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Abstract- Monitoring aquatic debris is of great interest to the 

ecosystems, marine life, human health, and water transport. 

This Project presents the design and implementation of 

AQUABOT – a vision-based surveillance robot system that 

integrates raspberry pi, robotic fish model along with camera 

and other sensors for debris monitoring in relatively calm 

waters and detection of unauthorized activities detection 

based on Logo recognition and language recognition. 

AQUABOT features real-time debris detection and coverage-

based rotation scheduling algorithms. The image processing 

algorithms for debris detection are specifically designed to 

address the unique challenges in aquatic environments. The 

rotation scheduling algorithm provides effective coverage for 

sporadic debris arrivals despite camera’s limited angular 

view. In this project, we focus on the design of debris detection 

and mobility scheduling algorithms running on a single RASP 

node. The sensing results of multiple nodes can be sent back to 

a central server via the long-range communication interface 

for fusion and human inspection. 

 

I. INTRODUCTION 

 

 AQUATIC debris – human-created waste found in 

water environments – has emerged to be a serious 

environmental issue. The 2011 Japan tsunami released about 

one million tons of debris that heads toward North America 

and U.S. West Coast. Inland waters also face severe threats 

from debris. Over 15 scenic lakes in New Jersey still suffer 

debris resulted from Hurricane Sandy after one year of 

cleaning. This which was the deadliest and most destructive 

hurricane of the 2012 Atlantic hurricane season, and the 

second costliest hurricane in United States history. The debris 

fields pose numerous potential risks to aquatic ecosystems, 

marine life, human health, and water transport. For example, 

the debris has led to a loss of up to 4 to 10 million crabs a year 

in Louisiana, and caused damages like propeller entanglement 

to 58% fishing boats in an Oregon port. It is thus imperative to 

monitor the debris arrivals and alert the authorities to take 

preventive actions for potential risks. Opportunistic spotting 

by beach-goers or fishermen is often the only viable solution 

for small-scale debris monitoring. However, this approach is 

labour-intensive and unreliable. An alternative approach is in 

situ visual survey by using patrol boats. However, it is costly 

and can only cover a limited period of time. More advanced  

method involves remote sensing technologies, e.g., balloon-

board camera and satellite imaging. The former is only 

effective for one-off and short-term monitoring of highly 

concentrated debris fields that have been already detected, and 

the latter often has high operational cost and Different from 

falls short of monitoring resolution. 

 

Recently, autonomous underwater vehicles (AUVs), 

have been used for various underwater sensing tasks. 

However, AUV platforms often have high manufacturing 

costs (over $50,000 per unit). The limitations of these remote 

sensing and AUV-based approaches make them cost 

prohibitive for monitoring spatiotemporally scattered debris 

fields with small-sized objects. For example, the debris from 

the 2011 Japan tsunami is expected to arrive dispersedly along 

U.S. West Coast over two years starting from spring of 2012 

to late 2014. Existing vision-based systems, we need to deal 

with unique challenges in aquatic debris monitoring, such as 

camera shaking and sporadic debris arrivals. Extracting the 

foreground objects from a sequence of video frames is a 

fundamental CV task. Background subtraction is a widely 

adopted approach, which, however, often incurs significant 

computation overhead to resource constrained devices. A 

compressive sensing is applied for background subtraction to 

reduce computation overhead. An adaptive background model 

is proposed to trade off the object detection performance and 

computation overhead of background subtraction. These 

approaches assume a static camera view, and hence cannot be 

readily applied to the debris detection in water environments 

where camera is constantly shaking due to waves. This project 

develops a collection of vision-based detection algorithms that 

are specifically designed for background subtraction in 

dynamic water environments and optimized for Smartphone 

platforms. Water resources and aquatic ecosystems such as 

oceans, lakes, rivers and drinking water reservoirs are facing 

severe threats from floating debris. The majority of the debris 

comes from the human-created waste, which poses numerous 

risks to public health, ecosystem sustainability and water 

transport. For instance, debris leads to fish deaths and severe 

damage to fishing vessels. It is of great importance to monitor 
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aquatic debris and take preventive measures for the potential 

risks. In the past few decades, debris monitoring has primarily 

been conducted by manual spotting using patrol boats. 

  

II. LITERATURE SURVEY 

 

Current approaches to monitoring aquatic debris fall 

into three basic categories, including manual spotting, patrol 

boat-assisted survey, and remote sensing. Manual spotting, 

although viable for small-scale debris monitoring, is label 

intensive and lacks robustness. Debris monitoring based on 

patrol boats and remote sensing is more reliable. However, 

these approaches are prohibitively expensive for long-term 

monitoring, especially when debris objects arrive sporadically 

over vast geographic regions. Several research efforts have 

explored the integration of cameras with low-power wireless 

sensing platforms. Cyclops integrates a CMOS imager hosted 

by a MICA2 mote .It can perform object detection using a 

naïve background subtraction method. In, a low-end camera 

module is installed on an AUV for navigation. However, these 

camera-based platforms can only conduct simple image 

processing tasks due to the resource constraints of motes. 

Recently, mobile sensing based on smart phones has received 

increasing research interest due to their rich computation, 

communication, and storage resources.  

 

The study in designs a driving safety alert system that 

can detect dangerous driving behaviours using both front- and 

rear facing cameras of a Smartphone. This project aims to 

design an aquatic debris surveillance robot that utilizes the 

built-in camera, inertial sensors, and other resources on 

Smartphone. Different from existing vision-based systems, we 

need to deal with unique challenges in aquatic debris 

monitoring, such as camera shaking and sporadic debris 

arrivals. SOAR [1] consists of an off-the-shelf Android 

Smartphone and a gliding robotic fish. The Smartphone is 

loaded with an app that implements the CV, movement 

scheduling, and cloud communication algorithms. The gliding 

robotic fish is capable of moving in water by beating its tail 

that is driven by a servo motor. The motor is manipulated by a 

programmable control board, which can communicate with the 

Smartphone through either a USB cable or short-range 

wireless links such as ZigBee. Various closed-loop motion 

control algorithms based on Smartphone‟s built-in inertial 

sensor readings can be implemented on either fish control 

board or Smartphone. The dynamic modelling is implemented 

towards a multi-joint swimming robotic fish developed in our 

laboratory. The robotic fish [2] is designed as a streamlined 

shape inspired by an Esox-lucius, whose mechanical structure 

and appearance are illustrated in Fig. 1. Mechanically, the 

robot is composed of a rigid head and a self-propulsive body. 

Both the head and the body are covered by a compliant 

waterproof skin made of emulsion, in order to protect the 

internal mechanism from water. The 2-DOF (degrees of 

freedom) pectoral mechanism and the novel neck joint can 

generate excellent 3D (three-dimensional) manoeuvrability. 

                                                                                                  

  But we always keep them still, since only planar 

motion is concerned in this paper. The internal mechanism in 

the undulating body is essentially a multi-link hinge structure, 

which is composed of four aluminium skeletons connected in 

series along the body. The posterior body is ended with a rigid 

caudal fin fixed to the last link via a slim peduncle. Such a 

configuration generates totally four rotatable joints within the 

flexible body, which are actuated by servomotors with strong 

torque and high speed.  

 

Motion of the robotic fish is controlled by a micro-

controller embedded in the head. Red and yellow colour 

markers made of waterproof material are attached to the head 

skin out of the rigid shell. It is through tracking the colour 

markers that we locate the robotic fish and acquire its motion 

data. Much research on the navigation of mobile robots has 

been carried out to improve their performance, where 

localization is one of the crucial technologies. Localization is 

to identify the pose, i.e., the position and the heading angle of 

a robot in an environment using information from measured 

data or initial pose. Localization is certainly needed for robots 

to efficiently carry out given tasks such as cleaning, serving, 

guiding, etc. Moving around without localization for robots is 

the same as walking with closed eyes for people. They do not 

know where they are and which direction they should move to. 

It means that localization is very important to mobile robots 

for intelligent behaviours, and much research on localization 

has been carried out. 

 

Self-localization methods can be classified into 

relative localization and absolute localization. The relative 

localization method that uses internal sensors such as 

odometer and inertial measurement unit is robust against 

environment changes, but the accumulated error becomes 

quite large for a long operation time. The absolute localization 

method [3] that uses external beacons or landmarks can 

identify a pose of the robot even after abrupt movement from 

the current location and the accumulated error does not exist. 

The fusion of these methods is widely used to reduce the 

localization error by employing Kalman filter or particle filter, 

which gives more accurate and robust outcome than each 

single method alone. Traditionally, aquatic monitoring based 

on sensor networks has focused on low-level sensors that 

measure 1D data signals, e.g., dissolved oxygen, conductivity, 

and temperature, which limit the ability to provide richer 

descriptions of aquatic environments. Recent developments in 

wireless sensor networks and distributed processing have 
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made the use of camera sensors in environmental monitoring 

possible. Several low-power wireless sensing platforms 

integrating camera sensors have been investigated. Cyclops 

integrates a CMOS camera module hosted by a MICA2 mote. 

It can perform simple image processing like background 

subtraction using frame difference. CITRIC consists of a 

camera daughter board connected to a TelosB mote. The 

platform has been successfully applied to several typical 

applications, e.g., object detection and recognition. Besides, 

multi-tier sensor networks [4] seek to provide a low-latency 

yet energy-efficient camera sensing solution. SensEye is a 

notable example which consists of low-power and low-

resolution cameras at the bottom tier that trigger higher 

resolution cameras at the upper tier in an on-demand manner. 

The study in presents a smart phone-based sensing platform 

that utilizes the built-in camera, inertial sensor, and other 

resources. Different from aforementioned sensing platforms, 

we aim to combine camera sensors with other types of aquatic 

sensors into a sensor node for multipurpose aquatic 

monitoring. 

 

III. BLOCK DIAGRAM 

 

 
 

AQUABOT consists of an 8 Mega Pixel camera with 

raspberry pi3 and a robotic fish. The 8 Mega Pixel camera is 

loaded with an app that implements the CV, movement 

scheduling, and cloud communication algorithms. The robotic 

fish is capable of moving in water by beating its tail that is 

driven by a 3 servo motor. The motor is manipulated by a 

programmable control board i.e. is raspberry pi, which can 

communicate with the all sensors and interfaces through either 

cable or short-range wireless links such as Wi-fi. Various 

closed-loop motion control algorithms based on raspberry pi 

and inertial sensor readings can be implemented on fish 

control board. AQUABOT is designed to operate on the 

surface of relatively calm waters, i.e., with mild waves like 

ripples, and monitor floating debris in near shore aquatic 

environments.  

 

In this case, the number of needed nodes is the ratio 

of the length of the monitored shoreline to the coverage range 

of the Smartphone’s built-in camera. In this paper, we focus 

on the design of debris detection and mobility scheduling 

algorithms running on a single AQUABOT node. In 

particular, the image processing algorithms will incur 

significantly higher computation overhead due to the 

distortion in captured images. Mechanical components like 

servo motors and robot structure can be used to swim the 

AQUABOT. However, this will complicate the system design 

and may negatively affect the system reliability. 

 

IV. FLOW CHART 

 

 
 

The algorithm for debris detection: 

 

Step 1: Start 

Step 2: Run 

Step 3: Sense the data from cloud 

Step 4: Check the parameter within the range 

Step 5: If YES 

Step 6: Alert message will send  

Step 7: If NO 

Step 8:Again it check for the data 
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V. IMPLEMENTATION 

 

The implementation of the debris detection with the 

hardware. The hard ware used is Raspberry Pi. So little 

description of the used hardware with its features and its 

installation and setup procedure are also described. Mid 

portion of the chapter described how the entire process of 

debris detection occurs in water. For conducting this libraries 

of Open CV is used. Different .xml files of Open Cv are 

operated on the input and provide the required result. 

 

 
Figure 5.1 Interfacing of IR Sensor and Camera 

 

1. To detect the obstacles through IR sensor  2.Provides 

the images of the obstacles. 

 

 
Figure 5.2 Interfacing of IR sensor and Servo motor 

 

1. When the obstacle is detected, the motor stops.   

2. If obstacle is not detected, the motor continues to 

rotate. 

 

 
Figure 5.3 Interfacing of DC motor 

1. DC motor is used for the movements of the fish. 

2. The movements can be forward, backward, right and 

left 

 

VI. RESULTS 

 

To address these challenges, in this project we make the 

following contributions: 

 

1. Develop several lightweight CV algorithms to 

address the inherent dynamics in aquatic debris 

detection, which include an image registration 

algorithm for extracting the horizon line above water. 

2. The offloading decisions are made to minimize the 

system energy consumption based on in situation 

measurements of wireless link speed and robot 

acceleration. 

3. Using the analytical debris arriving probability, we 

design a robot rotation scheduling algorithm that 

minimizes the movement energy consumption while 

maintaining a desired level of debris coverage 

performance. 

4. The results show that AQUABOT can accurately 

detect debris in the presence of various dynamics and 

maintain a satisfactory level of debris arrival 

coverage while reducing the energy consumption of 

robot movement significantly. 

 

 
Figure 6.1 Hardware component 

 

 
Figure 6.2 Aquabot Top View 

 

1. Fins and tail movement of the fish. 
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2. Eye of the fish. 

3. Detection debris. 

 

VII. CONCULSION AND FUTURE WORK 

 

An embedded sensing platform designed for aquatic 

environment monitoring. Based on this, we propose a 

lightweight debris detection algorithm, which effectively deals 

with environmental disturbances. The experiments 

demonstrate the feasibility and versatility of the proposed 

method in challenging environments. Moreover, real 

implementation on embedded sensing platforms shows that 

our method is more accurate, and consumes less hardware 

resources than the conventional approaches. Finally, an initial 

deployment of aquatic sensor nodes shows that the proposed 

method provides robust debris detection performance, meets 

the real-time requirement on embedded sensing platforms.   

 

Our future work will focus on the implementation of 

aquatic mobile platforms and collaboration schemes between 

multiple nodes for debris detection. Our model is designed for 

detection of drowsy state of eye and give and alert signal or 

warning may be in the form of audio or any other means. But 

the response of driver after being warned may not be sufficient 

enough to stop causing the accident meaning that if the driver 

is slow in responding towards the warning signal then accident 

may occur.   

 

Hence to avoid this we can design and fit a motor 

drive system and synchronize it with the warning signal so 

that the vehicle will slow down after getting the warning 

signal automatically. Also we can avoid the use of Raspberry 

pi which is not so fast enough for video processing by 

choosing our own mobile phone as the hardware. This can be 

done by developing a proper mobile application which will 

perform the same work as Raspberry Pi and response will be 

faster and effective. 
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