
IJSART - Volume 6 Issue 5 – MAY 2020 ISSN [ONLINE]: 2395-1052

Page | 120 www.ijsart.com

 AI Game Bot

Tejal Kadam1, Archisha Chandel2, Akanksha Dubey3, Prof. Rahul Patil4
1, 2, 3, 4Dept of Computer Engineering

1, 2, 3, 4Bharati Vidyapeeth College of Engineering, Kharghar, Navi Mumbai, India

Abstract- In this paper we present a generic method used for
training a bot which learns to play the Nintendo game-
‘Mario’. We use the method of reinforcement learning for
implementation. The goal is to build a bot that plays better
than humans. This Artificial Intelligence-based tool can be
used to simulate a human player. It automatically harvests
resources and advances in the game without human
intervention and can be used to compete against real-world
players.

I. INTRODUCTION

When doing research in computational and/or

artificial intelligence applied to games, it is important to have
suitable games to apply the AI algorithms to. This applies
regardless of whether one is doing research on using games to
test and improve artificial intelligence (games provide
challenging yet scalable problems which engage many central
aspects of human cognitive capacity), or whether one is doing
research on using CI/AI methods to improve games (for
example with player satisfaction modelling, procedural
content generation and creation of believable and interesting
bots). No single game will satisfy all projects and directions,
as different games pose different challenges. But, the
community can gain from standardising on a certain set of
games, which are freely available and on which competing AI
methods can be easily compared.

 The bot can be implemented using a simple

reinforcement learning approach and using the NEAT
algorithm. In the first approach, the bot is trained to play
mario with the help of a reward-based system. Most training
models have an explicit connection between inputs and
outputs that are time-invariant. In environments where the
elements, their associated inputs and attributes vary as a
function of time and depend on the previous predictions. To
overcome this problem, reinforcement learning accepts time
variant data and uses a reward granting system to train the bot.
The system grants positive rewards for correct actions taken
by the agent (bot) and negative rewards otherwise. The
system’s goal is to obtain maximum rewards which encourage
the agent to use actions that help it perform better.

The NEAT algorithm is an advanced approach which

uses an evolutionary model to train the bot. NEAT consists of

genomes and species. Each iteration of the algorithm is a
generation. After each iteration the algorithm compares the
fitness of each genome i.e. it checks how successful the
genome is in the current generation. The species are evaluated
on the basis of their fitness and the species that perform poorly
are eliminated. The algorithm also creates new genomes by
merging of two genomes or by the process of mutation of a
single genome. This algorithm makes use of a “survival of the
fittest” approach. Since this process is evolutionary it greatly
improves the final performance of the bot.

We will be using Gym, an OpenAI product, to

recreate the Mario environment which we will use to
implement our reinforcement learning algorithm. Tensorflow
is used to perform numerical computations using data flow
graph. Our model will check for mario’s postion and the total
score. It compares the current state of the game to the previous
state of the game and makes predictions based on the position
of all the elements. For instance, in the game mario has to
move forward in order to advance. Therefore, the machine
grants positive rewards if mario has moved to the right and
negative rewards if his position shifts left or if the lives run
out. In this way the bot tries and makes the moves that
contribute most to the total rewards. Thus, the machine learns
to play, making predictions based on previous observations.

II. BACKGROUND

A. Previous game-based competitions and benchmarks

Chess is probably the oldest known artificial
intelligence benchmark, and has played an important role in
CI/AI research since Turing first suggested that the game
could be automatically played using the Mini Max algorithm.
In the famous Kasparov vs. Deep Blue match in 1997, a
computer program beat the human grandmaster for the first
time and became a chess player, best in the world.

 The exact significance of this event is debated, but

what was proven beyond doubt was that an AI implementation
can excel at a particular game without necessarily having a
broad behavioural repertoire or being able to adapt to a variety
of real-world challenges. The related board game Checkers
(draughts), which was used for influential early machine
learning experiments has recently been completely solved

IJSART - Volume 6 Issue 5 – MAY 2020 ISSN [ONLINE]: 2395-1052

Page | 121 www.ijsart.com

using tree-search methods and can now be played perfectly
(perfect play by both players leads to a draw). Another game
where computers have already beat the human masters is
Scrabble; the best Scrabble-playing programs (such as Maven)
can win over all humans without searching more than one turn
ahead, as for the benefit of quick and complete access to the
dictionary.

1. GO

 With the 2500-year-old Chinese game of Go, as the

game has more possible positions than there are atoms in the
universe. Last year, Google DeepMind’s AI software AlphaGo
played world Go champion Lee Sedol. In order to win,
AlphaGo had to get good at the game – and it did. By playing
itself millions of times, AlphaGo beats Lee Sedol in a game
often seen as the “Holy Grail” of AI. Recently, Google’s
DeepMind has announced it will.

2. ATARI GAMES

 DeepMind – a London-based AI company acquired

by Google in 2014 – was presented with a few classic Atari
games. Initially Google’s DeepMind was not great but with
improvements and time it started to play better than humans
did.

3. DOTA 2

 Open AI showed off the latest iteration of its Dota 2

bots, which had been developed to the level of playing. Not
only that but winning a full five-on-five game against humans.
AI helped build and train models that could train themselves
to the extent of perfection. The Open AI team won
against well- known Dota personalities Ben “Merlini” Wu,
William “Blitz” Lee, Ioannis “Fogged” Lucas — all former
professional players — along with David “Moon Meander”
Tan and play-by-play commentator Austin “Capitalist” Walsh.

4. PACMAN

 Though AI had conquered over most Atari games,

conquering over Pacman proved to be a little more difficult
than expected due to its randomness. Microsoft Maluuba
researchers developed a multi-agent reinforcement learning
model to achieve top score in the game, something not
achieved by humans before. In Maluuba’s learning model,
different characters track different goals with different
payouts. A character tracks only a single object like pellet,
fruit, ghost or edible ghost. For example, since ghosts can end
the game by catching Pacman, the importance of

recommendations of ghost tracking agents is of higher
importance than other agents.

5. SUPER MARIO

 A team from Georgia Institute of Technology also
published a research paper describing their AI system that can
recreate classic titles like Super Mario by watching Mario
play. The algorithm does not have access to the codes and
learns by just watching the character play. The re-creations it
makes are not perfect but are passable.

 The AI system is not learning everything about the

game, that is it does not familiarize itself with all the rules,
obstacles, characters etc. It is given two very important sets of
information. First is a visual dictionary and second is a set of
basic concepts. It’s supplied with two important sets of
information: first, a visual dictionary featuring all the sprites
in the game and of course secondly, a set of basic concepts,
like the position of objects and their velocity, which it uses to
analyze what it sees. With these tools in hand, the AI breaks
down the gameplay frame-by-frame, labels what it sees, and
looks for rules that explain the action.

B. Platform games as an AI challenge

Platform games can be defined as games where the
player controls characters in an environment characterised by
differences in altitude between surfaces (“platforms”)
interspersed by holes. The character can typically move in a
straight (walk) and jump, and sometimes perform other actions
as well; the game world features gravity, meaning that it is
seldom straightforward to negotiate large gaps or altitude
differences.

C. Learning

The objective of the game is to progress through
levels by defeating enemies, collecting items and solving
puzzles without dying. In the games, the player
character (usually Mario) jumps on platforms and enemies
while avoiding their attacks and moving to the right of the
scrolling screen. Super Mario game levels have single-exit
objectives, which must be reached within a time limit and lead
to the next sequential level.

IJSART - Volume 6 Issue 5 – MAY 2020 ISSN [ONLINE]: 2395-1052

Page | 122 www.ijsart.com

Levels and Worlds in Super Mario:

Super Mario World contains nine worlds and
seventy-three (seventy-five if the Top Secret Area and Yoshi's
House are counted as levels) levels in total, twenty-five of
which have secret exits. Almost all worlds contain four regular
levels and at least one secret level. Levels marked in yellow
contain one exit, although levels marked in red contain an
alternative, secret exit. Other points of interest include the
Switch Palaces, Warp Pipes, and the Super Star-shaped portals
to the Star World that are unlocked only when players find the
associated secret exit. Switch Palaces activate respectively
colored permeable Dotted Line Blocks and turn them into
solid ! Blocks that can be stood on or hit from below. Once
Switch Palace levels have been completed, they cannot be
visited again.

III. IMPLEMENTATION

In the gaming industry we don’t want to create the

best possible A.I., we want to create the most enjoyable A.I.
for players to interact/compete with. The simplest algorithm
which is finite state machine where designers create a list of
all possible events a bot can experience. The designers then
assign specific responses the bot would have to each
situation.In finite state machine, each situation would be
assigned a specific action by the developers creating the game.
The Finite state machine algorithm is not feasible to use in
every game. Just imagine using Finite state machine in a
strategy game for example. If a bot was already programmed
to respond the same way every time, the player would quickly
learn how to outsmart the computer. This creates a repetitive
gaming experience which, as you might expect, would not be
enjoyable for the player.

The Monte Carlo Search Tree algorithm was
created to prevent the repeatability aspect of FSM. The way
MCST works is by first visualizing all of the possible moves a
bot has available to it currently. Then, for each of those
possible moves, it analyses all of the moves a player could
respond with, then it considers all of its possible responding
moves it could make in response, etc.

The Problem with Neural Networks : Neural

Networks have helped us solve so many problems. But there’s
a huge problem that they still have. Hyperparameters! These
are the only values that cannot be learned… Until now. Note:
Hyper-parameters are values required by the NN to
perform properly, given a problem. We can use Genetic
Algorithms to learn the best hyper-parameters for a
Neural Network! Now, we don’t have to worry about
“knowing the right hyperparameters” since, they can be
learned using a GA. Also, we can use this to learn the
parameter’s(weights) of a NN as well.

Genetic Neural Networks in Video Games

implements the reward system where there exists certain set of

IJSART - Volume 6 Issue 5 – MAY 2020 ISSN [ONLINE]: 2395-1052

Page | 123 www.ijsart.com

inputs and there is a desired state that the agent has to achieve
and on getting closer to the desired state it achieves a reward.
Neuro Evolution of Augmenting Topologies is a type of
genetic algorithm. The way in which we encode our
individuals lays out the path and show how our algorithm will
handle the key evolutionary processes of selection, mutation,
and crossover (also known as recombination). Every encoding
will fall into one of two categories, direct or indirect. The
direct encoding will explicitly specify everything about an
individual. If the result represents a neural network this means
that each gene will directly be linked to some node,
connection, or property of the network. This can be a binary
encoding of 1s and 0s, a graph encoding (linking various
nodes by weighted connections), or something even more
complex. The point is that there will always be a direct
connection between genotype and phenotype that is very
obvious and readable. An indirect encoding is the exact
opposite. The indirect encodings tends to specify rules and
parameters of processes for creating an individual, instead of
directly specifying how a structure may look like . As a result,
indirect encodings are much more compact. The flip side is a
setting the rules for an indirect encoding and hence can result
in a heavy bias within the search space, thus, without
substantial knowledge about how the encoding will be used, it
is much harder to create an indirect encoding . The Neuro
Evolution of Augmenting Topologies algorithm chooses a
direct encoding methodology because of this. The Input nodes
and output nodes are not evolved in the node gene list. Hidden
nodes can be added or removed. And then connection nodes,
they specify where a connection comes into and out of, the
weight of such connection, whether or not the connection is
enabled, and an innovation number.

A generational neural network is structured the

same way as a standard neural network. It starts off with a
certain number of input nodes, which then feed into one or
more hidden layers, eventually providing an output. Weights
are assigned to the paths of actions that could be chosen by the
agent and weights are what our model will be adjusting as it
learns which inputs to strengthen or weaken to provide the
most accurate outputs. The way a generational neural network
‘learns’ is by first deciding the size of each generation.

Next, it creates micro-variations in the weights for

each of the paths in the first generation, then it runs each of
the paths in the first generation and selects the most successful
path (the path that received the most points). Let’s say we pick
the top 10 paths (top 5%) that received the most points in our
first generation. These 10 paths then become the ‘parents’ of
the second generation. The weights of these 10 paths are used
to define the second generation's starting point. The second
generation of 200 paths will again create micro-variations in

these weights and the top performers will be selected as
‘parents’ of the third generation, and so on.

One of the latest advancements of A.I. was made by

researchers at Open AI. Although Open AI created a game
based on an algorithm whose sole purpose was simply to
explore with a sense of natural curiosity. The reward system
focused on rewarding exploration over progressing further into
the game. The researchers placed this curiosity-driven model
into a game of Super Mario Bros. and it successfully passed
11 levels out of pure curiosity. An yes obviously, there are
downsides to this, as it takes immense computing power and
the machine can get easily distracted. However, this would
also be the same for a human player playing the game for the
first time. As Luzgin quoted in his article, “babies appear to
employ goal-less exploration to learn skills that will be useful
later on in life.”

In order to select good actions over bad, our agents

must continually make value judgements. The total reward is
represented by a Q-network that estimates the overall reward
that an agent can expect to receive after taking a particular
action. Mainly we use deep neural networks to represent the
Q-network, and to train this Q-network to predict total reward.
Previously all attempts to combine Reinforcement Learning
with neural networks had largely failed due to unstable
learning. To address such instabilities, our Deep Q-Networks
algorithm stores all of the agent's experiences and then
randomly samples and replays these experiences to provide
diverse and de-correlated training data. We applied Deep Q-
Network to learn to play games on the Atari 2600 console.
Every time-step the agent observes the raw pixels on the
screen, a reward signal corresponding to the game score, and
selects a joystick direction. In our Natural paper we trained
separate Deep Q-Network agents for 50 different Atari games,
without any prior knowledge of the game rules.

However, deep Q-networks are only one way to solve

the deep Reinforcement Learning problem. We recently
introduced an even more practical and effective method based
on asynchronous Reinforcement Learning. This approach
exploits the multithreading capabilities of standard CPUs.
Basically the idea is to execute many instances of our agent in
parallel, but using a shared model. This provides a viable
alternative to experience replay, since parallelisation also
diversifies and de-correlates the data.

Our asynchronous actor-critic algorithm, combines a

deep Q-network with a deep policy network for selecting
actions. Eventually achieves state-of-the-art results, using a
fraction of the training time of DQN and a fraction of the
resource consumption of Gorila. And hence, by building novel

IJSART - Volume 6 Issue 5 – MAY 2020 ISSN [ONLINE]: 2395-1052

Page | 124 www.ijsart.com

approaches to intrinsic motivation and temporally abstract
planning, we have also achieved breakthrough results in the
most notoriously challenging Atari games, such as
Montezuma’s Revenge.

IV. CONCLUSION

A method for procedurally generating maps using

variations of Markov chains as a tool for both learning and
generation has been developed. This method learns from an
established high quality maps in order to generate statistically
similar maps. We have incorporated look-ahead, backtracking,
and a fallback strategy into our map generation method. This
improves the quality of the generated maps, by allowing the
use of higher order Markov chains whenever possible, and
only defaulting to lower order Markov chains when necessary.
Lastly, our method also includes the ability to split the maps
used for learning into different horizontal slices. Doing so
allows our method to isolate certain qualities of the map that
may be exclusive to specific portions of the given maps. Our
method gave strong results. Using our baseline configuration,
the A ∗ controller was able to complete 44% of maps
generated (which does not necessarily mean that the remaining
56% were not playable). We would like to emphasize, in
contrast with search-based generation procedures, map
generation using our method (when small values for d like 0,
1, 2 or 3) is almost instantaneous, making it amenable for in-
game uses. Furthermore, adding a fallback strategy and a
different order of generation has helped ensure that the maps
generated do not have any ill-formed structures. Notice that
we did not include any sort of additional hard-coded
knowledge in our method, and that the generated maps are
one-hundred percent generated based on the learned
probability distribution in the Markov chain. This shows that
Markov chains are a viable method for procedurally
generating playable, well-formed maps. If all these methods
were to be incorporated into an actual game, additional rules
to detect malformed structures and unplayability should be
added.

In the future, we want to explore better ways to judge
whether a map is playable and also to perform user studies to
determine whether the maps are actually enjoyable.
Additionally, we have currently only generate the level layout,
without including enemies; which we plan to experiment with
in the future, by modeling enemies as just another type of tile.
Finally, we would like to experiment with applying naive
Bayes approximations to very high-order Markov chains (e.g.
order 10 or even 20), to explore whether higher order
dependencies compensate for the loss in the approximation of
the probability distributions during map generation. We also

plan to explore hierarchical models for learning the overall
structure of the map with all the details.

REFERENCES

[1] S. Bakkes and J. Dormans. It involves player experience

in dynamically generated missions and game spaces. In
the Eleventh International Conference on Intelligent
Games and Simulation (Game-On’2010), pages 72–79,
2010.

[2] W.-K. Ching, X. Huang, M. K. Ng, and T.-K. Siu.
Higher-order markov chains. In Markov Chains, pages
141–176. Springer, 2013.

[3] K. Compton and M. Mateas. Procedural level design for
platform games. In Proceedings of the Artificial
Intelligence and Interactive Digital Entertainment
International Conference (AIIDE), 2006.

[4] M. Hendrikx, S. Meijer, J. Van Der Velden, and A.
Iosup. Procedural content generation for games: a survey.
The ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP), 9(1):1,
2013.

[5] W. Lam and F. Bacchus. Learning bayesian belief
network which is an approach based on the mdl principle.
Computational intelligence, 10(3):269–293, 1994.

