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Abstract- Drug-drug interaction (DDI) is a change in the 

effect of a drug when patient takes another drug. 

Characterizing DDIs is extremely important to avoid potential 

adverse drug reactions. We represent DDIs as a complex 

network in which nodes refer to drugs and links refer to their 

potential interactions. Recently, the problem of link prediction 

has attracted much consideration in scientific community. We 

represent the process of link prediction as a binary 

classification task on networks of potential DDIs. We use link 

prediction techniques for predicting unknown interactions 

between drugs in five arbitrary chosen large-scale DDI data-

bases, namely Drug Bank, KEGG, NDF-RT, SemMedDB, and 

Two sides. We estimated the performance of link prediction 

using a series of experiments on DDI networks. We per-

formed link prediction using unsupervised and supervised 

approach including classification tree, k-nearest neighbors, 

support vector machine, random forest, and gradient boosting 

machine classifiers based on topological and semantic 

similarity features. Supervised approach clearly outperforms 

unsupervised approach. The Two sides network gained the 

best prediction performance regarding the area under the 

precision-recall curve (0.93 for both random forests and 

gradient boosting machine). The applied methodology can be 

used as a tool to help researchers to identify potential DDIs. 

The supervised link prediction approach proved to be 

promising for potential DDIs prediction and may facilitate the 

identification of potential DDIs in clinical research. 

 

I. INTRODUCTION 

 

 Combined use of multiple drugs at the same time 

(i.e., polypharmacy) is common in modern pharmacotherapy 

[1], particularly in older population who has required 

continuous treatment for one or more chronic diseases [2]. 

Empirical evidence reported that the percentage of theU.S. 

population taking three or more drugs increased for 12% in 

years 1988±1994 to 21% in years 2007±2010 [3]. In such 

settings drugs may interact; they are not independent from one 

another. Drug-drug interaction (DDI) is an event in which one  

drug influences thepharmacologic effect of another drug when 

both are administered together [4, 5]. Identifying DDIs is a 

critical process in drug industry and clinical patient care, 

especially in drug administration [6]. 

Adverse drug reactions (ADRs) are harmful reactions 

that are caused by intake of medications [7]. Many ADRs are 

not identified during clinical studies (i.e., before a drug is 

approved by a government). Liu [8] recently demonstrated that 

about 10% of all possible drug pairs may probably induce 

ADRs through DDIs. Therefore, one of the fundamental 

aspects in pharmacovigilance research field related to the 

detection and prevention of ADRs Ðis to generate new 

knowledge about DDIs. Despite several resources for DDIs 

[10] (e.g., DrugBank,Drugs.com), a study has demonstrated 

that none of the actual public databases provide a tolerable 

coverage of all the known DDIs; these databases are either 

incomplete or they record a large number of irrelevant 

interactions [11]. Additionally, the great majority of DDIs is 

hidden in a crowd of unstructured textual data which is 

expanding at a large scale [12]. For example, as of date of this 

writing simple PubMed search returns about 150000 

bibliographic citations which include MeSH term `Drug 

Interaction'. Hence, the main motivation behind this study is 

consideration of computerized approach to identify potential 

DDIs. 

 

DDIs may be naturally represented as a network in 

which nodes refer to different drugs and relationships between 

them designate their interactions [13, 14]. Complex networks 

fascinate many researchers after the small-world [15] and 

scale-free [16] features were recognized in numerous real-life 

networks, such as the Web and large social networks that 

capture relationships between actors. The network induced can 

be employed to elucidate the architecture and dynamics of a 

complex system and assist us in identification of relevant 

topological properties, interesting patterns, and predicting 

future trends. Various studies have already been performed in 

pharmacology with interesting applications of complex 

networks, including DDIs prediction (e.g., [17, 18]). There are 

three main benefits of processing DDIs with net-work analysis 

approach [19]: (i) researcher can predict potential, previously 

unknown, DDIs; (ii) certain (insignificant) DDIs will be 

avoided in such knowledge representation; and (iii) 

relationships which link pharmacodynamic and 

pharmacokinetic drug characteristics to DDIs can be explored. 

A plethora of statistical methods were employed and 

developed to predict DDIs. An extensive overview of recent 
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approaches is presented separately in the next section. Existing 

methods may be categorized into three main approaches to 

DDI prediction: (i) a similarity-based approach, (ii) 

classification-based approach, and (iii) text mining approach. 

A similarity-based methods are based on the assumption that 

similar drugs may interact with the same drug. For instance, 

two drugs may interact if they have similar molecular profile. 

Classification-based techniques mimic the DDI prediction task 

as a binary classification problem. For example, drug-drug 

pairs are represented as feature vectors, while target variable is 

represented by presence or absence of interactions. A 

particular instance of classification-based methods is link 

prediction, which aim is to assess the probability that a 

relation exists between pair of nodes in a network, based on 

observation of topology of existing nodes and their attributes 

[20, 21]. Finally, text-mining methods employ natural 

language processing techniques to extract plausible relations 

among drugs from unstructured data sources (e.g., from 

MEDLINE citations). However, Abdelaziz et al. [22] 

identified several issues that are overlooked by a great 

majority of DDI prediction studies: (i) inability to predict 

newly developed drugs, (ii) failure to handle extreme data 

skewness of DDI pairs, (iii) relying the analysis only on 

selected data source (mainly DrugBank), and (iv) careless 

evaluation techniques which is reflected by employing area 

under the ROC curve as the main evaluation metric to assess 

the quality of prediction. All these limitations encourage us to 

perform a new, improved experiment.In this study we examine 

link prediction from the viewpoint of predicting potential 

DDIs. The main objectives of this work are: (i) to represent 

the process of discovering potential DDIs as a binary 

classification task in which features are represented as 

topological and semantic measures between drugs, and (ii) to 

evaluate performance of unsupervised and supervised machine 

learning methods for predicting potential DDIs. This study is 

different from other related studies in the following facets: (i) 

we use broader set of databases for DDIs prediction including 

DrugBank, KEGG, NDF-RT, SemMedDB, and Twosides; (ii) 

besides network-based features we also include semantic-

based features, for instance chemical information of a drug 

and assigned Medical Subject Headings (MeSH); (iii) 

regarding methodological considerations we assume balanced 

distribution of DDI pairs; (iv) in addition to unsupervised 

approach we also include supervised statistical learning 

methods; and (v) last but not least, the study relies on 

comprehensive statistical evaluation and on manual evaluation 

performed by trained pharmacist. 

 

II. RELATED WORK 

 

A recent comprehensive review of DDI detection 

utilizing clinical resources, scientific literature, and social 

media is given by Vilar et al. [23]. In previous section we 

defined three approaches to DDIs prediction, namely 

similarity-based approach, classification-based approach, and 

text mining approach. We review the most recent literature for 

each of the approaches in the next paragraphs. 

 

The similarity-based approach exploits the idea of 

biological profiles which are used to compare drugs and infer 

new molecular properties [24]. Gottlieb et al. [25] performed 

statistical validation by considering various types of drug-drug 

similarities, including chemical-based and side-effect-based 

similarity. Vilar et al. [26] developed new approach 

appropriate for large scale data that detects DDIs based on 

similarity of molecular structural properties. Li et al. [27] 

presented a Bayesian network model which was combined 

with a similarity algorithm to predict the drug pairs from drug 

molecular and pharmacological features. Zhang et al. [28] 

developed an integrative label propagation framework to 

model DDIs by integration of ADRs and chemical structures. 

Sridhar et al. [29] developed a probabilistic approach for 

predicting DDIs. 

 

They used probabilistic soft logic framework which 

is highly scalable. The evaluation demonstrated of more than 

50% improvement over baselines. Ferdousi et al. [30] reported 

on a methodology for DDIs modelling based on comparison of 

functional profiles of drugs, where drug profiles were 

constructed using carriers, transporters, enzymes, and targets 

information. They predicted over 250000 potential 

interactions. Takeda et al. [31] predicted DDIs based on 

structural similarities and the interaction networks that consist 

of pharmacokinetics and pharmacodynamics 

properties.Classification-based approaches mimic the 

prediction of DDIs as a two-class classification task. Cami et 

al. [32] defined DDIs as combinations of feature vectors and 

then employ logistic regression model to predict future 

interactions. Their model achieves a sensitivity of 48% with a 

specificity of 90%. Cheng and Zhao [33] used four DDI 

similarity measures and applied various statistical learning 

methods (naive Bayes, classification tree, k-nearest neighbors, 

logistic regression, and support vector machine) to learn 

interactions between pairs of drugs. Jamalet al. [34] studied 

neurological ADRs. They use various properties of drugs 

including biological, chemical, phenotypic, and their 

combinations. They used feature selection based on relief to 

detect most important variables and then employed advanced 

statistical techniques to predict side effects. Abdelaziz et al. 

[22] developed a large-scale similarity-based framework that 

predicts DDIs using link prediction. The system can predict 

both novel DDIs among existing drugs as well as newly 

developed drugs. Similarly, Lu et al. [35] studied whether 

classicalsimilarity measures provide plausible approach to 
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drug-target interaction prediction, when only information from 

network topology is available. They compare their method 

against restricted Boltzmann machines and demonstrated 

higher precision of the proposed approach.Zhang et al. [18] 

collected a variety of information sources (i.e., data about 

substructures, tar-gets, enzymes, transporters, pathways) and 

build prediction models using neighbor recommender, random 

walk, and matrix perturbation method. They demonstrated that 

the methods based on ensemble learning could derive higher 

prediction performance than individual algorithms. Hameed et 

al. [36] developed a methodology for DDI prediction that is 

especially use-able in situations when true negative instances 

for training are inadequate.Information about DDIs in the 

research literature is increasing rapidly. Third line of research 

thus utilizes text mining methods to infer novel DDIs. Duke et 

al. [37] perform literature discovery approach on large health 

information exchange data repository to predict and evaluate 

new DDIs. Their method could identify new clinically 

significant DDIs and also sup-ports mining for their potential 

biological roots. Huang et al. [38] presented a method that 

esti-mates the strength of network connection between drug 

targets to predict pharmacodynamics DDIs with 82% 

accuracy. Tari et al. [39] proposed a novel approach that 

integrates automated reasoning techniques and text mining do 

derive new enzyme-based DDIs from MEDLINE abstracts. 

Manual evaluation revealed about 81% accuracy of their 

approach. Gottlieb at al. [25] introduced an interaction 

prediction framework that allows the inference of both 

pharmacokinetic and pharmacodynamic DDIs. They reported 

high sensitivity and specificity ratesof the proposed approach. 

Lu et al. [17] recently described an automatic approach for the 

description of the mechanism of interactions using MEDLINE 

MeSH descriptors. Authors reported high accuracy for 

identification of appropriate MeSH headings, including drugs 

and proteins. Besides scientific literature, social media also 

provides promising approach that can be useful in detection of 

DDIs [23]. For example, Hamed et al. [40] presented 

computational framework that detects DDI patterns from 

Twitter hashtag-based networks. 

 

III. MATERIALS AND METHODS 

 

We compiled knowledge networks by using DDI data 

from five public drug databases, including DrugBank, KEGG, 

NDF-RT, SemMedDB, and Twosides. We formed a pair of 

drugs if both are involved in one adverse DDI. DDIs are 

typically represented as directed connections. In this work the 

direction of the interaction was ignored. DrugBank is an 

encyclopedic Web repository containing complete 

biochemical and pharmacological data about drugs, including 

biological mechanisms and targets information [41]. Most of 

the information in DrugBank is throughly curated from 

research literature. Currently, DrugBank lists 10376 drug 

entries and 577712 directed interactions among them. In this 

study we used version 5.0 of the DrugBank which was 

obtained from the Drug-Bank Web page 

(https://www.drugbank.ca) on August 1, 2017. We parsed the 

DDI information from the provided XML file and compiled an 

edgelist of drug identifiers combinations.SemMedDB is a 

database of semantic predications (i.e., subject-relation-object 

triples) parsed from MEDLINE bibliographic database 

abstracts by the SemRep tool. Subject and object arguments of 

each predication correspond to concepts from the Unified 

Medical Language System (UMLS) Metathesaurus while 

relations coincide with links from the UMLS Semantic 

Network. SemMedDB contains information from about 91 

million predications from all of the MEDLINE citations 

(approximately 27 million bibliographic records as of this 

writing). We used the version v.30 of the SemMedDB 

database in this study that processed the MEDLINE up to end 

of June 2017. In this study, all`INTERACTS_WITH' 

relationships between pairs of drugs were used as potential 

DDIs. Pre-processed database contains 1447792 directed 

interactions among UMLS concepts that refer to drugs. Next 

we use MRCONSO table from UMLS Metathesaurus to map 

UMLS concepts to DrugBank identifiers. Final database of 

interactions contains 1688 compounds and 37287 

interactions.Twosides is a comprehensive source of 

polypharmacy ADRs for combinations of drugs [45]. The 

version used in this study was obtained from the Twosides 

Web page on August 1, 2017. Interactions in Twosides 

database are restricted to only those that cannot be 

unambiguously ascribed to either drug alone. We parsed the 

interaction information from the downloaded text file 

(http://tatonettilab.org/) and build a database of drug identifier 

pairs for the interacting compounds. We use PubChem 

(https://pubchem.ncbi.nlm.nih.gov/) identifiers to map 

Twosides identifiers to DrugBank identifiers. Final database 

of interactions contains 340 unique compounds and 19020 

interactions. 

 

IV. DATA REPRESENTATION 

 

Consider an undirected and unweighted network 

which is depicted as a simple graph G (V, E) that consists of a 

set of nodes V referring to drugs and a set of edges E 

representing interactions between drugs. Let |.| represent the 

cardinality of the set. Let us first introduce some notation 

which is essential to understand the basics of the link 

prediction; for a comprehensive introduction to the technical 

details of link prediction we refer the reader to excellent 

reviews by Liben-Nowell and Kleinberg [20] or LuÈ and Zhou 

[21]. 

 

https://www.drugbank.ca/
http://tatonettilab.org/
https://pubchem.ncbi.nlm.nih.gov/
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Let U be the universal set containing (|V| |V| − 1)/2 

possible edges. By U − E we denote a set of non-existing links 

(or links that will appear later in time). The problem of link 

prediction is to predict these missing links. To test prediction 

algorithms we split the set of observed links E into two 

partitions: the training partition ET and test partition EP. It 

follows that ET [ EP = E and ET \ EP = ⌀. In this study, we 

split each data set E into 66% training and 33% test data. 

 

For all pairs of nodes in the training data we calculate 

similarity measure, which reflects the chance that a pair of 

nodes will interact in the test data set. In terms of machine 

learning, each pair of nodes serve as a positive or negative 

example, depending on whether those node pairsform a link in 

the test network. We organize the whole network as a list of 

relations 

 

U ˆ fhu1 ; u2i; hu1 ; u3i; . . . ; hui; uji; . . . ; hun1 ; unig; 

 

wheren is the number of nodes in the network. Each 

term of the list comprises a feature vector and a relationship 

(i.e., class) label. The label is 1 when ui following uj and 0 

otherwise. A feature vector is composed by the two feature 

subsets, as described in the next section. 

 

Our basic assumption is that similar nodes more 

probably form a potential DDI. For each non-existent pair (x, 

y) in a test data, a link prediction algorithm provides a score 

s(x, y)2 U − ETthat is an estimate of the existence of link 

between nodes x and y. 

 

V. FEATURE EXTRACTION 

 

Extracting a relevant set of features is one of the most 

critical part of any statistical learning algorithm. Traditional 

link prediction research considers mostly the topological 

features. In this study we augment the set of topological 

features with four semantic features. 

 

Topological features. Common neighbor (CN). Due to its 

simplicity this is one of themost commonly used measure in 

link prediction [46]. For a node x, let Γ(x) denotes a set of 

neighbors of x. For nodes x and y the CN is defined as the 

number of nodes that x and y have in common. CN gives the 

relative similarity between a pair of nodes. CN is formally 

defined as 

 

sCN
x;yˆ jLx;yj ˆ jG…x† \G…y†j: 

 

Jaccard’s coefficient (JC). It is a normalized version 

of CN. JC assumes higher values of nodepairs (x, y), which 

have many common neighbors proportionate to the total 

number of neighbors they have [47].  

 

Adamic/Adar index (AAI). This index was first 

proposed for measuring similarity betweentwo Web pages 

[48]. AAI definition is related to JC, with a correction that 

lower-connected neighbors are weighted more heavily. 

 

Preferential attachment (PA). This is simply the 

product of the degrees of nodes x and y. 

 

This measure rest on an assumption that new edges 

more probably connect to higher-degree nodes than to lower-

degree ones [49]. PA is defined as 

 

sPA
x;yˆ jG…x† G…y†j: 

 

Resource allocation (RAI). It is similar to AAI but it 

penalizes the common neighbors withhigher degree more 

rigorously. RAI is formally defined as 

 

Common neighbors 1 (CCN). This measure begins 

with the base score given by |Λx,y| andthen for every neighbori 

shared by x and y, CCN receives an additional point for 

everycommunity that x, b, and i are all in. 

 

Resource allocation 1 (CRA). It is similar to the 

original resource allocation definition, but itgives extra weight 

to shared neighborsi that are in at least one community with 

both x and y, and weight i's contribution toward the total score 

by the number of communities that i shares with x and y. 

 

Within-inter cluster (WIC). WIC predicts link 

between a pair of nodes using informationfrom within-cluster 

(W) and inter-cluster (IC) common neighbors of these nodes. 

A community detection must be performed on the network 

before applying this metric. Each vertex belongs to only one 

community. 

 

Semantic features.Drug therapeutic-based similarity 

(ATC). This type of similarity was evaluated through ATC 

codes. ATC coding system partitions compounds into different 

clus-ters according to the biological system or organ on which 

they act. The first level of the code which was used in this 

study indicates the anatomical main group. There are 14 main 

clusters. The ATC codes for all compounds were extracted 

from the main DrugBank file. There are 3322 unique ATC 

codes as of this writing in the DrugBank database. Each 

compound was represented by a binary vector in which 

elements refer to the presence or absence of the ATC codes. 
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MeSH-based similarity (MESH).MeSH is a controlled 

vocabulary which is used to indexMEDLINE database. 

MeSH-based similarity is based on MeSH terms that are 

associated with DrugBank entries. There are 2072 different 

MeSH terms in the DrugBank database. As in the case of drug 

therapeutic-based similarity, each compound was represented 

by a binary vector whose elements represent the presence of 

the MeSH terms. The MeSH-based similarity is defined as the 

cosine similarity between the IDF-weighted MeSH vectors of 

the two corresponding compounds. 

 

Adverse drug effect-based similarity (ADE). For this 

type of similarity we use informationprovided by SIDER side 

effects database of drugs. SIDER provides data on marketed 

drugs and their known ADRs. The version used in this study 

(4.1) was obtained from the SIDERWeb page [51]. There are 

1430 drugs and 5868 side effects in the database. Each 

compound was represented by a vector with binary values in 

which elements represent the presence of the side effect terms. 

The side effect similarity of two compounds is defined as a 

cosine similarity between the IDF-weighted side effect vectors 

of the two compounds. 

 

VI. STATISTICAL LEARNING 

 

From In this study we used unsupervised and 

supervised learning. Later was performed by using five state-

of-the-art classifiers, namely classification tree (DT), k-nearest 

neighbors (kNN), support vector machine (SVM), random 

forest (RF) and stochastic gradient boosting also known as 

gradient boosting machine (GBM). These classifiers have 

become mainstream in modern statistical learning. A 

comprehensive overview of all learning methods is not in 

scope of this paper. However, in the following lines we will 

shortly introduce the basic background. For more deep insight 

please see Friedman et al. [52]. 

 

Unsupervised classification.For unsupervised 

classification we use combined similaritymeasure which is 

derived from standardized similarity scores for pairs of nodes 

based on topological and semantic properties of the networks. 

More formally, we define combined similarity measure as 

 

sComb
x;yˆAvg…sCN

x;y ; sJC
x;y ; . . . ; sADE

x;y†; 

 

whereAvg is arithmetic mean. A pair of drugs is predicted to 

have a link if its score is over a certain threshold t. Clearly, a 

lower threshold predicts more pairs to be links. In our settings 

we use t = 90th percentile as a threshold. For example, value 

of combined similarity above chosen threshold therefore 

predicts a link between selected nodes. We use class 

information as described previously in `Data representation' 

section. 

 

Classification tree.DT is built by partitioning 

instances into local subsets using a series ofrecursive splits. 

Each node of a tree is constructed by a logical rule, where 

instances below a certain threshold fall into one of the two 

child nodes, and instances above fall into the other child node. 

Partitioning continues until a terminal node, where data 

instances are assigned a class label [52]. The prediction for an 

instance is obtained by a majority vote of the instances 

reaching the same terminal node. Classifier was constructed 

using the rpart package in R. 

 

k-nearestneighbors.kNNclassifier defines the class of 

a test instance according on themajority vote of its k nearest 

neighbors from training data [52]. We set the value of k using 

internal 5-fold cross-validation. We used the Euclidean metric 

for calculating distances between data points. kNN classifier 

was implemented using the class package in R. 

 

Support vector machine.SVM classifier maps the 

input data set into a high-dimensionalfeature space and then 

constructs a hyperplane to separate classes based on a 

maximum margin principle. We can choose various kernel 

functions including linear or nonlinear [52]. SVM classifier 

was implemented using the e1071 package in R. The penalty 

parameter was determined by an internal 5-fold cross-

validation. Our implementation uses the linear kernel. 

 

Random forest.RF is a statistical learning 

methodology that perform ensemble learningfor classification. 

Ensemble consists of multiple classification trees [53]. We 

used bootstrap sampling on training data to grow each tree. 

We split each node using the best among a ran-domly selected 

subset of given features. Next, we combined class labels 

predicted by each tree in the forest. Majority vote is finally 

used to create final prediction. RF classifier was imple-mented 

using the ranger package in R. 

 

Gradient boosting machine.GBM also provides 

ensemble learning, but the base learnersin a GBM are weak 

learners [54]. The trees in GBM are not grown to the 

maximum possible extent as in RF. The GBM starts with an 

imperfect model (i.e., the base learner that is not grown 

maximally) and generates a new model by successively fitting 

the residuals of the cur-rent model, using the same class of 

base learners as the initial imperfect model. GBM classifier 

was implemented using the gbm package in R. 
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VII. EVALUATION METRICS 

 

To estimate the quality of the proposed methodology, 

we performed two types of analyses: we performed statistical 

validation on selected DDI data sets as well as qualitative 

validation on a small subset of DDIs. The performance of 

algorithms was evaluated by employing train-test schema. 

First we used ovun.sample() function from the ROSE package 

in R to create a representative sample of DDI pairs for each 

network. Models were trained and tuned using the caret 

package in R utilizing doMC package for parallel processing. 

We used createDataPartition() function to split the entire data 

set into training subset containing 66% of examples and a test 

subset containing 33% of examples. Model selection was 

carried out using 10-fold cross-validation on training subset, 

which is known to give the lowest bias and variance [52]. The 

model with the highest accuracy was selected as the candidate 

model and used to predict interactions in the testing dataset. 

To benchmark the performance of our algorithms we used 

standard evaluation measures from statistical learning 

including precision, recall, F1 measure, area under the receiver 

operating characteristic (ROC) curve (AUROC), and area 

under the precision-recall curve (AUPR). 

 

Precision refers to the proportion of instances 

classified as positive that are actually positives, while recall 

refers to the proportion of true positive instances correctly 

classified as positives. F1 measure is used to integrate 

precision and recall into a single measure. ROC curve is a plot 

of true positive rate (sensitivity) vs. false positive rate 

(1Ðspecificity). Despite its popularity, the ROC curve has 

some drawbacks including the inappropriateness for 

imbalanced data [55].For this reason we also used the 

AUPR.To evaluate statistically significant differences between 

classifiers across different networks, we followed the 

methodology proposed by DemsÏar [56] as implemented in 

scmamp package. 

 

We used Friedman test, which is a non-parametric 

alternative of repeated ANOVA design. The test is based on 

rank comparison that identify an overall effect of the choice of 

classifier on performance across multiple experiments. The 

null hypothesis is that all classifiers are equivalent. When the 

null hypothesis of the Friedman test is rejected (p < 0.05), we 

proceed with theNemeny post-hoc test, which compares 

classifiers to each other across datasets and finds the statistical 

significance of differences between their average performance 

ranks.We used custom AWK and Python scripts for data 

preprocessing. Similarity measures were implemented using 

NetworkX package in Python. Other numerical computations, 

including statistical learning were performed using R 

programming language for statistical computing and graphics. 

Complete programming code to reproduce the results of this 

study is accessible in GitHub repository at URL 

https://github.com/akastrin/ddi-prediction. 

 

VIII. CONCLUSION 

 

Link prediction is a promising methodological framework for 

studying complex systems in different scientific disciplines, 

including pharmacology. We evaluate an approach to potential 

DDIs prediction using link prediction methodology. We study 

the prediction performance of unsupervised and supervised 

link prediction algorithms on several large-scale DDI 

networks.Although there exist many different approaches and 

algorithms, reliable prediction of links in a network is still a 

very challenging problem. Computational approach presented 

here can be used as tool to help researchers to identify 

potential DDIs. Overall, our results demonstrated favourable 

classification performance and suggest appropriateness of the 

presented methodology for potential DDIs identification. 
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