
IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 643 www.ijsart.com

 Study of Detecting Android Malware Using An

Improved Filter Based Technique In Embedded

Software

Amol L. Deokate1, Yogesh A. Pawar2

1, 2 Dept of Information Technology
1, 2 Sanjivani K.B.P. Polytechnic

Abstract- The technological advancements have led to

evolution of sophisticated devices called smartphones. By

providing extensive capabilities, they are becoming more and

more popular. The Android based smart-phones are preferred

furthermore, due to their open-source nature. This has also

led to the development of large number of malwares targeting

these smartphones. Thus to protect the devices, some

countermeasures are needed. Machine learning methods have

gained popularity in detection of malware. This work proposes

a malware detection technique in Android devices based on

static analysis carried out using the Manifest files extracted

from the apk files. The feature selection is performed using the

proposed KNN based Relief algorithm and detection of

malware is done using the proposed optimized SVM

algorithm. The proposed method achieves a True Positive

Rate greater than 0.70 and much reduced False Positive Rate

values were obtained, with the values of False Positive Rate

being very close to zero. The proposed KNN based feature

selection is found to select better features in comparison with

some popular existing feature selection techniques. The

proposed optimized SVM technique achieves a performance

that is on par with the performance of Neural Networks.

Keywords- Android, Malware detection , Permission,

Machine learning

I. INTRODUCTION

 Smartphones have become the core communication

and computing devices today. With higher capabilities, the

devices are not just the simple voice-oriented handsets used

for communication in the older days. With such increasing

capabilities they have become the target for several malware

attacks. It was in 2004, the first article appeared on

smartphone malwares [1], which reported that the

smartphones are the next generation of target for malwares.

The Symbian OS was the mobile OS that was affected by

malware. Sig-nature based detection are efficient in detecting

known malwares, but it fails in detecting new, or unknown

malware. This creates a tremendous opportunities for the

Attackers. The growth in Android malware every year is

shown in Fig. 1.

This work is based on static analysis that uses

permission as a feature, which are extracted from the manifest

file present inside the apk bundle. Due to availability of rich

source of data, machine learning algorithms have gained

popularity in recent days. Taking advantage of this fact, the

proposed work uses machine learning algorithms to effectively

detect malware.

1.1. Machine learning

Machine learning is a subset of Artificial

Intelligence, which helps computer systems to perform

specific tasks based on the patterns extracted. Machine

learning is different from traditional programming in a way

that traditional programming involves in-put data which is

given to a program to find an output, whereas in machine

learning the input data and an optional output is fed into the

model and the model generates a program that fits the input

data. Fig. 2 provides a diagrammatic representation of that

differentiates traditional programming and machine learning.

Machine learning techniques can be categorized into

three major categories namely, Supervised Machine Learning,

Unsupervised Machine Learning, and Reinforcement

Learning. Supervised learning generally involves an input data

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 644 www.ijsart.com

and a corresponding output. The process of learning involves

finding a function that maps the input data to output data. The

two most well-known examples of supervised learning are

regression (predicting a continuous value e.g. price of a house,

salary of a person etc.) and classification. In unsupervised

learning no output information is provided, the ma-chine tries

to extract patterns from the input provided and groups the

input based on these patterns. In reinforcement learning the

system learns using feedbacks it receives. The feedback is in

the form of rewards (predicts correctly) and punishments

(wrong predictions). The recommendation systems used in

online sites are based on this type of machine learning.

Fig. 2. Traditional Programming vs Machine Learning.

Predictions). The recommendation systems used in online sites

are based on this type of machine learning.

1.2. Mobile malware

The first mobile malware was reported in June 2004,

almost after 4 years of emergence of smartphone. The

Symbian 60 OS was affected with the first mobile malware

named Cabir, a worm. It was discovered that the malware was

coded using C++ language. This later served as a base for

several families of Symbian viruses [24].

Launched in 2008, Android didn’t have a large user

base to at-tract malware authors in its first two years. Then by

2010, with the emergence of the first Android Trojan in Aug

2010 named, “Androi-dOS.DroidSMS.A”, a SMS fraud app,

the Android malware started emerging [20].

Google has classified permissions into 3 categories:

Normal, Signature and Dangerous. The normal and signature

category of permissions are granted automatically without the

consent of the user. Only the dangerous permissions require

the user’s approval.

Initially the experiment was carried out with malware

samples from AAGM dataset and normal samples that were

collected from Google Play Store. Support Vector Machines

(SVM), a well known machine learning algorithm that works

by finding a hyperplane that separates the two classes. In this

case, one is the malware class and the other is a benign class.

The dataset was split into two with 80% samples in spilt one,

that is used for training the SVM model and the remaining

20% of data are assumed to be unknown and used to test the

model that is built. The obtained results were compared with

the original class labels to determine the malware detection

efficiency.

Specifically, the contribution of the paper can be summarized

as follows:

1. Use of enhanced feature selection algorithm to identify

significant features to help improve the detection

performance of the machine learning model.

2. To use an optimized version of SVM to detect Android

mal-ware, and achieve a good detection results that the

existing algorithms

II. RELATED WORKS

The existing works use either static or dynamic

analysis as a means of extracting the features for the purpose

of detecting mal-ware.

Manifest files were used to extract information like

permissions [2]. Based on the information extracted a model

was constructed using K means clustering to group the

malware and benign apps into different clusters.

A dynamic analysis based feature extraction was used

to detect malware [3]. The API and system calls extracted

during the dynamic analysis helped in the detection of

malware the detection was carried out by analysing the

frequency of the API and system calls.

Marvin [4] uses a combination of static and dynamic

analysis to extract features that are to be used for detection of

malware, based on a malice score generated.

DroidDetector [5] used Deep learning methods to

detect An-droid malware, with permission, and API features

extracted during static analysis and the dynamic behaviour

obtained while perform-ing dynamic analysis. The Deep

Belief Network algorithm was used to detect malware.

Permissions extracted from manifest file were used to

create feature vectors [6] which was then used to create a

cluster rep-resenting the benign and malicious permissions,

based on which the removal of malicious apps is carried out.

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 645 www.ijsart.com

Anomaly based detection of malware [7], was carried

out to detect unknown malware using decision tree algorithm.

The work claims a detection rate of 90%.

Online detection of malware [8] is carried out using

Field programmable gate array. They proposed architecture

based on FPGA, which they named as GaurdOL. The dataset

used for this work was constituted of 472 malware samples

collected from Virusshare and VX Heaven.

Droidminer [9] provides automated detection of

Android mal-ware by constructing Control Flow Graph (CGF)

for the API calls that were extracted from the classes.dex files.

DAPASA [10] is a graph based detection of malware

that calculates the sensitivity of API call using the well-known

document mining technique called TF-IDF. The experiment

was carried out based on two assumptions, which state how

the sensitive API calls were invoked.

Anomaly detection of Android malware was carried

out [11], where both static and dynamic analysis was

performed to extract the features for detection of malware.

The work generated mal-ware and normal pattern sets based

on the calling pattern of the malware, and set a threshold to

detect malware.

MADAM [12] is a behaviour base malware detection

scheme that uses signature based and anomaly based malware

detection. It uses a wide range of features to evaluate the

application and detect the malware. The work considered four

levels of features namely kernel, application, user, and

package.

NTPDroid [13], created patterns that occur frequently

in mal-ware and benign samples, which were used to fix a

threshold that helps in detection of malware. The permission

features were extracted from the manifest files and the

network traffic was captured using Wireshark.

PMDS [14] provides a client-server based detection

of Android malware, where the server decompresses the apk

files of the application that were submitted to it to extract the

manifest files and the detection of malware is done using

several classifiers like C4.5 Decision Tree, K , Ripper, and

Naive Bayes and the performance of these classifiers are

compared.

The performance of machine learning algorithms like

Naive Bayes, Ada Boost, Random Tree, Random Forest, J48

in detection of Android malware was studied [15], on using

the permission feature as the input to these algorithms.

ndroid malware detection based on the frequency of

the sys-tem call [19], invoked was proposed, where 82 types

of system calls invoked were studied.

III. METHODOLOGY

The objective of the research is to improve the True

Positive Rate (TPR), and get reduced False Positive Rate

(FPR) values using the proposed, KNN based Relief (KNN-

R), an improvised version of a filter based feature selection

method called Relief. To improve the detection results further,

the work proposes an upgraded kernel for SVM, called

Optimized SVM (o-SVM).

Android operating system has Linux architecture as

its base. The first obstacle for attackers is permissions. Though

malicious code can be present inside, the API calls in the code

require permissions for execution. Permission protected API is

a component of Android OS security. Hence permission serves

as an important feature, and thus the work used these

permission features for the purpose of malware detection [25].

IV. SVM

SVM is a linear classifier, which identifies a

hyperplane to separate the classes. When a non-linear

boundary is required to classify the data points, SVM fails.

Hence SVM makes use of a mathematical function called

“Kernel”, which takes the data points in given dimension as

input and projects them to a higher dimensional plane where

they’re linearly separable [28].

4.1. Proposed optimized SVM (o-SVM)

The proposed o-SVM uses two kernel functions

instead of one kernel function as suggested by the traditional

SVM classifier. The kernel function of the proposed o-SVM is

defined Lemma:

Lemma −1:

K(x, y) = l.k1 (x, y) + (1 − l).k2 (x, y) (1)

Where k1 and k2 are two different kernel functions.

The two kernel function can be one of the three functions,

namely; Polynomial Kernel, Radial Basis Kernel, and Sigmoid

Kernel. λ is a constant, whose value lies between 0 and 1, λ

can be thought as a weight factor, that implies the importance

of the kernel, and if λ becomes equal to 0 or 1, then the o-

SVM reduces to traditional SVM.

4.2. Proposed KNN – R based relief (KNN-R)

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 646 www.ijsart.com

The proposed KNN based Relief (KNN-R) based

feature selection technique uses, k neighbours instead of one

neighbour as suggested by the original Relief algorithm. The

existing Relief algorithm calculates the weight of each feature

using its nearest neigh-bour from the same class, called

Nearest Hit (NH), and the nearest neighbour from the opposite

class, called Nearest Miss (NM). The proposed KNN-R uses

‘k’ NH, and ‘k’ NM, to calculate the weight of the feature.

The reason behind using k nearest neighbour is that the

existing Relief algorithm doesn’t address the problem of noisy

data, whereas the proposed KNN-R considers ‘k’ neighbours

which help to eliminate the noise in the data.

Relief algorithm has several advantages like

robustness to feature interactions, noise resilient, independent

of machine learning algorithms and independent of heuristics

[21,26], hence the work used Relief based feature selection.

The weight of the feature is calculated as per the below

Algorithm:

where,

P - the total number of permission features

W - the weight associated with each feature

A - the sample instance under consideration and

the distance metric used to calculate the neighbour is the

“Hamming Distance”.

The work can be categorized into five modules

namely; analysis, feature extraction, feature vector generation,

feature selection and detection. The overall flow of the

proposed work is shown in Fig. 3 . Analysis of Android

application can be performed either using static or dynamic

analysis. the proposed work uses static analysis. The static

analysis involves the apk file without executing it. Feature

extraction is the process of drawing out those features that are

required. The feature used in this work is permissions re-

quested in manifest file. Feature vector generation is the

process of converting the features to a form that is

understandable by ma- chine learning algorithms. Feature

selection is used to identify the significant features that help to

detect the malware and remove those ones that cause

ambiguity. The detection process is used to identify the app as

either malware or benign. To perform static analysis of the

samples a tool called AP- KParser is used, which helps to

extract the AndroidManifest.xml from the apk bundle. Once

the manifest file is extracted XML DOM parser is used to

parse the contents of the manifest file and extract the

permissions that were requested. The permission extracted

were in the form text, but since the machine learning

algorithms require the input to be in the form of numeric

vector, the text was converted into numeric values using two

widely used techniques: One-hot encoding (Feature vector 1)

and the second method of feature construction used a text

mining scheme called term frequency - inverse document

frequency (TF-IDF), to construct a feature vector (Feature

vector 2). Construction of feature using one-hot encoding is

simple and easy. By using this technique a binary feature

vector is generated that has ‘1’ for the permissions present in it

and ‘0’ for those per- missions that are not present in the apk

file, with the class label (Malware or Benign) present at the

end.

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 647 www.ijsart.com

Fig. 3. Block diagram of the proposed work.

The permission feature extracted from Android is a

text. The machine learning algorithms re capable of

understanding numeric data, and one simple way of encoding

them into categorical data is direct binary conversion of the

text data (adding 1 for features that are present and 0 for those

features that are not present), and the most desired and

accepted technique for encoding text features to numeric

features is TF-IDF technique, as a result of the work used

these 2 techniques to encode the features [27]. The Fig. 4

shows an example of feature vector that is generated using this

technique.

Construction of feature vector using TF-IDF is done using as

be-low:

The term frequency is the ratio of number of times a particular

term occurs in the document to the total number of terms in

that document.

Where ‘i’ represents the total number of samples in the dataset

and ‘j’ represent the total number of permissions present in

these samples.

The inverse document frequency is used to find the

significance of the term across all the documents. It is

calculated as:

The feature vector is then generated by computing the product

of values of TF matrix and IDF vector as:

The feature vectors constructed using the above two

schemes were used for detection of malware after selection of

Significant features using few filter based approaches like

Chi-Square, Relief, and the proposed KNN-R. The reason

behind choosing the filter based schemes is due to their

simplicity. The detection was performed using several existing

machine learning algorithms like SVM, Decision Tree and

Back Propagation Neural Networks and their performance was

compared with the proposed Optimized SVM algorithm.

V. RESULTS AND DISCUSSSIONS

The experiment was carried out using two different

malware datasets: AAGM [16] and AMD [17 , 18] datasets.

The benign dataset was constructed by downloading the

applications from Google Play Store. Since the Play Store is

not completely free from malicious application, the

downloaded applications were uploaded to a on- line anti-

malware checker site called Virus Total, where the application

is scanned using more than 50 anti-virus software. Once the

checking of the application gets completed, it returns whether

the application is clean or not. The applications that were

certified as clean by all the software is alone considered for

building of benign dataset. The dataset 1 represents malware

samples from AAGM dataset and dataset 2 represents

malware samples from AMD dataset. The experiment is

carried out by parsing the apk file, using permission extraction

algorithm and a list of all permission are obtained. Then the

permissions are encoded into feature vectors using one hot

encoding and TF-IDF encoding techniques [22] and detection

is carried out using machine learning algorithms, with support

of packages from Python.

Table 1 Dataset Description.

The True Positive Rate represents the percentage of

samples that are correctly classified as malware and is

calculated using

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 648 www.ijsart.com

TPR is the ratio of correctly classified malware

samples to the total number of malware samples. This ratio is

also called as Sensitivity or Recall or Hit ratio

The False Positive Rate represents the percentage of

samples that are mistakenly classified as malware and is

calculated using

FPR is the ratio of normal samples that are misguided

as mal-ware to the total number of benign samples in the

dataset. This is also called as fall-out rate.

The benign samples present in the two datasets are

the same. The number of malware and benign samples used

for this research work are given in Table 1.

The initial feature vector generation is done using one-hot en-

coding technique. Feature selection is performed using 3

different popular filter based algorithms namely, Chi-Square,

Relief and the proposed KNN-Relief and the performance of

proposed Optimized

Fig. 4. Feature Vector.

Fig. 5. Performance of machine learning algorithms with

different feature selection techniques.

Fig. 6. RoC Comparison of different detection algorithms for

proposed KNN-R - Dataset 1.

Fig. 7. RoC Comparison of SVM vs o-SVM for KNN-R

feature selection - Dataset 2.

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 649 www.ijsart.com

Table 1 Dataset Description.

The True Positive Rate represents the percentage of

samples that are correctly classified as malware and is

calculated using

TPR is the ratio of correctly classified malware

samples to the total number of malware samples. This ratio is

also called as Sensitivity or Recall or Hit ratio

The False Positive Rate represents the percentage of

samples that are mistakenly classified as malware and is

calculated using

FPR is the ratio of normal samples that are misguided

as mal-ware to the total number of benign samples in the

dataset. This is also called as fall-out rate.

The benign samples present in the two datasets are

the same. The number of malware and benign samples used

for this research work are given in Table 1.

The initial feature vector generation is done using

one-hot en-coding technique. Feature selection is performed

using 3 different popular filter based algorithms namely, Chi-

Square, Relief and the proposed KNN-Relief and the

performance of proposed Optimized

Table 2 Performance of Dataset 1 using One Hot Encoding.

Table 3 Performance of Dataset 2 using One Hot Encoding.

SVM (o-SVM) is compared with that of the several

existing ma-chine learning algorithms, which is shown in

Table 2.

Chi-Square technique [23] is one popular and widely

used technique in the literature for ranking features in Android

malware analysis, hence the proposed work is compared with

Chi-Square technique to analyse its performance.

Table 4 Performance of Dataset 1 using TF-IDF.

From Table 2, it can be seen that the proposed

Optimized SVM has a performance that is nearly equivalent to

that of a BP-NN. The Fig. 5 shows the comparison of accuracy

of these classifiers on using Relief based Feature Selection.

The RoC curve of the proposed KNN-R feature

selection for different machine learning algorithm is shown in

Fig. 6.

FPR is the ratio of normal samples that are misguided

as mal-ware to the total number of benign samples in the

dataset. This is also called as fall-out rate.

The benign samples present in the two datasets are

the same. The number of malware and benign samples used

for this research work are given in Table 1.

The initial feature vector generation is done using

one-hot en-coding technique. Feature selection is performed

using 3 different popular filter based algorithms namely, Chi-

Square, Relief and the proposed KNN-Relief and the

performance of proposed Optimized

It can be noted from Fig. 6, that the proposed o-SVM

achieves a performance that is mostly equal to the

performance of Back Propagation Neural Networks.

To verify whether the proposed Optimized SVM

algorithm works better than the traditional SVM algorithm on

all datasets, the experiment was carried out on another set of

samples from Dataset 2, whose results are shown in Table 3.

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 650 www.ijsart.com

From Table 3 it can be concluded that the proposed

Optimized SVM performs better on the second dataset as well.

The RoC comparison for standard SVM and the proposed

Optimized SVM on using the proposed KNN-R technique for

feature selection is shown in Fig. 7.

Fig. 9. Performance of SVM vs o-SVM with KNN-R

technique.

The performance of the classifiers on using TF-IDF

as technique for feature vector generation was also studied.

The performance of Dataset 1 was given in Table 4 . From

Table 4 , it can be seen that on using TF-IDF the performance

of most of the classifiers improved in comparison with one-hot

encoding technique. This is because that on using one- hot

encoding technique, the permission present in a particular apk

doesn’t affect other files, whereas on using TF-IDF, the

permissions that occur in different files are also taken into

account, which helps to identify permissions that occur

frequently in malware and those that occur frequently in

benign samples, hence the improvement in performance. The

RoC performance of the algorithms on using different

machine learning classifiers with proposed KNN-R based

feature se- lection for the first dataset is given in Fig. 8 . The

performance of Dataset 2 for different feature selection and

machine learning algorithms is given in Table 5 . Tables 4 and

5 conclude that the proposed KNN-R based feature selection

and the proposed Optimized SVM algorithm shows a better

performance. The improvement in detection performance on

using the proposed o-SVM is shown in Fig. 9 .

Table 5 Performance of Dataset 2 using TF-IDF.

From the results obtained it is clear that the proposed

o-SVM technique achieves a better performance than the

traditional SVM model and the KNN-R based feature

selection also helps in improvement of the detection of

malware.

VI. CONCLUSION AND FUTURE WORK

This paper Describe a static analysis by considering

the permissions that are required by the application. The

process of feature selection is important as it helps to identify

the significance features that help in detection of malware.

The work utilized some popular feature selection techniques

like Chi-Square and Relief. The proposed KNN-R algorithm

was found to perform better than the other two algorithms.

The static analysis performed in this work considers

only per-mission, however there are chances that the malware

application may request only the commonly used by any

application but would invoke some unwanted functions. To

monitor these behaviors dynamic analysis can be performed to

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 651 www.ijsart.com

extract features like system calls, network traffic etc. Further

deep learning models can be used in detection of malware

instead of machine learning algorithms.

VII. ACKNOWLEDGEMENTS

It is with the greatest pride that we publish this paper.

At this moment, it would be unfair to neglect all those who

helped me in the successful completion of this paper. I would

also like to thank all the faculties who have cleared all the

major concepts that were involved in the understanding of

techniques behind my paper.

REFERENCES

[1] D. Dagon, T. Martin, T. Starner, Mobile phones as

computing devices: the viruses are coming!, IEEE

Pervasive Comput. 3 (4) (2004) 11–15.

[2] S.B. Almin, M. Chatterjee, A novel approach to detect

android malware, Proce-dia Comput. Sci. 45 (2015) 407–

417.

[3] V.M. Afonso, M.F. de Amorim, A.R.A. Grigio, G.B.

Junquera, P.L. de Geus, Iden-tifying android malware

using dynamically obtained features, J. Comput. Virol.

Hacking Tech. 11 (1) (2015) 9–17.

[4] Lindorfer, M., et al., ‘Marvin: efficient and

comprehensive mobile app classifi-cation through static

and dynamic analysis’, Proceedings of 39th Annual Com-

puter Software and Applications Conference, pp. 422–

433.

[5] Z. Yuan, et al., ‘DroidDetector: android malware

characterization and detection using deep learning,

Tsinghua Sci. Technol. J. 21 (1) (2016) 114–123.

[6] S.B. Almin, M. Chatterjee, A novel approach to detect

android malware, Proce-dia Comput. Sci. 45 (2015) 407–

417.

[7] W. Yu, H. Zhang, G. Xu, A study of malware detection

on smart mobile devices, in: Proceedings of SPIE 8757,

Cyber Sensing, 2013.

[8] S. Das, Y. Liu, W. Zhang, M. Chandramohan, Semantics-

based online malware detection: towards efficient real-

time protection against malware, IEEE Trans. Inf.

Forensic Secur. 11 (2016) 289–302.

[9] C. Yang, ‘DroidMiner: automated mining and

characterization of fine-grained malicious behaviors in

android applications, in: Proceedings of European Sym-

posium on Research in Computer Security, 2014, pp.

163–182.

[10] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, T. Liu,

DAPASA:detecting android pig-gybacked apps through

sensitive subgraph analysis, IEEE Trans. Inf. Forensics

Secur. (2020) In press.

[11] F. Tong, Z. Yan, A hybrid approach of mobile malware

detection in android, J. Parallel Distrib. Comput. 103

(2017) (2016) 22–31 In press, doi:10.1016/j.jpdc.

2016.10.012.

[12] D.S. Saracino, G. Dini, F. Martinelli, Madam: effective

and efficient behav-ior-based android malware detection

and prevention, IEEE Trans. Depend. Se-cure Comput. 99

(2016) 1 PP.

[13] A. Arora; S.K. Peddoju, “NTPDroid: a hybrid android

malware detector using network traffic and system

permissions”, in Proceedings of 2018 17th IEEE In-

ternational Conference On Trust, Security And Privacy In

Computing And Com-munications/ 12th IEEE

International Conference On Big Data Science And En-

gineering (TrustCom/BigDataSE).

[14] P. Rovelli, et al., PMDS: permission-based malware

detection system, Int. Conf. Inf. Syst. Secur. (2014) 338–

357.

[15] S. Gupta, Permission driven malware detection using

machine learning, Int. Res. J. Eng. Technol. 4 (12) (2017)

993–996.

[16] A.H. Lashkari, A.F.A. Kadir, H. Gonzalez, K.F. Mbah,

A.A. Ghorbani, Towards a network-based framework for

android malware detection and characterization, the

proceeding of the 15th International Conference on

Privacy, Security and Trust, PST, 2017.

[17] Y. Li, J. Jiyong, X. Hu, X. Ou, Android malware

clustering through malicious payload mining, the 20th

International Symposium on Research on Attacks,

Intrusions and Defenses (RAID 2017), 2017 September

18-20.

[18] F. Wei, L. Yuping, R. Sankardas, O. Xinming, Z. Wu,

Deep ground truth analysis of current android malware,

the 14th Conference on Detection of Intrusions and

Malware & Vulnerability Assessment (DIMVA 2017),

2017 July.

[19] S. Malik, et al., Android system call analysis for

malicious application detection, Int. J. Comput. Sci. Eng.

5 (11) (2018) 105–108.

[20] M.O. Topgul, E.I. Tatli, The past and future of mobile

malwares, 7th Interna-tional Conference on Information

Security and Cryptology, 2014.

[21] Ryan J. Urbanowicz, Relief-based feature selection:

introduction and review, J. Biomed. Inform. (2018) 189–

203.

http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0009
https://doi.org/10.1016/j.jpdc.2016.10.012
https://doi.org/10.1016/j.jpdc.2016.10.012
https://doi.org/10.1016/j.jpdc.2016.10.012
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0017
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30282-9/sbref0019

