

the speeds of the acoustic modes (longitudinal and doubly 

transverse) obtained from above are given in Table 3. Except 

for the ultrathin wire (thickness 0.543 nm), the lifetime of the 

 mode in rouse with wire thickens, an shown in Fig-5. By 

Wmpitrinon the life time of W6 mode in the nanowire changes 

much more slowly with width than either of the two optical 

modes in the carbon nanotube. The calculations show that, at 

room temperature for the nanowire with thickness of 2.7 nm, 

the lifetime of the mode is comparable to the lifetime. 

 

 
Figure 5: The variation of the lifetime of the lowest non-zero 

zone-center confined mode with the thickness of the wire at 

300 K. 

 

 
Figure 6: The lifetime of the lowest non-zero zone-center 

confined mode as a function of temperature for a nanowire of 

thickness 2.172 nm. 

3.3.  The (10,10) Nanotube at Room Temperature 

 

3.3.1 Frequency variation 

 

The phonon dispersion curves for the continuum 

theory, are shown in Fig .2 Fig. 2 Figure 7 (a)displays the total 

lifetime of different phonon modes undergoing three-phonon 

processes for the (10,10) nanotube, at 300 K as a function of 

frequency. The figures showing that the high temperature 

behavior of these modes can approximated and explained very 

effectively with this simple expression. Also, the cut off points 

in the relaxation rate of these modes are direct results of the 

phonon dispersion curves of the corresponding modes. For 

example, above the frequency  B  there are no valid 

frequencies for real KZ  values for the longitudinal and 

transverse modes. Figure 7 (b) displays the results of 

considering only Umklapp processes involving only the four 

acoustic branches (LA, doubly degenerate TA, and WA) This 

enables a comparison of these results (based upon the method 

presented in section 3.3) with those of Xiao et al. The results 

indicate that the relaxation rate of the acoustic modes is much 

greater than those presented by Xiao et al. The author is 

unable to understand this difference except to speculate that 

their enharmonic potential is much weaker that that applied 

there and does not include one-dimensional effects which are 

vital. However, the results of the previous section. 

 

 
Figure 7: The inverse relaxation time of different phonon 

modes as a function of frequency  for a (10,10) carbon 

nanotube at 300 K for: (a)  and B modes with Normal 

processes included; (b) LA, TA and WA modes only 

undergoing Umklsapp processes. B is the frequency of the 

breathing mode at the zone center. Here the letter corresponds 

to the mode (LA= Longitudinal. TA= (doubly degenerate) 

Transverse, WA=Twist, B= Breathing and  (the lowest 

non-zero mode)). 

 

Parison of the relaxation rates with bulk diamond (which has a 

comparable thermal conductivity) shows good agreement and 

indicates that these results for the nanotube re more acceptable 

and correct. The general form of the frequency dependency in 

the low frequency region is in good agreement with Xiao et al. 

The difference between the results presented in Figs. 7 (a) and 
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(b) is due to the inclusion of two factors: (i) the breathing a 6 

modes, and (ii) Normal processes. However, the main 

difference between Fig. 7 (a) and (b) arises due to the 

inclusion of the two optical modes, which has resulted in 

almost doubling of the total relaxation rate of the longitudinal 

and twist modes. The second point is less important because 

the contribution from Normal processes at room temperature 

is much smaller.  

 

 
Figure 8 (a-b) shows that the relaxation rates of both the LA 

and the WA modes also varies with frequency as 

 for the range shown. 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Relaxation rates of different phonon modes 

undergoing various processes for the (10,10) nanotube at 300 

K. The maximum value for KZ.R is 8.66. 

 
 

IV.  CONCLUSION 

 

Lifetimes of low-lying confined phonon modes in 

carbon nanotubes and silicon nanowires have been estimate 

theoretically using a three-dimensional approach. It is found 

that these modes are very, long-lived, with lifetimes of the 

order of nanoseconds and are comparable with bulk acoustic 

modes. These lifetimes are found to increase with size but 

decrease linearly with temperature above 150 K. An exception 

to the trend is the ultrathin silicon nanowire of thickness 0.543 

nm, which shows an increase in the lifetime of the lowest 

confined mode, which is an order of magnitude larger than 

that expected from extrapolation of the results for other 

thicknesses. From these results one concludes that in the 

following analysis of the relaxation rate of phonon modes in 

carbon nanotubes, the two low lying optical modes, wB and 

w6 and their corresponding frequency branches must be 

considered. Also, there results show that for any calculation of 

the relaxation rate of silicon nanowires, these modes must be 

included. 
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