
IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 441 www.ijsart.com

An Easiest Approach To Demonstrate Process

Synchronization And Concurrent Transactions

C.Bhanuprakash

Dept of Master of Computer Applications

Siddaganga Institute of Technology, Tumkur, India.

Abstract- The intention of this paper is to approach the

students in an easier ways to demonstrate the concepts of

process synchronization and concurrency control of database

transactions. Because, concepts of process synchronization is

not so easy to deal with the students. It needs a strong

evidential basics to convince them in an easier approach.

Firstly, the problem we are facing here is when is the situation

we face this type of problem in a computing environment.

Secondly, how do we solve it in an effective way. Thirdly, why

do we need to solve it ? If we don’t take any measures, what

would be the impact of the computational activities especially

to the sharable objects/resources like main memory, printers,

CPU times..etc. It presents the fundamental basics of process

sychronization and concurrency control with a easier

approachable ways.

Keywords- Process synchronization, Serializability,

Interleaved transactions, Concurrency control, Blind write,

Lost update, Dirty read, Unrepeatable read, Locking protocols,

Two – phase commit.

I. INTRODUCTION

 Process Synchronization is a task of scheduling the

execution of the processes in a predefined order to take care of

the computer operations in a smoother ways. This is very

much required for computing objects of sharable type. When a

resource of a computer is shared among more than one user or

processes, it leads to problem of write operations, i.e.

inconsistency of data, sharable object’s visibility is not clearer

to any of the predefined object which leads to blind

transactions, sometimes, it leads to the situation called

deadlock.

In the context of operating system environment, the

accessibility to sharable object needs proper synchronization

mechanism. Process synchronization is a mechanism in which

there should be a proper time schedule assigned between all

the cooperating processes. To implement this, it needs a rule

of using sharable object. That is, at a time only one process

will get a chance to work with a sharable object, so that

remaining co-operating processes will have to wait. They will

become active only after they get a chance to work with

sharable object. Preparing a time schedule to this situation

needs many mechanisms like mutual exclusiveness, progress

and bounded waiting. Mutual exclusiveness is a technique

which allows only one process to access the critical section of

other process.

Progress is another approach which tells that if no

process is executing in its critical section and if other process

are willing to enter in to this critical section which are not in

their remainder section can decide in a fixed span of time

which forces the process to enter into the critical section.

Bounded waiting is another similar approach in

which processes that are willing to enter into critical section

must be bounded by some fixed time slots so that a process

will never be locked out of a critical section infinitely. It

should be promoted immediately after it is waiting for a

prolonged time.

These mechanisms will be implemented with the

usage of a special kind of a integer variable of Boolean type

called semaphore. It is a variable which works only in two

states. i.e. True or False. It works like a electric switch i,e,

ON/OFF. If there are only two processes in the competition of

resource usage, then it will be used with binary semaphore

which works in two states. If it is there with more than two

processes, then problem will be solved by using counting

semaphore. It is working like the way round robin algorithm

works. Every process’s usage of the sharable object will be

counted in an enumerated manner so that every process will

get a chance in a cycle manner. Sometimes a process gets

finished its full execution during its time slot. If any process is

unable to finish its execution, it will get chance in the

immediate next cycle. Like this, all the cooperating process

will finish their execution by accessing in to the sharable

object.

Critical section is another important concept to deal

with the students in a very clearer manner. It is a region in any

process where the coding section will work on sharable

objects. Any coding lines which works with sharable objects

like global variable is a complex task. To solve this complex

issue, two common approaches are used to handle critical

section problems in an operating systems:

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 442 www.ijsart.com

(i) Pre-emptive kernels: In this, process is allowed to be

forcibly stopped or temporarily aborted while it is

running in kernel mode. Because of this pre-emptive

nature, these kernels should be carefully designed so

as to ensure that shared kernel data are free from race

conditions.

(ii) Non Pre-emptive kernels: In this, process is not

allowed to be stopped / aborted while it is running in

kernel mode. A process is allowed to run until it

finishes its full execution. As only one process is

active in the kernel at a time, a non-pre-emptive

kernel is essentially free from race conditions.

In a database environment, it is common that the

same data object/record is shared by more than one user at a

time. These systems generally allow multiple transactions to

run concurrently i.e. simultaneously. Concurrency control is

the activity of coordinating many processes / users to access to

a same database object / record in a multiuser environment. It

permits the users/processes to access a database object in a

multi user transactions environment by keeping the illusion

that each of the user is executing alone on their own systems.

The technical difficulty in attaining this goal is to prevent

database updates performed by one user from interfering with

other database retrievals and updates performed by another

user/process. When the transactions are updating data object

concurrently, it may lead to several problems with the

inconsistencies of the data.

The commonly performed operations on any database

object are read/write. If any user performing read operation on

any database object, then there will be no problem, even it is

accessible by many users, absolutely there will be no problem

arises. Because, everybody is just performing only read

operation, i.e. they just watching the current status of the

database object. The same status of the object will be visible

to everybody. Instead, the problem arises only when it is

performing with write operations. That is updating the data

object in the form of adding the new value, changing the

existing value or removing an existing value. The problems

that are common during concurrent transactions are dirty read,

unrepeatable read, overwriting uncommitted data and lost

update.

(i) Dirty read: It is a type of a transaction problem in

which a transaction could read a database object that

has been modified by another transaction which has

not yet committed. This happens when a transaction

updates a data item, but later the transaction fails. It

could be due to system failure or any other

operational reasons.

(ii) Unrepeatable read: If one transaction tries to read the

value of a database object, it will get a different

value, even though it has not been modified in the

meantime. This is called an unrepeatable read. This

will not happen in case of serial transactions.

(iii) Overwriting uncommitted data: This is the another

problem happens when one transaction could

overwrite the value of a database object, which has

already been modified by another transaction, while

it is still in progress. Even if first transaction does not

read the value of database object written by first

transaction. This problem is called overwriting

uncommitted data.

(iv) Lost update: In this problem, the first transaction is

about to committing the T2, by overwriting the

value of the transaction T2 as set by T1 without

reflect T1’s update, but T1’s update is lost. This is

called lost update.

These problems will be solved by using locking

mechanism called as lock based concurrency control. In this

mechanism, it is used with a special purpose object called as

lock which is nothing but a small book keeping object

associated with a particular database object. To use the lock in

the database environment, it is necessary to follow certain

formalities. This is possible by using a locking protocols.

A locking protocol is a set of rules to be followed by

each transaction to ensure that, even though actions of several

transactions might be interleaved, the net effect is identical to

executing all transactions in some serial order. Different

locking protocols use different type of locks, such as shared

locks or exclusive locks.

Most of the concurrency control algorithms fall into

one of the three basic types of algorithms. i.e. locking

algorithm, timestamp algorithm and optimistic / certification

algorithm.

In this paper, it is trying to present a practical

approach to demonstrate the concepts of process

synchronization and database concurrency control to the

students in an easier approaches. For this purpose, we took an

example system setup where it has three users who are all

willing to work on a global variable. This global variable is

stored in main memory which in turn accessible to more than

one user at a time. Its scope will be visible to more than one

user / process at a time. If this is the case, how to perform the

updates by three users simultaneously with different values is

the prime concern of this paper. Because, the complexity

arises here is, to decide what would be the final value of

global variable after it has been updated by all three users

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 443 www.ijsart.com

simultaneously. This paper deals with solutions to these kind

of problems with a predefined algorithms. Similarly, it has

given effective solution approaches to solve the problems

related to database concurrency control.

II. RELATED WORK:

There have been many approaches made by many

researchers on process synchronization as well as database

concurrency control.

”Concurrency Control in Advanced Database

Applications”[1]. Mr. Naser S. Barghouti and Gail E. Kaiser,

made a research on concurrency control by taking in to a

consideration of banking and Airline reservation system. This

paper outlines the characteristics of data and operations in

some advanced database applications and discussed their

concurrency control requirements.

“An Efficient Approach For Concurrency Control In

Distributed Database System”[2]. Md, Tabrez Quasim

proposed an hybrid architecture that provide locking for high

conflict data items and optimistic access for the rest of the data

objects. He has tried to get rid of a distributed concurrency

control performance trade-offs , by studying the performance

of four related algorithms- Distributed 2PL , Wound Wait ,

Basic time stamp ordering and a distributed optimistic

algorithm using a common performance framework. He has

examined the performance of these algorithms under various

degrees of contention. Data replication and workload

distribution “.

The combination of these results suggest that “

optimistic locking where transactions lock remote copies of

data only as they enter into the commit protocol may actually

be the best performer in a replicated database where messages

are costly.

“Analysis of factors affecting Process

Synchronization”[3] Mrs Aarthi Chhikara proposed various

methods to ensure the orderly execution of the cooperating

processes. She also discussed several hardware based

problems along with solutions that ensures mutual exclusion.

She also disclosed a mutex locks to solve a critical section

problem. He also highlighted the importance of several

classical synchronization problems such as producer-consumer

problem, readers-writers problem, dining philosophers

problem.

“An Approach to Process Management using Process

Synchronization”[4], Deepti Sindhu, Anupma Sangwan and

Kulbir Singh focussed mainly on how to manage the multiple

processes on multi-processors environment. Since, earlier

version of process management dealing with synchronizing

the processes with an uni-processor system where as present

days systems are dealing with multiprocessor’s system.

Ultimately, a Processor can be made more productive by any

type of operating system if a processor switches properly

between processes. It is possible if a processor is synchronized

by proper synchronization of processes.

“Process Synchronization” [5], K.C.Wang, It

explains the concepts of concurrent processes, the basic

principle of process synchronization and the hierarchical

relations among the synchronizing tools. It elaborates on

implement of critical regions and use them in process

synchronizing tools which include sleep/wakeup for uni-

processor systems and semaphores for multiprocessor systems.

It covers the applications of semaphores in concurrent

programming environment. It explains situation of deadlock,

its handling and shown how to devise concurrent algorithms to

avoid deadlocks. It also explains the concepts and usage of

pipes and applies to the producer-consumer problem to

implement pipes in the MTX kernel.

III. METHODOLOGY

3.1 Experimental Setup to demonstrate Process

Synchronization:

Consider a global variable ‘X’ which presently stored

in a main memory of a computer and is currently sharing with

three users, User-1, User-2 and User-3 respectively. The

initial value of ‘X’ is zero. The user-1 is willing to work on

this variable ‘X’ by updating its value by 10. The user-2 is

willing to work on this variable ‘X’ by updating its value by

20. Similarly, the user-3 is also willing to work on this same

variable and updating its value by 30. All the three users are

trying to work on this variable simultaneously. If this is the

case, what would be the final value of the variable ‘X’ ?. This

system setup is shown in the figure – 1.

Figure - 1

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 444 www.ijsart.com

To say the answer to this question is not so easy,

because, we cannot say the final value of X is either 10, 20 or

30. Sometimes, the students will say that the final value of ‘X’

is 60 by summing all the values. i.e. 10+20+30 = 60. Even

then, this is also not correct. In other occasions, the students

will say the answer so smartly that the value of the variable

‘X’ is depends on the user who has updated the variable at

last. But, we don’t know which user updated at last. This

situation leads to ambiguity to the teachers many times. In

order to give the correct answer to this question, we need to

convince the students with the concept of process

synchronization. That is, making a time schedule to all the

three users to work on this global variable ‘X’ with a principle

of mutual exclusion. In this mutual exclusion, if a user-1 is

working on the variable ‘X’, the other users, user-2 and user-3

have to wait till the updating of user-1 on ‘X’ has to finish.

During this time, the variable ‘X’ should be protected for any

kind of write operations from other users except the user-1. He

can make any kind of write operations (i.e. adding new value

to the variable ‘X’, changing the existing value of the variable

‘X’ or removing the existing value of the variable ‘X’). When

once the updating operation is finished, the write protection

constraint applied on the variable ‘X’ will be released. When

this is done, it is the time to apply the chance of working with

the variable ‘X’ to any users. i.e. either user-2, either-3 or even

user-1 also. To decide which user will get a chance to work

with this variable depends on the algorithm being used to

solve this problem. To solve this problem, we have many

algorithms like First Come First Serve, Priority based

algorithm, Shortest job first algorithm, Least recently used

algorithm, Round Robin algorithm …etc. This is the common

strategy being used for all the objects of sharable types. The

same concept in database environment is called as concurrent

transactions or simultaneous transactions. The techniques used

to solve this problem is a called as concurrency control.

In general situations, this strategy is implemented by

using special type of a variable called semaphore. Semaphore

is a integer variable which works on two states. That is Wait

and Signal which is similar to Boolean type of variable which

works on the concept of True and False. It is also called as a

locking variable which facilitate only one process to share the

variable at a time and keeps the remaining process in a waiting

status.

The working of wait and signal operations are:

wait(S) : while S <= 0

do skip;

S := S - 1

Signal(S): S := S + 1

Counting semaphore values will span from 1,2….N

to unrestricted limit. They will be used to accessibility control

to a defined resource which contains fixed number of

instances. Assume, if there are 6 resources in a sharable

environment, then the variable semaphore is initialized with

value 6. Any of the process willing to use a resource performs

an operation with wait() signal on the variable semaphore by

decreasing the counting value i.e. 6 – 1 = 5. When an updating

operation is completed, the acquired resource is released by a

process by changing the status of the semaphore as signal() by

increasing the counting value i.e. 5 + 1 = 6. When the value of

a variable semaphore becomes zero, it indicates that all

resources are being used/busy. Any other process willing to

use a resource will getting blocked until the counting value

becomes greater than zero. i.e a process releases a resource.

Binary semaphores are generally termed as mutex

locks that provide mutual exclusion.

Let us assume two processes: P1 with a statement-S1

and process: P2 with a statement S2 running concurrently.

Assume that statement-S2 be executed only after the statement

S1 has finished its execution. This logic can be implemented

readily by allowing P1 and P2 share a common variable S,

which is initialized to 0.

In process P1, we insert the following statements

 S1;

 Signal(S);

In process P2, we insert the following statements

 Wait(S);

 S2;

Execution flow will be

1. S1 starts execution

2. Signalling the variable semaphore

3. The waiting process P2 receives the signal

4. S2 starts execution by keeping S1 in waiting state.

Implementation Semaphore: Implementation of this

semaphore with following condition as shown in following

code:

struct semaphore

{

initialvalue;

Lists *L ; // process

lists

}

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 445 www.ijsart.com

Here each semaphore is having an integer value and a

list of processes L. The waiting processes on semaphore are

added to the list of processes. Signal operation removes one

process from process list and wakes up that process.

The semaphore operations can be now written as follows:

Syntactical description of Wait Operation:

Wait(S) // wait

operation

{

S.val--;

If (S.val < 0)

{

add this process to S.L;

block;

}

}

Syntactical description of Signal Operation:

Signal(S) //signal

operation

{

S.val++;

If (S.val <= 0)

{

remove a process P from S.L;

wakeup (P);

}

}

Here, the block operation suspends the process which

invokes it and it resumes execution of blocked process by the

wakeup () operation. The operating system treats these two

basic operations as basic system calls.

3.2 Concurrency Control in Database Applications:

It is considered to be one of the database

management activities of co-ordinating the multiple actions of

database manipulating processes that separates concurrency

that access shared data and can effectively ensures the

isolation with one another. The main role of concurrency

control is to ensure the serializability of concurrently

executing transactions.

During the concurrent transactions, read and write

operations performed on sharable data object may cause

conflict among these transactions. To deal with these conflicts

a concurrency protocol has been devised which will work with

two basic stages.

i) It is trying to avoid conflicts or else it is trying to

detect conflicts.

ii) When once they detected it will eliminate them.

There are many methods to allow concurrent

transactions by make use of locking mechanism, Lock is

nothing but a book keeping object kept on the database object

being updated during concurrent transaction. It is a mechanism

in which we put lock on the required database record or group

of records. When once it is locked, no other process can make

any changes to the selected records. Only authorized process

can do any changes it wants. Lock will be released

automatically when the transaction is completed. This is

possible by make use of many methods and protocols.

Following are the popular methods being used.

i) Two phase Locking : In this method, Locking can be

implemented in two phases. In first phase, it is selecting

required records by using conventional SQL queries and apply

the lock. Following is the SQL query with a syntax:

SQL> Select <List of Columns/attributes>

from <Table_Name>

Where <condition> FOR UPDATE.

In the second phase, It will perform the required

updating operations and complete the transactions by ending

with COMMIT statement. Following SQL syntax is used.

SQL> <Update / Delete database object_name from

<Table_Name> WHERE CURRENT OF Cursor_name.

Where cursor is the SQL variable which keeps the

result set of ongoing select statement. When once it is given

with COMMIT statement, the transaction is completed and

which automatically releases the already applied locks. Now,

this record is ready to update from other users / processes.

This will continue throughout the database session.

ii) Wound Wait (WW) method: This is the second method

which works on the concept of a slogan “Get ready any and

Write all”. More or less, it is trying to avoid deadlock rather

than reducing waiting time of remaining processes. Here,

deadlock will be avoided with use of timestamps. Each

transaction is numbered so that initial process will get a value

1 and last transaction will get a value ‘n’.

iii) Time Stamp Ordering: It works based on the principle of

new and old data items. That is, a transaction's operation

performed on a data item is executed only if its timestamp is

newer than the timestamp of all transactions that have

previously accessed the data item. The scheduler generated by

IJSART - Volume 6 Issue 6 – JUNE 2020 ISSN [ONLINE]: 2395-1052

Page | 446 www.ijsart.com

timestamp methods are serializable. Timestamp must be

drawn from a totally ordered domain – this is usually achieved

by using tuples composed of time value as primary ordering

field and the transaction manager's unique number as

secondary field .

iv) Distributed Certification: This is the fourth method works

on the basis of distributed timestamp on Optimistic

Concurrency Control algorithm. It operates by exchanging

certification information during committing protocol. For each

of the data item, a read timestamp and a write timestamp are

maintained. Transactions may read and updates data items

freely , Storing any updates into a local workspace until

commit time. For each read, the transaction must remember

the version identifier associated with the item when it was

read, then when all of the transaction's cohorts have completed

their work and have reported back to the master, the

transaction is assigned a globally unique timestamp.

IV. CONCLUSION

This is the small attempt put to reduce the efforts in

convincing the students to teach the topics on process

synchronization as well as concurrency control in an easier

ways. On many occasions, a common complaint we are

getting in the subject Operating systems that, teachers may

telling the students to teach this module after the completion

of remaining modules or else at the end of the semester. But,

most of the occasions, they may skip this module. Because,

they don’t have minimum confidence to deliver the contents of

the chapter. Even students are not willing to listen this so

effectively, because of its complex nature of concepts. By

observing all these situations over a span of many years, I

thought of presenting these simple approaches to you in a

form of a paper. Now also, I was not able to cover all the

concepts of process synchronization and concurrency control,

but I have covered the major portion of the module which

seems to be complex one. I made my sincere attempt in this

regard to deliver the contents shown in this chapter. I would

highly appreciate your valuable feedback, healthy comments

and suggestions.

REFERENCES

[1] NASER S. BARGHOUTI AND GAIL E. KAISER

: “Concurrency Control in Advanced Database

Applications” – Department of Computer Science,

Columbia University, Newyork.

[2] Mohammed Tabrez Quasim “An efficient Approach for

Concurrency Control In Distributed Database System” –

Researchgate, Article published in January 2013.

[3] Aarthi Chhikara

“Analysis of Factors Affecting Process Synchronization”

– Journal: International Journal of Computer Science

Engineering (IJSCE), Volume – 9, No-02, Issue – 4, ISSN

0975 – 3397. Published online February 2017.

[4] Deepti Sindhu, Anupma Sangwan, Kulbir Singh,

“An Approach to Process Management using

ProcessSynchronization” – International Journal of

Computer Applications, Volume-128, Number – 7, Year

of Publication – 2015.

[5] K.C. Wang, “Process Synchronization” Book Chapter-5,

DOI: 10.1007/978-3-319-17575-1_6, June - 2015

Book Title : Design and Implemenation of MTX

Operating System

AUTHORS PROFILE

C.Bhanuprakash,

received the B.E.in Mechanical

Engineering and Master of Computer

Applications degrees from

Siddaganga Institute of Technology,

Tumkur, of Bangalore University, in

1993 and 1998, respectively.

 C.Bhanuprakash has 19 years of experience in

Teaching, 4 Years of Industry experience and 8 years of

research experience. Presently he is working as Assistant

Professor in the department of Master of Computer

Applications, Siddaganga Institute of Technology, Tumkur,

Karnataka. Currently, he is pursuing his Doctor of Philosophy

at Research Centre, Department of Computer Science and

Engineering, SIT, Tumkur of Visveshvaraiah Technological

University, Belgaum, in the field of soft computing

techniques, database and data mining applications.

 His areas of specialization include design and

development of database applications, Operation Research,

Optimization Techniques, Intelligent Data Analysis,

Advanced Operating systems, Neural Networks, Data Mining

and other Soft Computing Techniques.

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-17575-1_6?_sg%5B0%5D=L-sMGBqc-A-Lz3jBhQ6o1Yv8hCg4h5xZ6XENW4yNX8siLI6m9yzppCH7VU1WcdeVv7cJ5O4LHQKcfwVaSRPVxvJmBg.Bi0fGnwxt-o7361nvGntoBKNSSpS1Y3JgxxaXLq2UfYEsOEJvTcW7R3ZPWDAnUhAdd1mXB1kBB9dzBxACeHB2g

