
IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 529 www.ijsart.com

Reliable Payments Using Idempotency

Nimish Dighe1, Yog Pendse2

1, 2 ASM Institute of Management and Computer Studies, Thane

Abstract- Digital technologies have made a significant impact
on all aspects of life, enabling communication and easier ways
to access and share information. Digital technologies have
also revolutionized the banking and payments sector. People
no longer rely only on traditional cash payments. With the
advent of mobile phones and internet technologies, we can
easily make online payments at the comfort of our fingertips.
While online payments are quick and convenient, they also
have some occasional problems like payment timeouts and
duplicate charges for the same payment. These types of
payment issues commonly arise due to technical issues or poor
network connectivity. This paper explores the concept of
idempotency and how we can leverage it to overcome the
problem of payment timeouts and avoid multiple charges for
the same payment.

Keywords- Duplicate charges, Online payments, Payment
timeout, Safe retries.

I. INTRODUCTION

 Online payments are becoming an increasingly
popular method to pay, because they are fast and convenient.
However, they require a stable internet connection to ensure a
complete transaction. We use our mobile phone to quickly
make in-store payments or online payments, where the internet
connection may not be reliable.

The issues commonly faced while making online
payments in a poor internet connection are outlined in the
steps below:

1. The user is presented with a payment page where he can see
the transaction details and is asked to enter his credentials to
authorize the transaction.

2. The user authorizes the transaction, and waits for a
response. However, due to poor network conditions, the user
may get a timeout error.

3. The user then retries the transaction, and the user may
finally get a payment successful / failed response.

In the above steps, there are chances of double
payments being processed. This is because the server may
have processed the transaction, but the user did not receive the

response due to poor network on the user’s end. When the user
retries the transaction, the server will process the request
again, and this will result in double payments or multiple
payments, depending on the number of retries performed by
the user.

II. PROBLEM STATEMENT

1. Double payments / multiple payments for the same
transaction is a problem commonly faced during online
payments.

2. This user needs to perform additional steps to reverse the
duplicate transactions, which may include contacting the
issuer’s bank, the recipient or the payment gateway.

3. The process of manually reversing the double payments can
take u2pto 72 hours.

4. High failure rates of online payments can also cause online
businesses to lose their valuable customers and orders.

5. It can also dissuade new users from making online
payments, who have not tried it before.

While we already focus on encryption for secure
transactions and passwords for authentication, it is also
necessary to improve the reliability of online payments, to
provide a better payment experience.

Also, there should be a mechanism to detect if the
same request has been made multiple times to avoid the
problem of duplicate transactions.

III. CONCEPT OF IDEMPOTENCY

Idempotency is a concept that a certain operation
may be performed multiple times, while having the same
result as the first application. Idempotency is the concept of
‘At most once’ execution, which means multiple identical
requests should have the same effect as a single request.

In the concept of Idempotency there are request-level
keys. The client generates a UUID (Universally Unique
Identifier) for each request. This will serve as a unique

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 530 www.ijsart.com

identifier for each request and it will also ensure that the
requests that are already processed, are not processed again.

Idempotency helps to achieve consistency between systems,
by ensuring that subsequent retries do not affect the state of
the system.

VI. PROPOSED SOLUTION

As discussed above, we need to generate a UUID for
each request. In this section, we will understand what a UUID
is, how it is generated and how we will leverage it in our
proposed solution.

What is a UUID?

A Universally Unique Identifier, commonly
abbreviated as UUID, is a 128-bit number that is unique for
practical purposes. The standard methods for generating a
UUID is defined in RFC 4122. When the UUIDs are generated
according to the standard methods, they are practically unique
and provide certain uniqueness guarantees. The generation of
UUID does not rely on a central registration authority or
multiple different parties. Anyone can create a UUID and be
almost certain that it isn’t a duplicate of an existing UUID.

How a UUID is generated?

The procedure to generate a version 4 UUID is as follows:

1) Initially, generate 16 random bytes(=128 bits).

2) Adjust certain bits according to RFC 4122 section 4.4 as
follows:
i) Set the four most significant bits of the 7th byte to 0100’B,
so the high nibble is ‘4’.
ii) Set the two most significant bits of the 9th byte to 10’B, so
the high nibble will be one of ‘8’, ‘9’, ‘A’, or ‘B’.

iii) Encode the adjusted bytes as 32 hexadecimal digits.

iv) Add four hyphen "-" characters to obtain blocks of 8, 4, 4,
4 and 12 hex digits.

v) Output the resulting 36-character string.

UUID can be easily generated on many of the
commonly used devices and programming languages. For
example, Java provides a UUID class with a static method
randomUUID() which will return a type-4 pseudo randomly
generated UUID. We can then call the toString() method on

the generated UUID to get a String representation of the
generated UUID.

Proposed steps:

1. When the user makes a payment request, the client device
generates an idempotency key for that request.

2. The request is then sent to the server. The server first
checks whether a request with the same key has already been
made before.

3. This will help the server to check if the same request has
been initiated again. If a request with the same idempotency
key has already been processed before, the server will
determine that this is a duplicate request. Hence, it will not
process the request again, and simply send the response back
to the client.

4. If a request with the same idempotency key has not been
processed before, then the server will determine that this is a
new request. It will then process the request and store the
corresponding idempotency key for future checks. After
processing the request, the server will send the response back
to the client.

The key will be unique for each request so that,

whenever the timeout error occurs, the transaction will not be
processed twice. This will also ensure atomicity of payments
i.e. either the payment will be executed completely or not at
all.

V. EXAMPLE

1. Here, in the above diagram as you can see there is a client

and server.

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 531 www.ijsart.com

User initiates a request to debit �100 with the auto-
generated key ‘abc123’. User clicks on proceed to initiate
the transaction.

2 The server checks whether the key ‘abc123’ was used

before or not. As the server notices that it wasn’t used
before, the transaction gets processed and the server
debits the amount.

3 The server sends the response to the client about the
transaction being successful, but due to poor network the
response never reaches the client.

4 On the other side, the client is still waiting for the

response. As the client does not get a response, the
payment is timed-out. After seeing the time-out message,
the user assumes that the transaction was not processed
and clicks retry thereby repeating the same process again.

5 Now, the server checks again whether the key was used

before or not. So, yes, it was already used before in a
previous request. Thus, the server determines that it is a
duplicate request.

6 Therefore, the server does not debit the amount again and

just sends the response back to the client about the
transaction being successful.

7 This is called the concept of Safe Retries. It means that,

no matter how many times the user retries the same
request, the amount will not be debited more than once.

VI. CONCLUSION

Payment timeout is a problem commonly faced by

the users during an online transaction. The payment timeout
problem generally occurs due to poor network and other
technical limitations. This can result in a situation where the
amount is debited from the sender, but it is not received by the
beneficiary. Another problem that can occur after a payment
timeout is multiple payments for the same transaction, if the
user retries the transaction after seeing a timeout message. To
overcome these problems, we can leverage the concept of
idempotency to ensure that the payment is processed ‘at most
once’.

As seen in the example, the client device generates a
UUID or a key for each transaction, which is then passed to
the server along with the request. This key helps the server to
detect if a duplicate request has been made by the user, and
avoid processing them. This ensures the concept of ‘Safe

Retries’, which means that the transaction will get processed
only once, even after multiple retries.

REFERENCES

[1] G. Ramalingam and KapilVaswaniMicrosoft Research,

India. Fault Tolerance vs Idempotence.
[2] Google Standard Payments.

Real-time Payments Systems and Third-party access.

[3] Jon Chew (Airbnb), Avoiding Double Payments in a

Distributed Payments Systems.
[4] D.Radha, P.Meenakshi, B.UtthirachSelvi

"A Study on Idempotent Commutative Gamma
Semigroup", International Journal of Emerging
Technologies and Innovative Research (www.jstor.org),
ISSN:2349-5162, Vol.6, Issue 2, page no.1059-1063,
February-2019, Available
:http://www.jetir.org/papers/JETIRAB06198.pdf

[5] G.L. Litvinov, V.P. Maslov& G.B. Shpiz.
Idempotent Functional Analysis.

