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Abstract- In this paper we present a generic method used for 
training a bot which learns to play the Nintendo game- 
‘Mario’. We use the method of reinforcement learning for 
implementation. The goal is to build a bot that plays better 
than humans. This Artificial Intelligence-based tool can be 
used to simulate a human player. It automatically harvests 
resources and advances in the game without human 
intervention and can be used to compete against real-world 
players. 

 
I. INTRODUCTION 

 
When doing research in computational and/or 

artificial intelligence applied to games, it is important to have 
suitable games to apply the AI algorithms to. This applies 
regardless of whether one is doing research on using games to 
test and improve artificial intelligence (games provide 
challenging yet scalable problems which engage many central 
aspects of human cognitive capacity), or whether one is doing 
research on using CI/AI methods to improve games (for 
example with player satisfaction modelling, procedural 
content generation and creation of believable and interesting 
bots). No single game will satisfy all projects and directions, 
as different games pose different challenges. But, the 
community can gain from standardising on a certain set of 
games, which are freely available and on which competing AI 
methods can be easily compared. 

 
  The bot can be implemented using a simple 

reinforcement learning approach and using the NEAT 
algorithm. In the first approach, the bot is trained to play 
mario with  the help of a reward-based system. Most training 
models have an explicit connection between inputs and 
outputs that are time-invariant. In environments where the 
elements, their associated inputs and attributes vary as a 
function of time and depend on the previous predictions. To 
overcome this problem, reinforcement learning accepts time 
variant data and uses a reward granting system to train the bot. 
The system grants positive rewards for correct actions taken 
by the agent (bot) and negative rewards otherwise. The 
system’s goal is to obtain maximum rewards which encourage 
the agent to use actions that help it perform better. 

   
The NEAT algorithm is an advanced approach which 

uses an evolutionary model to train the bot. NEAT consists of 

genomes and species. Each iteration of the algorithm is a 
generation. After each iteration the algorithm compares the 
fitness of each genome i.e. it checks how successful the 
genome is in the current generation. The species are evaluated 
on the basis of their fitness and the species that perform poorly 
are eliminated. The algorithm also creates new genomes by 
merging of two genomes or by the process of mutation of a 
single genome. This algorithm makes use  of a “survival of the 
fittest” approach. Since this process is evolutionary it greatly 
improves the final performance of the bot. 

   
We will be using Gym, an OpenAI product, to 

recreate the Mario environment which we will use to 
implement our reinforcement learning algorithm. Tensorflow 
is used to perform numerical computations using data flow 
graph. Our model will check for mario’s postion and the total 
score. It compares the current state of the game to the previous 
state of the game and makes predictions based on the position 
of all the elements. For instance, in the game mario has to 
move forward in order to advance. Therefore, the machine 
grants positive rewards if mario has moved to the right and 
negative rewards if his position shifts left or if the lives run 
out. In this way the bot tries and makes the moves that 
contribute most to the total rewards. Thus, the machine learns 
to play, making predictions based on previous observations. 

 
II. BACKGROUND 

 
A. Previous game-based competitions and benchmarks  
 

Chess is probably the oldest known artificial 
intelligence benchmark, and has played an important role in 
CI/AI research since Turing first suggested that the game 
could be automatically played using the Mini Max algorithm. 
In the famous Kasparov vs. Deep Blue match in 1997, a 
computer program beat the human grandmaster for the first 
time and became a chess player, best in the world.  

 
  The exact significance of this event is debated, but 

what was proven beyond doubt was that an AI implementation 
can excel at a particular game without necessarily having a 
broad behavioural repertoire or being able to adapt to a variety 
of real-world challenges. The related board game Checkers 
(draughts), which was used for influential early machine 
learning experiments has recently been completely solved 
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using tree-search methods and can now be played perfectly 
(perfect play by both players leads to a draw). Another game 
where computers have already beat the human masters is 
Scrabble; the best Scrabble-playing programs (such as Maven) 
can win over all humans without searching more than one turn 
ahead, as for the benefit of quick and complete access to the 
dictionary. 

 
1. GO 

 
  With the 2500-year-old Chinese game of Go,  as the 

game has more possible positions than there are atoms in the 
universe. Last year, Google DeepMind’s AI software AlphaGo 
played world Go champion Lee Sedol. In order to win, 
AlphaGo had to get good at the game – and it did. By playing 
itself millions of times, AlphaGo beats Lee Sedol in a game 
often seen as the “Holy Grail” of AI. Recently, Google’s 
DeepMind has announced it will. 

 
2. ATARI GAMES 

 
  DeepMind – a London-based AI company acquired 

by Google in 2014 – was presented with a few classic Atari 
games. Initially Google’s DeepMind was not great but with 
improvements and time it started to play better than humans 
did. 

 
3. DOTA 2 

 
  Open AI showed off the latest iteration of its Dota 2 

bots, which had been developed to the level of playing. Not 
only that but winning a full five-on-five game against humans. 
AI helped build and train models that could train themselves 
to the extent of perfection.  The  Open AI   team   won   
against   well-   known Dota personalities Ben “Merlini” Wu, 
William “Blitz” Lee, Ioannis “Fogged” Lucas — all former 
professional players — along with David “Moon Meander” 
Tan and play-by-play commentator Austin “Capitalist” Walsh. 

 
4. PACMAN 

 
  Though AI had conquered over most Atari games, 

conquering over Pacman proved to be a little more difficult 
than expected due to its randomness. Microsoft Maluuba 
researchers developed a multi-agent reinforcement learning 
model to achieve top score in the game, something not 
achieved by humans before. In Maluuba’s learning model, 
different characters track different goals with different 
payouts. A character tracks only a single object like pellet, 
fruit, ghost or edible ghost. For example, since ghosts can end 
the game by catching Pacman, the importance of 

recommendations of ghost tracking agents is of higher 
importance than other agents. 
 

5. SUPER MARIO 
 

  A team from Georgia Institute of Technology also 
published a research paper describing their AI system that can 
recreate classic titles like Super Mario by watching Mario 
play.  The algorithm does not have access to the codes and 
learns by just watching the character play. The re-creations it 
makes are not perfect but are passable. 

   
  The AI system is not learning everything about the 

game, that is it does not familiarize itself with all the rules, 
obstacles, characters etc. It is given two very important sets of 
information. First is a visual dictionary and second is a set of 
basic concepts. It’s supplied with two important sets of 
information: first, a visual dictionary featuring all the sprites 
in the game and of course secondly, a set of basic concepts, 
like the position of objects and their velocity, which it uses to 
analyze what it sees. With these tools in hand, the AI breaks 
down the gameplay frame-by-frame, labels what it sees, and 
looks for rules that explain the action. 

 
B. Platform games as an AI challenge 
 

Platform games can be defined as games where the 
player controls characters in an environment characterised by 
differences in altitude between surfaces (“platforms”) 
interspersed by holes. The character can typically move in a 
straight (walk) and jump, and sometimes perform other actions 
as well; the game world features gravity, meaning that it is 
seldom straightforward to negotiate large gaps or altitude 
differences. 

 
C. Learning  
 

The objective of the game is to progress through 
levels by defeating enemies, collecting items and solving 
puzzles without dying. In the games, the player 
character (usually Mario) jumps on platforms and enemies 
while avoiding their attacks and moving to the right of the 
scrolling screen. Super Mario game levels have single-exit 
objectives, which must be reached within a time limit and lead 
to the next sequential level. 
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Levels and Worlds in Super Mario: 
 

Super Mario World contains nine worlds and 
seventy-three (seventy-five if the Top Secret Area and Yoshi's 
House are counted as levels) levels in total, twenty-five of 
which have secret exits. Almost all worlds contain four regular 
levels and at least one secret level. Levels marked in yellow 
contain one exit, although levels marked in red contain an 
alternative, secret exit. Other points of interest include the 
Switch Palaces, Warp Pipes, and the Super Star-shaped portals 
to the Star World that are unlocked only when players find the 
associated secret exit. Switch Palaces activate respectively 
colored permeable Dotted Line Blocks and turn them into 
solid ! Blocks that can be stood on or hit from below. Once 
Switch Palace levels have been completed, they cannot be 
visited again. 

 
III. IMPLEMENTATION 

 
In the gaming industry we don’t want to create the 

best possible A.I., we want to create the most enjoyable A.I. 
for players to interact/compete with. The simplest algorithm 
which is finite state machine where designers create a list of 
all possible events a bot can experience. The designers then 
assign specific responses the bot would have to each 
situation.In finite state machine, each situation would be 
assigned a specific action by the developers creating the game. 
The Finite state machine algorithm is not feasible to use in 
every game. Just imagine using Finite state machine in a 
strategy game for example. If a bot was already programmed 
to respond the same way every time, the player would quickly 
learn how to outsmart the computer. This creates a repetitive 
gaming experience which, as you might expect, would not be 
enjoyable for the player. 

 
 

The Monte Carlo Search Tree algorithm was 
created to prevent the repeatability aspect of FSM. The way 
MCST works is by first visualizing all of the possible moves a 
bot has available to it currently. Then, for each of those 
possible moves, it analyses all of the moves a player could 
respond with, then it considers all of its possible responding 
moves it could make in response, etc. 

 

 
 
The Problem with Neural Networks : Neural 

Networks have helped us solve so many problems. But there’s 
a huge problem that they still have. Hyperparameters! These 
are the only values that cannot be learned… Until now. Note: 
Hyper-parameters are values required by the NN to 
perform properly, given a problem. We can use Genetic 
Algorithms to learn the best hyper-parameters for a 
Neural Network! Now, we don’t have to worry about 
“knowing the right hyperparameters” since, they can be 
learned using a GA. Also, we can use this to learn the 
parameter’s(weights) of a NN as well. 

 
Genetic Neural Networks in Video Games 

implements the reward system where there exists certain set of 
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inputs and there is a desired state that the agent has to achieve 
and on getting closer to the desired state it achieves a reward. 
Neuro Evolution of Augmenting Topologies is a type of 
genetic algorithm. The way in which we encode our 
individuals lays out the path and show how our algorithm will 
handle the key evolutionary processes of selection, mutation, 
and crossover (also known as recombination). Every encoding 
will fall into one of two categories, direct or indirect. The 
direct encoding will explicitly specify everything about an 
individual. If the result represents a neural network this means 
that each gene will directly be linked to some node, 
connection, or property of the network. This can be a binary 
encoding of 1s and 0s, a graph encoding (linking various 
nodes by weighted connections), or something even more 
complex. The point is that there will always be a direct 
connection between genotype and phenotype that is very 
obvious and readable. An indirect encoding is the exact 
opposite. The indirect encodings tends to specify rules and 
parameters of processes for creating an individual, instead of 
directly specifying how a structure may look like . As a result, 
indirect encodings are much more compact. The flip side is a 
setting the rules for an indirect encoding and hence can result 
in a heavy bias within the search space, thus, without 
substantial knowledge about how the encoding will be used, it 
is much harder to create an indirect encoding . The Neuro 
Evolution of Augmenting Topologies algorithm chooses a 
direct encoding methodology because of this. The Input nodes 
and output nodes are not evolved in the node gene list. Hidden 
nodes can be added or removed. And then connection nodes, 
they specify where a connection comes into and out of, the 
weight of such connection, whether or not the connection is 
enabled, and an innovation number. 

 
A generational neural network is structured the 

same way as a standard neural network. It starts off with a 
certain number of input nodes, which then feed into one or 
more hidden layers, eventually providing an output. Weights 
are assigned to the paths of actions that could be chosen by the 
agent and weights are what our model will be adjusting as it 
learns which inputs to strengthen or weaken to provide the 
most accurate outputs. The way a generational neural network 
‘learns’ is by first deciding the size of each generation. 

 
Next, it creates micro-variations in the weights for 

each of the paths in the first generation, then it runs each of 
the paths in the first generation and selects the most successful 
path (the path that received the most points). Let’s say we pick 
the top 10 paths (top 5%) that received the most points in our 
first generation. These 10 paths then become the ‘parents’ of 
the second generation. The weights of these 10 paths are used 
to define the second generation's starting point. The second 
generation of 200 paths will again create micro-variations in 

these weights and the top performers will be selected as 
‘parents’ of the third generation, and so on. 

 
One of the latest advancements of A.I. was made by 

researchers at Open AI. Although Open AI created a game 
based on an algorithm whose sole purpose was simply to 
explore with a sense of natural curiosity. The reward system 
focused on rewarding exploration over progressing further into 
the game. The researchers placed this curiosity-driven model 
into a game of Super Mario Bros. and it successfully passed 
11 levels out of pure curiosity. An yes obviously, there are 
downsides to this, as it takes immense computing power and 
the machine can get easily distracted. However, this would 
also be the same for a human player playing the game for the 
first time. As Luzgin quoted in his article, “babies appear to 
employ goal-less exploration to learn skills that will be useful 
later on in life.” 

 
In order to select good actions over bad, our agents 

must continually make value judgements. The total reward is 
represented by a Q-network that estimates the overall reward 
that an agent can expect to receive after taking a particular 
action. Mainly we use deep neural networks to represent the 
Q-network, and to train this Q-network to predict total reward. 
Previously all attempts to combine Reinforcement Learning 
with neural networks had largely failed due to unstable 
learning. To address such instabilities, our Deep Q-Networks 
algorithm stores all of the agent's experiences and then 
randomly samples and replays these experiences to provide 
diverse and de-correlated training data. We applied Deep Q-
Network to learn to play games on the Atari 2600 console. 
Every time-step the agent observes the raw pixels on the 
screen, a reward signal corresponding to the game score, and 
selects a joystick direction. In our Natural paper we trained 
separate Deep Q-Network agents for 50 different Atari games, 
without any prior knowledge of the game rules. 

 
However, deep Q-networks are only one way to solve 

the deep Reinforcement Learning problem. We recently 
introduced an even more practical and effective method based 
on asynchronous Reinforcement Learning. This approach 
exploits the multithreading capabilities of standard CPUs. 
Basically the idea is to execute many instances of our agent in 
parallel, but using a shared model. This provides a viable 
alternative to experience replay, since parallelisation also 
diversifies and de-correlates the data. 

 
Our asynchronous actor-critic algorithm, combines a 

deep Q-network with a deep policy network for selecting 
actions. Eventually achieves state-of-the-art results, using a 
fraction of the training time of DQN and a fraction of the 
resource consumption of Gorila. And hence, by building novel 
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approaches to intrinsic motivation and temporally abstract 
planning, we have also achieved breakthrough results in the 
most notoriously challenging Atari games, such as 
Montezuma’s Revenge. 

 
IV. CONCLUSION 

 
A method for procedurally generating maps using 

variations of Markov chains as a tool for both learning and 
generation has been developed. This method learns from an 
established high quality maps in order to generate statistically 
similar maps. We have incorporated look-ahead, backtracking, 
and a fallback strategy into our map generation method. This 
improves the quality of the generated maps, by allowing the 
use of higher order Markov chains whenever possible, and 
only defaulting to lower order Markov chains when necessary. 
Lastly, our method also includes the ability to split the maps 
used for learning into different horizontal slices. Doing so 
allows our method to isolate certain qualities of the map that 
may be exclusive to specific portions of the given maps. Our 
method gave strong results. Using our baseline configuration, 
the A ∗ controller was able to complete 44% of maps 
generated (which does not necessarily mean that the remaining 
56% were not playable). We would like to emphasize, in 
contrast with search-based generation procedures, map 
generation using our method (when small values for d like 0, 
1, 2 or 3) is almost instantaneous, making it amenable for in-
game uses. Furthermore, adding a fallback strategy and a 
different order of generation has helped ensure that the maps 
generated do not have any ill-formed structures. Notice that 
we did not include any sort of additional hard-coded 
knowledge in our method, and that the generated maps are 
one-hundred percent generated based on the learned 
probability distribution in the Markov chain. This shows that 
Markov chains are a viable method for procedurally 
generating playable, well-formed maps. If all these methods 
were to be incorporated into an actual game, additional rules 
to detect malformed structures and unplayability should be 
added. 
 

In the future, we want to explore better ways to judge 
whether a map is playable and also to perform user studies to 
determine whether the maps are actually enjoyable. 
Additionally, we have currently only generate the level layout, 
without including enemies; which we plan to experiment with 
in the future, by modeling enemies as just another type of tile. 
Finally, we would like to experiment with applying naive 
Bayes approximations to very high-order Markov chains (e.g. 
order 10 or even 20), to explore whether higher order 
dependencies compensate for the loss in the approximation of 
the probability distributions during map generation. We also 

plan to explore hierarchical models for learning the overall 
structure of the map with all the details. 
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