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Abstract- The technological advancements have led to 

evolution of sophisticated devices called smartphones. By 

providing extensive capabilities, they are becoming more and 

more popular. The Android based smart-phones are preferred 

furthermore, due to their open-source nature. This has also 

led to the development of large number of malwares targeting 

these smartphones. Thus to protect the devices, some 

countermeasures are needed. Machine learning methods have 

gained popularity in detection of malware. This work proposes 

a malware detection technique in Android devices based on 

static analysis carried out using the Manifest files extracted 

from the apk files. The feature selection is performed using the 

proposed KNN based Relief algorithm and detection of 

malware is done using the proposed optimized SVM 

algorithm. The proposed method achieves a True Positive 

Rate greater than 0.70 and much reduced False Positive Rate 

values were obtained, with the values of False Positive Rate 

being very close to zero. The proposed KNN based feature 

selection is found to select better features in comparison with 

some popular existing feature selection techniques. The 

proposed optimized SVM technique achieves a performance 

that is on par with the performance of Neural Networks. 
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I. INTRODUCTION 

 

 Smartphones have become the core communication 

and computing devices today. With higher capabilities, the 

devices are not just the simple voice-oriented handsets used 

for communication in the older days. With such increasing 

capabilities they have become the target for several malware 

attacks. It was in 2004, the first article appeared on 

smartphone malwares [1], which reported that the 

smartphones are the next generation of target for malwares. 

The Symbian OS was the mobile OS that was affected by 

malware. Sig-nature based detection are efficient in detecting 

known malwares, but it fails in detecting new, or unknown 

malware. This creates a tremendous opportunities for the  

Attackers. The growth in Android malware every year is 

shown in Fig. 1. 

 

 
 

This work is based on static analysis that uses 

permission as a feature, which are extracted from the manifest 

file present inside the apk bundle. Due to availability of rich 

source of data, machine learning algorithms have gained 

popularity in recent days. Taking advantage of this fact, the 

proposed work uses machine learning algorithms to effectively 

detect malware. 

 

1.1. Machine learning 

 

Machine learning is a subset of Artificial 

Intelligence, which helps computer systems to perform 

specific tasks based on the patterns extracted. Machine 

learning is different from traditional programming in a way 

that traditional programming involves in-put data which is 

given to a program to find an output, whereas in machine 

learning the input data and an optional output is fed into the 

model and the model generates a program that fits the input 

data. Fig. 2 provides a diagrammatic representation of that 

differentiates traditional programming and machine learning. 

 

Machine learning techniques can be categorized into 

three major categories namely, Supervised Machine Learning, 

Unsupervised Machine Learning, and Reinforcement 

Learning. Supervised learning generally involves an input data 
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and a corresponding output. The process of learning involves 

finding a function that maps the input data to output data. The 

two most well-known examples of supervised learning are 

regression (predicting a continuous value e.g. price of a house, 

salary of a person etc.) and classification. In unsupervised 

learning no output information is provided, the ma-chine tries 

to extract patterns from the input provided and groups the 

input based on these patterns. In reinforcement learning the 

system learns using feedbacks it receives. The feedback is in 

the form of rewards (predicts correctly) and punishments 

(wrong predictions). The recommendation systems used in 

online sites are based on this type of machine learning. 

 

 
Fig. 2. Traditional Programming vs Machine Learning. 

 

Predictions). The recommendation systems used in online sites 

are based on this type of machine learning. 

 

1.2. Mobile malware 

 

The first mobile malware was reported in June 2004, 

almost after 4 years of emergence of smartphone. The 

Symbian 60 OS was affected with the first mobile malware 

named Cabir, a worm. It was discovered that the malware was 

coded using C++ language. This later served as a base for 

several families of Symbian viruses [24]. 

 

Launched in 2008, Android didn’t have a large user 

base to at-tract malware authors in its first two years. Then by 

2010, with the emergence of the first Android Trojan in Aug 

2010 named, “Androi-dOS.DroidSMS.A”, a SMS fraud app, 

the Android malware started emerging [20]. 

 

Google has classified permissions into 3 categories: 

Normal, Signature and Dangerous. The normal and signature 

category of permissions are granted automatically without the 

consent of the user. Only the dangerous permissions require 

the user’s approval. 

Initially the experiment was carried out with malware 

samples from AAGM dataset and normal samples that were 

collected from Google Play Store. Support Vector Machines 

(SVM), a well known machine learning algorithm that works 

by finding a hyperplane that separates the two classes. In this 

case, one is the malware class and the other is a benign class. 

The dataset was split into two with 80% samples in spilt one, 

that is used for training the SVM model and the remaining 

20% of data are assumed to be unknown and used to test the 

model that is built. The obtained results were compared with 

the original class labels to determine the malware detection 

efficiency. 

 

Specifically, the contribution of the paper can be summarized 

as follows: 

 

1. Use of enhanced feature selection algorithm to identify 

significant features to help improve the detection 

performance of the machine learning model. 

2. To use an optimized version of SVM to detect Android 

mal-ware, and achieve a good detection results that the 

existing algorithms 

 

II. RELATED WORKS 

 

The existing works use either static or dynamic 

analysis as a means of extracting the features for the purpose 

of detecting mal-ware. 

 

Manifest files were used to extract information like 

permissions [2]. Based on the information extracted a model 

was constructed using K means clustering to group the 

malware and benign apps into different clusters. 

 

A dynamic analysis based feature extraction was used 

to detect malware [3]. The API and system calls extracted 

during the dynamic analysis helped in the detection of 

malware the detection was carried out by analysing the 

frequency of the API and system calls. 

 

Marvin [4] uses a combination of static and dynamic 

analysis to extract features that are to be used for detection of 

malware, based on a malice score generated. 

 

DroidDetector [5] used Deep learning methods to 

detect An-droid malware, with permission, and API features 

extracted during static analysis and the dynamic behaviour 

obtained while perform-ing dynamic analysis. The Deep 

Belief Network algorithm was used to detect malware. 

 

Permissions extracted from manifest file were used to 

create feature vectors [6] which was then used to create a 

cluster rep-resenting the benign and malicious permissions, 

based on which the removal of malicious apps is carried out. 
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Anomaly based detection of malware [7], was carried 

out to detect unknown malware using decision tree algorithm. 

The work claims a detection rate of 90%. 

 

Online detection of malware [8] is carried out using 

Field programmable gate array. They proposed architecture 

based on FPGA, which they named as GaurdOL. The dataset 

used for this work was constituted of 472 malware samples 

collected from Virusshare and VX Heaven. 

 

Droidminer [9] provides automated detection of 

Android mal-ware by constructing Control Flow Graph (CGF) 

for the API calls that were extracted from the classes.dex files. 

 

DAPASA [10] is a graph based detection of malware 

that calculates the sensitivity of API call using the well-known 

document mining technique called TF-IDF. The experiment 

was carried out based on two assumptions, which state how 

the sensitive API calls were invoked. 

 

Anomaly detection of Android malware was carried 

out [11], where both static and dynamic analysis was 

performed to extract the features for detection of malware. 

The work generated mal-ware and normal pattern sets based 

on the calling pattern of the malware, and set a threshold to 

detect malware. 

 

MADAM [12] is a behaviour base malware detection 

scheme that uses signature based and anomaly based malware 

detection. It uses a wide range of features to evaluate the 

application and detect the malware. The work considered four 

levels of features namely kernel, application, user, and 

package. 

 

NTPDroid [13], created patterns that occur frequently 

in mal-ware and benign samples, which were used to fix a 

threshold that helps in detection of malware. The permission 

features were extracted from the manifest files and the 

network traffic was captured using Wireshark. 

 

PMDS [14] provides a client-server based detection 

of Android malware, where the server decompresses the apk 

files of the application that were submitted to it to extract the 

manifest files and the detection of malware is done using 

several classifiers like C4.5 Decision Tree, K , Ripper, and 

Naive Bayes and the performance of these classifiers are 

compared. 

 

The performance of machine learning algorithms like 

Naive Bayes, Ada Boost, Random Tree, Random Forest, J48 

in detection of Android malware was studied [15], on using 

the permission feature as the input to these algorithms. 

ndroid malware detection based on the frequency of 

the sys-tem call [19], invoked was proposed, where 82 types 

of system calls invoked were studied. 

 

III. METHODOLOGY 

 

The objective of the research is to improve the True 

Positive Rate (TPR), and get reduced False Positive Rate 

(FPR) values using the proposed, KNN based Relief (KNN-

R), an improvised version of a filter based feature selection 

method called Relief. To improve the detection results further, 

the work proposes an upgraded kernel for SVM, called 

Optimized SVM (o-SVM). 

 

Android operating system has Linux architecture as 

its base. The first obstacle for attackers is permissions. Though 

malicious code can be present inside, the API calls in the code 

require permissions for execution. Permission protected API is 

a component of Android OS security. Hence permission serves 

as an important feature, and thus the work used these 

permission features for the purpose of malware detection [25]. 

 

IV. SVM 

 

SVM is a linear classifier, which identifies a 

hyperplane to separate the classes. When a non-linear 

boundary is required to classify the data points, SVM fails. 

Hence SVM makes use of a mathematical function called 

“Kernel”, which takes the data points in given dimension as 

input and projects them to a higher dimensional plane where 

they’re linearly separable [28]. 

 

4.1. Proposed optimized SVM (o-SVM) 

 

The proposed o-SVM uses two kernel functions 

instead of one kernel function as suggested by the traditional 

SVM classifier. The kernel function of the proposed o-SVM is 

defined Lemma: 

 

Lemma −1: 

 

K(x, y) = l.k1 (x, y) + (1 − l).k2 (x, y) (1) 

 

Where k1 and k2 are two different kernel functions. 

The two kernel function can be one of the three functions, 

namely; Polynomial Kernel, Radial Basis Kernel, and Sigmoid 

Kernel. λ is a constant, whose value lies between 0 and 1, λ 

can be thought as a weight factor, that implies the importance 

of the kernel, and if λ becomes equal to 0 or 1, then the o-

SVM reduces to traditional SVM. 

 

4.2. Proposed KNN – R based relief (KNN-R) 
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The proposed KNN based Relief (KNN-R) based 

feature selection technique uses, k neighbours instead of one 

neighbour as suggested by the original Relief algorithm. The 

existing Relief algorithm calculates the weight of each feature 

using its nearest neigh-bour from the same class, called 

Nearest Hit (NH), and the nearest neighbour from the opposite 

class, called Nearest Miss (NM). The proposed KNN-R uses 

‘k’ NH, and ‘k’ NM, to calculate the weight of the feature. 

The reason behind using k nearest neighbour is that the 

existing Relief algorithm doesn’t address the problem of noisy 

data, whereas the proposed KNN-R considers ‘k’ neighbours 

which help to eliminate the noise in the data. 

 

Relief algorithm has several advantages like 

robustness to feature interactions, noise resilient, independent 

of machine learning algorithms and independent of heuristics 

[21,26], hence the work used Relief based feature selection. 

 

The  weight  of  the  feature  is  calculated  as  per  the  below 

 

Algorithm: 

 

 

 
where, 

 

P - the total number of permission features  

W - the weight associated with each feature  

A - the sample instance under consideration and  

the distance metric used to calculate the neighbour is the 

“Hamming Distance”. 

 

The work can be categorized into five modules 

namely; analysis, feature extraction, feature vector generation, 

feature selection and detection. The overall flow of the 

proposed work is shown in Fig. 3 . Analysis of Android 

application can be performed either using static or dynamic 

analysis. the proposed work uses static analysis. The static 

analysis involves the apk file without executing it. Feature 

extraction is the process of drawing out those features that are 

required. The feature used in this work is permissions re- 

quested in manifest file. Feature vector generation is the 

process of converting the features to a form that is 

understandable by ma- chine learning algorithms. Feature 

selection is used to identify the significant features that help to 

detect the malware and remove those ones that cause 

ambiguity. The detection process is used to identify the app as 

either malware or benign. To perform static analysis of the 

samples a tool called AP- KParser is used, which helps to 

extract the AndroidManifest.xml from the apk bundle. Once 

the manifest file is extracted XML DOM parser is used to 

parse the contents of the manifest file and extract the 

permissions that were requested. The permission extracted 

were in the form text, but since the machine learning 

algorithms require the input to be in the form of numeric 

vector, the text was converted into numeric values using two 

widely used techniques: One-hot encoding (Feature vector 1) 

and the second method of feature construction used a text 

mining scheme called term frequency - inverse document 

frequency (TF-IDF), to construct a feature vector (Feature 

vector 2). Construction of feature using one-hot encoding is 

simple and easy. By using this technique a binary feature 

vector is generated that has ‘1’ for the permissions present in it 

and ‘0’ for those per- missions that are not present in the apk 

file, with the class label (Malware or Benign) present at the 

end. 
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Fig. 3. Block diagram of the proposed work. 

 

The permission feature extracted from Android is a 

text. The machine learning algorithms re capable of 

understanding numeric data, and one simple way of encoding 

them into categorical data is direct binary conversion of the 

text data (adding 1 for features that are present and 0 for those 

features that are not present), and the most desired and 

accepted technique for encoding text features to numeric 

features is TF-IDF technique, as a result of the work used 

these 2 techniques to encode the features [27]. The Fig. 4 

shows an example of feature vector that is generated using this 

technique. 

 

Construction of feature vector using TF-IDF is done using as 

be-low: 

 

The term frequency is the ratio of number of times a particular 

term occurs in the document to the total number of terms in 

that document. 

 

 
 

Where ‘i’ represents the total number of samples in the dataset 

and ‘j’ represent the total number of permissions present in 

these samples. 

 

The inverse document frequency is used to find the 

significance of the term across all the documents. It is 

calculated as: 

 

 
 

The feature vector is then generated by computing the product 

of values of TF matrix and IDF vector as: 

 

 
 

The feature vectors constructed using the above two 

schemes were used for detection of malware after selection of 

Significant features using few filter based approaches like 

Chi-Square, Relief, and the proposed KNN-R. The reason 

behind choosing the filter based schemes is due to their 

simplicity. The detection was performed using several existing 

machine learning algorithms like SVM, Decision Tree and 

Back Propagation Neural Networks and their performance was 

compared with the proposed Optimized SVM algorithm. 

 

V. RESULTS AND DISCUSSSIONS 

 

The experiment was carried out using two different 

malware datasets: AAGM [16] and AMD [ 17 , 18 ] datasets. 

The benign dataset was constructed by downloading the 

applications from Google Play Store. Since the Play Store is 

not completely free from malicious application, the 

downloaded applications were uploaded to a on- line anti-

malware checker site called Virus Total, where the application 

is scanned using more than 50 anti-virus software. Once the 

checking of the application gets completed, it returns whether 

the application is clean or not. The applications that were 

certified as clean by all the software is alone considered for 

building of benign dataset. The dataset 1 represents malware 

samples from AAGM dataset and dataset 2 represents 

malware samples from AMD dataset. The experiment is 

carried out by parsing the apk file, using permission extraction 

algorithm and a list of all permission are obtained. Then the 

permissions are encoded into feature vectors using one hot 

encoding and TF-IDF encoding techniques [22] and detection 

is carried out using machine learning algorithms, with support 

of packages from Python. 

 

Table 1 Dataset Description. 

 
 

The True Positive Rate represents the percentage of 

samples that are correctly classified as malware and is 

calculated using 
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TPR is the ratio of correctly classified malware 

samples to the total number of malware samples. This ratio is 

also called as Sensitivity or Recall or Hit ratio 

 

The False Positive Rate represents the percentage of 

samples that are mistakenly classified as malware and is 

calculated using 

 

 
 

FPR is the ratio of normal samples that are misguided 

as mal-ware to the total number of benign samples in the 

dataset. This is also called as fall-out rate. 

 

The benign samples present in the two datasets are 

the same. The number of malware and benign samples used 

for this research work are given in Table 1. 

 

The initial feature vector generation is done using one-hot en-

coding technique. Feature selection is performed using 3 

different popular filter based algorithms namely, Chi-Square, 

Relief and the proposed KNN-Relief and the performance of 

proposed Optimized 

 

 
Fig. 4. Feature Vector. 

 

 
Fig. 5. Performance of machine learning algorithms with 

different feature selection techniques. 

 

 
Fig. 6. RoC Comparison of different detection algorithms for 

proposed KNN-R - Dataset 1. 

 

 
Fig. 7. RoC Comparison of SVM vs o-SVM for KNN-R 

feature selection - Dataset 2. 
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Table 1 Dataset Description. 

 
 

The True Positive Rate represents the percentage of 

samples that are correctly classified as malware and is 

calculated using 

 

TPR is the ratio of correctly classified malware 

samples to the total number of malware samples. This ratio is 

also called as Sensitivity or Recall or Hit ratio 

 

The False Positive Rate represents the percentage of 

samples that are mistakenly classified as malware and is 

calculated using 

 

 
 

FPR is the ratio of normal samples that are misguided 

as mal-ware to the total number of benign samples in the 

dataset. This is also called as fall-out rate. 

 

The benign samples present in the two datasets are 

the same. The number of malware and benign samples used 

for this research work are given in Table 1. 

 

The initial feature vector generation is done using 

one-hot en-coding technique. Feature selection is performed 

using 3 different popular filter based algorithms namely, Chi-

Square, Relief and the proposed KNN-Relief and the 

performance of proposed Optimized 

 

Table 2 Performance of Dataset 1 using One Hot Encoding. 

 
 

Table 3 Performance of Dataset 2 using One Hot Encoding. 

 
 

SVM (o-SVM) is compared with that of the several 

existing ma-chine learning algorithms, which is shown in 

Table 2. 

 

Chi-Square technique [23] is one popular and widely 

used technique in the literature for ranking features in Android 

malware analysis, hence the proposed work is compared with 

Chi-Square technique to analyse its performance. 

 

Table 4 Performance of Dataset 1 using TF-IDF. 

 
 

From Table 2, it can be seen that the proposed 

Optimized SVM has a performance that is nearly equivalent to 

that of a BP-NN. The Fig. 5 shows the comparison of accuracy 

of these classifiers on using Relief based Feature Selection. 

 

The RoC curve of the proposed KNN-R feature 

selection for different machine learning algorithm is shown in 

Fig. 6. 

 

 
 

FPR is the ratio of normal samples that are misguided 

as mal-ware to the total number of benign samples in the 

dataset. This is also called as fall-out rate. 

 

The benign samples present in the two datasets are 

the same. The number of malware and benign samples used 

for this research work are given in Table 1. 

 

The initial feature vector generation is done using 

one-hot en-coding technique. Feature selection is performed 

using 3 different popular filter based algorithms namely, Chi-

Square, Relief and the proposed KNN-Relief and the 

performance of proposed Optimized 

 

It can be noted from Fig. 6, that the proposed o-SVM 

achieves a performance that is mostly equal to the 

performance of Back Propagation Neural Networks. 

 

To verify whether the proposed Optimized SVM 

algorithm works better than the traditional SVM algorithm on 

all datasets, the experiment was carried out on another set of 

samples from Dataset 2, whose results are shown in Table 3. 
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From Table 3 it can be concluded that the proposed 

Optimized SVM performs better on the second dataset as well. 

The RoC comparison for standard SVM and the proposed 

Optimized SVM on using the proposed KNN-R technique for 

feature selection is shown in Fig. 7. 

 

 
Fig. 9. Performance of SVM vs o-SVM with KNN-R 

technique. 

 

The performance of the classifiers on using TF-IDF 

as technique for feature vector generation was also studied. 

The performance of Dataset 1 was given in Table 4 . From 

Table 4 , it can be seen that on using TF-IDF the performance 

of most of the classifiers improved in comparison with one-hot 

encoding technique. This is because that on using one- hot 

encoding technique, the permission present in a particular apk 

doesn’t affect other files, whereas on using TF-IDF, the 

permissions that occur in different files are also taken into 

account, which helps to identify permissions that occur 

frequently in malware and those that occur frequently in 

benign samples, hence the improvement in performance. The 

RoC performance of the algorithms on using different 

machine learning classifiers with proposed KNN-R based 

feature se- lection for the first dataset is given in Fig. 8 . The 

performance of Dataset 2 for different feature selection and 

machine learning algorithms is given in Table 5 . Tables 4 and 

5 conclude that the proposed KNN-R based feature selection 

and the proposed Optimized SVM algorithm shows a better 

performance. The improvement in detection performance on 

using the proposed o-SVM is shown in Fig. 9 . 

 

Table 5 Performance of Dataset 2 using TF-IDF. 

 
 

From the results obtained it is clear that the proposed 

o-SVM technique achieves a better performance than the 

traditional SVM model and the KNN-R based feature 

selection also helps in improvement of the detection of 

malware. 

 

VI. CONCLUSION AND FUTURE WORK 

 

This paper Describe  a static analysis by considering 

the permissions that are required by the application. The 

process of feature selection is important as it helps to identify 

the significance features that help in detection of malware. 

The work utilized some popular feature selection techniques 

like Chi-Square and Relief. The proposed KNN-R algorithm 

was found to perform better than the other two algorithms. 

 

The static analysis performed in this work considers 

only per-mission, however there are chances that the malware 

application may request only the commonly used by any 

application but would invoke some unwanted functions. To 

monitor these behaviors dynamic analysis can be performed to 
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extract features like system calls, network traffic etc. Further 

deep learning models can be used in detection of malware 

instead of machine learning algorithms. 
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