
IJSART - Volume 6 Issue 4 – APRIL 2020 ISSN [ONLINE]: 2395-1052

Page | 551 www.ijsart.com

A Machine Learning Approach For Improved
Scheduling In Heterogeneous Hadoop Cluster

Prof. Aihtesham N. Kazi1, Dr. D.N.Chaudhari2

1Assistant Professor, Dept of Computer Science & Engineering
2Professor,Dept of Computer Science & Engineering

1, 2 Jawaharlal Darda institute of Engineering &Technology, Yavatmal

Abstract- Today’s most popular computer applications and
Internet services to millions of users produce large volume of
data at server. Such large volume of data services work with
interest in parallel processing of commodity clusters. A big
data processing network such as Map Reduce implemented
big cluster of data to compute the large amounts of raw data,
such as documents, Web request logs, etc., to compute various
kinds of derived data, such as inverted indices. A Map Reduce
job generally splits the input into multiple inputs which are
processed by the map tasks is in completely parallel manner.
In this scenario it is equally importantly, if a node is available
but it takes more time to perform particular task it called as
straggler. The problems of straggler occur in the way when
processing big data, the straggler occur in the cluster will
delay the job execution time and reduce the cluster throughput
the number of jobs completed per second in the cluster.

I. INTRODUCTION

 Drastically increments in volume of data leads to
putting lot of burden on servers in terms of storage cost and
performance issues, here we find ma scope to get the feasible
solutions, like scheduling of jobs in big data framework such
as MapReduce where we can discover straggler nodes by
machine leaning technology to serve valuable input to
scheduler so that early scheduling decision is to be made and
unnecessary resource utilization can be avoided This research
is an aim at designing and implementation of machine
learning driven a novel straggler detection algorithms in order
to improve the performance and throughput of cluster. The
efficient use of the available computing devices is an
important issue for heterogeneous cluster computing systems.
The ability to choose a CPU or GPU processor and other
resources for a specific task has a positive impact on the
performance of systems. It helps to reduce the total processing
time and to achieve the uniform system utilization. As a
consequence, the proper job management system should be
adapted to deal with such complexity by determining efficient
allocation of resources and scheduling strategies that can deal
with such complexity, we can adapt evolutionary strategic
based on machine learning technology to solve this difficult
challenges.

II. REVIEW OF LITERATURE

Study has been carried out by the author that stated

that by engaging state of art machine learning techniques can
speed up the optimization process which could otherwise take
many machine to explore the runtime and efficiency of jobs.
The complex machine learning methodologies to applied to
solve difficult real world problems using parallel
programming models. Parallel machine learning aims to
capitalize on the simultaneous execution of sophisticated
machine learning algorithms using modern hardware
architectures. [3]

Recent research done by Yigitbasi et al. [8] have
focused on employing machine learning-based auto-tuning for
diverse MapReduce applications and cluster configurations in
Hadoop framework. Work shows that HPC can be studied
under two categories such as adaptation of machine learning
techniques and HPC techniques for code optimization in big
data frameworks. Given the problem of scheduling possible
parallel tasks, that are dependent on one another, in distributed
and heterogeneous systems, there are many researches and
experiments published, some of them using heuristic
approaches while others using evolutionary algorithms.

In this research MateiZaharia, AndyKonwinski [6]

author discuss about Hadoop scheduler behavior that shows
Low response time is critical for data intensive application.
Hadoop's performance is closely tied to its task scheduler, that
implicitly assumes that cluster nodes are homogeneous and
tasks make progress linearly, and uses these assumptions to
decide when to speculatively re-execute tasks that appear to be
stragglers. The sheer volume of data that these services work
with has led to interest in parallel processing on commodity
clusters. A key benefit of MapReduce is that it automatically
handles failures, hiding the complexity of fault-tolerance from
the programmer. If a node crashes, MapReduce re-runs its
tasks on a different machine. Equally importantly, if a node is
available but is performing poorly, a condition that we call
a straggler, MapReduce runs a speculative copy of its task
(also called a "backup task") on another machine to finish the
computation faster. Without this mechanism of speculative

IJSART - Volume 6 Issue 4 – APRIL 2020 ISSN [ONLINE]: 2395-1052

Page | 552 www.ijsart.com

execution, a job would be as slow as the misbehaving task.
Stragglers can arise for many reasons, including faulty
hardware and misconfiguration. Hadoop's scheduler starts
speculative tasks based on a simple heuristic comparing each
task's progress to the average progress, although this heuristic
works well in homogeneous environments where stragglers
are obvious. The speculative execution to be a simple matter
of duplicating tasks that are sufficiently slow. In reality, it is a
complex issue for several reasons. First, speculative tasks are
not free - they compete for certain resources, such as the
network, with other running tasks. Second, choosing the node
to run a speculative task on is as important as choosing the
task. Third, in a heterogeneous environment, it may be
difficult to distinguish between nodes that are slightly slower
than the mean and stragglers. Finally, stragglers should be
identified as early as possible to reduce response times.

Dolly: [9] Proposed by Ganesh A. et. al, it uses the

progress rate for identification of straggler. This progress rate
is calculated for each phase i.e. map, reduce and join. The
progress rate defines as size of its input data divided by its
duration. They use progress rate instated of the task duration
which remain agnostic to skews in work assignment among
tasks. The advantage of this it identifies the straggler
proactively. Dolly is presented in [7], which uses task cloning
to address the straggler problem for small parallel processing
jobs generated by interactive data analyses. Dolly launches
multiple clones of every task, and only uses the output of the
clone that completes first. Dolly employs a technique called
“delay assignment” to avoid contention for intermediate data,
which is the main challenge faced by task cloning.

Ganesh A et. al [14] proposed a Mantri, outliers
detection mechanism by which identifies the point at which
task are unable to make progress at the average rate. It
diagnoses the straggler depending on expected execution time
of the task. Which is the addition of time taken by the task till
now and remaining time? This uses the progress score [20]
and progress rate (used by the LATE) to find the remaining
time. It categories the root cause of straggler as static and
dynamic. Where the static such as hardware reliability and
dynamic such as contention for processor, memory etc. It uses
the network characteristics which define the data transfer rate
in the system and data skew in input size of the task for
straggler detection. They consider the straggler if its expected
execution time is greater than 1.5 * average execution time of
the task. Mantri is presented in [5], which is a system that can
monitor the performance of processing nodes in MapReduce
clusters and remove stragglers based on their causes. Mantri
employs three major techniques: restarting tasks running on
stragglers, network-aware task placement, and protecting the
output of valuable tasks.

[13] Present the default straggler identification technique
which is used in hadoop is based on progress score which
varies in between 0 to 1. This progress score shows the
amount of task executed out of the complete task. This
progress score applicable for the map as well as reduce
function of Hadoop

LATE (Longest Approximation Time to End
Scheduling) Algorithm M. Zaharia [20] claims that progress
score alone does not gives the accurate result because
accurately shows how fast a task runs as different tasks start at
different moments. They calculated the progress rate for each
task using formula, PR[i]= PR[i]/T, where T is the amount of
time the task has been running for, and then calculate the time
required for the completion of task as (1 – ProgressScore) /
ProgressRate. LATE performance is evaluated in two
environments: large clusters on EC2, and a local virtualized
tested. The Longest Approximate Time to End (LATE), an
improved task scheduling algorithm for Hadoop, is proposed
in [8]. LATE is developed to address Hadoop’s problem of
performance degradation in heterogeneous environments by
speculatively executing tasks that hurt the job completion time
the most based on projected task finish times. The evaluation
results show that LATE can improve the job completion time
of Hadoop by a factor of two. Load imbalance among cluster
nodes is also a major reason for the occurrence of stragglers in
parallel processing. In our previous work, we address the load
balance issue of Hadoop from two different perspectives: task
assignment and replica placement

Wrangler: NeerajaYadwadkaret. al. [12] proposed a
proactive straggler identification using the machine learning
approach. It selects the feature for ML algorithm as specified
ganglia [22].It uses the support vector machine for the
classification. Wrangler predicts the straggler using a linear
modeling technique based on cluster resource usage counter
and uses this prediction to provide the insights to the
scheduler. As cause behind the straggler are varies from node
to node and time to time, but wrangler is capable of adapting
such a situations that complement to the straggler.

SAMR: [15] Self-Adaptive MapReduce proposed by

Q. Chen which calculates the progress of the tasks
dynamically and it has implemented the concept of LATE
scheduling algorithm which identifies slow tasks by
approximating execution time of a task. To get more accurate
progress score than LATE, SAMR uses the historical
information recorded on each node in the cluster to tune the
weights of map and reduce stages and also it updates the
weights after each task execution. Therefore, SAMR scheduler
performance is enhanced in heterogeneous environment as
compared to MapReduce default scheduler and LATE

IJSART - Volume 6 Issue 4 – APRIL 2020 ISSN [ONLINE]: 2395-1052

Page | 553 www.ijsart.com

scheduler. The major hurdle in Self-Adaptive MapReduce is,
it does not consider that different job types can have different
weights for map and reduce stages.

Qi Chen, Cheng Liu, has been stated in his paper

MapReduce is a widely used parallel computing framework
for large scale data processing. The two major performance
metrics in MapReduce are job execution time and cluster
throughput. They can be seriously impacted by straggler
machines – machines on which tasks take an unusually long
time to finish. Speculative execution is a common approach
for dealing with the straggler problem by simply backing up
those slow running tasks on alternative machines. These
researches provide an analysis of the pitfalls of current
speculative execution strategies in MapReduce. We present
scenarios which affect the performance of those strategies:
data skew, tasks that start asynchronously, improper
configuration of phase percentage and abrupt resource
competitions. Based on the analysis, we develop a new
speculative execution strategy called MCP to handle these
scenarios. MCP takes the cost performance of cluster
computing resources into account, aiming at not only
decreasing the job execution time but also improving the
cluster throughput .[7] Maximum Cost Performance (MCP), a
new speculative execution strategy, is presented in [6]. MCP
uses both progress rate and process bandwidth within a phase
to identify stragglers, uses exponentially weighted moving
average to predict the processing speed of cluster nodes and
calculate the remaining running time of tasks, and performs
speculative execution based on a cost-benefit model.

Ashwin Bhandari, Jitin George shows in his paper

that Distributed processing frameworks split a data intensive
computation job into multiple smaller tasks, which are then
executed in parallel on commodity clusters to achieve faster
job completion. A natural consequence of such a parallel
execution model is that slow running tasks, commonly called
stragglers potentially delay overall job completion. Straggler
tasks continue to be a major hurdle in achieving faster
completion of data intensive applications running on modern
data-processing frameworks. They reviewed and analyzed
various straggler mitigation approaches. These studies have
been shown the broad subcategories of straggler mitigation i.e.
proactive and reactive methods.

III. ABOUT WORKING OF HADOOP

Hadoop's implementation of MapReduce closely
resembles Google's [1]. There is a single master managing a
number of slaves. The input file, which resides on a
distributed filesystem throughout the cluster, is split into even-
sized chunks replicated for fault-tolerance. Hadoop divides

each MapReduce job into a set of tasks. Each chunk of input is
first processed by a map task, which outputs a list of key-value
pairs generated by a user-defined map function. Map outputs
are split into buckets based on key. When all maps have
finished, reduce tasks apply a reduce function to the list of
map outputs with each key.a virtual Hadoop cluster powered
by campus clouds becomes a common environment to run
MapReduce jobs, which leads to non-trivial heterogeneity in
resource capacities by reasons like multiple generations of
hardware, the employment of edge resources, layered network
connections and even different policies on resource sharing.
Such heterogeneity damages the MapReduce jobs’ response
time by intensifying the straggler problem In the design of
Hadoop, there is an inherent assumption that the underlying
infrastructure should be homogeneous, which means that the
capacities of underlying computing and network resources
should be equivalent.

Assumptions in Hadoop's Scheduler

Hadoop's scheduler makes several implicit assumptions:

1. Nodes can perform work at roughly the same rate.
2. Tasks progress at a constant rate throughout time.
3. There is no cost to launching a speculative task on a

node that would otherwise have an idle slot.
4. A task's progress score is representative of fraction of

its total work that it has done. Specifically, in a
reduce task, the copy, sort and reduce phases each
take about 1/3 of the total time.

Slow tasks may dominate the life of each phase, thus

dominate the response time of a MapReduce job. A slow task
is called straggler task and on which it runs is called straggler.
Response time is most important for short jobs that the quick
answers are required, which is a major use case for
MapReduce[4]. Therefore, minimizing the response time, i.e.
minimizing the running time of straggler tasks is a crucial
target for a MapReduce job scheduler [9].

The straggler problem can break into three sub-problems:

• How to reduce the occurrences of straggler tasks?
• How to identify a straggler task?
• How to mitigate the impact of straggler tasks?

IV. PROBLEM ANALYSIS & PROPOSED WORK

Today’s computing has achieved widespread
adoption due to its ability to automatically parallelize a job
into multiple short tasks, and transparently deal with the
challenge of executing these tasks in a distributed setting. One

IJSART - Volume 6 Issue 4 – APRIL 2020 ISSN [ONLINE]: 2395-1052

Page | 554 www.ijsart.com

such fundamental challenge is straggling tasks, which is faced
by all cloud frameworks, such as MapReduce [1], Dryad [2],
and Spark [3].

The MapReduce architecture provides self-managed

parallelization with fault tolerance for large-scale data
processing. Stragglers, the tasks running slower than other
tasks of job, could potentially degrade the overall cluster
performance by increasing the job completion time. The
original MapReduce paper [1] identified that Stragglers could
arise due to various reasons including software mis-
configurations, hardware degradation, overloaded nodes or
resource contention. The Hadoop use commodity hardware
and the task failure become part of the straggler.

Straggler Problem:

Stragglers are tasks that run much slower than other
tasks, and since a job finishes only when its last task finishes,
stragglers delay job completion. Stragglers especially affect
small jobs, i.e., jobs that consist of a few tasks. Such jobs
typically get to run all their tasks at once. Therefore, even if a
single task is slow, i.e., straggle, the whole job is significantly
delayed

The Straggle in the Distributed system when the

master allocate the task to slave machine to complete it , if the
slave machine takes too much time to complete the particular
task beyond the threshold limit so we can say the straggler
occur in the particular slave machine. In the production
clusters at Facebook and Microsoft Bing, even after applying
state-of-the-art straggler mitigation techniques, these latency
sensitive jobs have stragglers that are on average 8 times
slower than the median task in that job. Such stragglers
increase the average job duration by 47%.

The Straggler defined as:

Let normalized durations, nd(ti) = Task execution time
Amount of work done by task ti
A straggler is defined if for task tiof a job J
nd(ti) > (β x median{nd(ti)})

Where, β is threshold coefficient (β ~ 1.3) or signifies

the extent to which a task is allowed to slow down before it is
called a straggler. A current study shows that the straggler
existing mitigation techniques, the impact of straggler in
straggler tasks can be 6- 8% slower than the median task in
job on a production cluster. The production is the cluster
where the actually job is the job is execute in the system
execute. The straggler occur 22% to 28% in the system so to
eliminate or mitigate the straggler is our main objective.

Causes of Stragglers:

We can categorize the causes for stragglers into

internal and external reasons as shown in table 1. Internal
reasons can be solved by the MapReduce service provider,
while external reasons cannot. For example, MapReduce
clusters in the real world may be over-committed with
multiple tasks running on the same worker node. This creates
resource competition and may lead to heterogeneous
performance. We can avoid this “internal reason” by limiting
each worker node to run at most one task simultaneously or by
only allowing tasks with different resource usage intensity to
share the same worker node.

Internal Factors:

1. Heterogeneous resource capacity of worker nodes
2. Resource competition due to other MapReduce tasks

running on the same worker node

External Factors:

1. Resource competition due to co-hosted applications.
2. Remote input or output source being too slow.
3. Input data skew
4. Faulty hardware

V. STRAGGLER MITIGATION TECHNIQUE

There are two way to mitigate the Straggler they are

Reactive Straggler mitigation and proactive straggler
mitigation.In reactive straggler mitigation when the straggler
occur in the slave machine then the master run the duplicate
copy to another slave machine to removing the straggler
because of this throughput is degrade and job completion time
is increase.

I. Reactive Straggler mitigation Technique: The problem of
stragglers has received considerable attention already, with a
slew of straggler mitigation techniques [1, 4, 5] being
developed. These techniques can be broadly divided into two
classes: black-listing and speculative execution.

1. Blacklisting: identifies machines in bad health (e.g., due to
faulty disks) and avoids scheduling tasks on them. The
Facebook and Bing clusters, in fact, blacklist roughly 10% of
their machines. Hadoop provides manual way of blacklisting a
node (by modifying the mapred-site.xml configuration file)
manual blacklisting could result in wastage of resources. Other
challenges to effective blacklisting are offered by Complex
interactions involving network interactions, resource
contentions. Black-listing is hence considered inefficient as

IJSART - Volume 6 Issue 4 – APRIL 2020 ISSN [ONLINE]: 2395-1052

Page | 555 www.ijsart.com

simple counting-based techniques or heuristics are incapable
of finding the exact reasons behind slower task-executions.

2. Speculative execution: [5, 7] was explored to deal with
stragglers. Instead of fixing the stragglers, Hadoop tries to
detect such tasks and launches back-up copies. This is called
speculative execution. Speculative execution is an
optimization with a hope that these copies will finish faster.
Speculative execution increases contention over the available
resources resulting into higher latencies for new tasks.

3. LATE: allows the slow nodes in the cluster to be utilized as
long as this does not hurt response time. In contrast, a progress
rate based scheduler would always re-execute tasks from slow
nodes, wasting time spent by the backup task if the original
finishes faster.

4. MANTRI: Mantri where a system that monitors tasks and
outliers using cause- and resource-aware techniques. These
strategies include restarting outliers, network-aware placement
of tasks and protecting outputs of valuable tasks. Using real-
time progress reports, Mantri detects and acts on outliers early
in their lifetime. Early action frees up resources that can be
used by subsequent tasks and expedites the job overall.

II. Proactive straggler mitigation

In Proactive Straggler mitigation technique the

machine learning technique is used to mitigate the straggler. In
proactive straggler mitigation technique where the straggler
occurs in slave machine predict earlier before the scheduling.

There are various way proactive technique is existing
they are

1. Dolly: Clone of small jobs only marginally increases
utilization the execution of the because workloads show that
while the majority of jobs are small, they only consume a
small fraction of the resources. The main challenge of cloning
is, however, that extra clones can cause contention for
intermediate data. We use a technique, delay assignment,
which efficiently avoids such contention where Evaluation of
our system, Dolly, using production workloads.
2. Wrangler: Wrangler is a system that predicts stragglers
using an interpretable linear modeling technique. Wrangler
prevents wastage of resources by removing the need for
replicating tasks.Wrangler introduces a notion of a confidence
measure with these predictions to overcome the modeling
error problems; this confidence measure is then exploited to
achieve a reliable task scheduling [7]

VI. METHODOLOGY

Today heterogeneous systems with both CPU and

accelerator become more popular to adopt the demand of
large-scale applications. Whether or not we can find a better
scheduling policy based on the workload logs and trace file of
execution of jobs from server. For this reason we mention
machine learning technique and information that was extracted
from these logs and traces. Fundamentally, we will apply
machine learning technique called nonlinear regression to
generate a dynamic scheduling function for improving the
performance.

Most of the existing jobs scheduling techniques do

not consider the future workload while assigning the sub-jobs
to the processors [7], [12]. It reduces the resource utilization
and leads to wastage of resources on jobs.

Fundamentally, the behaviors of large-scale programs

on an HPC system can be extracted from the history or log
files then draw a relational model between its characteristic
and an objective function. This problem can be fitful in
applying machine learning to find a scheduling function for
job submission. Job submission with workload managers is
considered as an efficient way to support users and manage
the computing resources.

We use a two-stage approach: first using simulation

to simulate all situations of run jobs, in order to generate a
dataset which then is used for training models with machine
learning.

This model enables to improve the scheduling

performance and fit well the relationship between the jobs
characteristics and criteria in practice.

Secondly, we evaluate all policies on the CPU/coprocessor-
based cluster. This work presents the following contributions:

• We show that the possible scheduling functions can be
obtained from the workload logs on heterogeneous system.
• We apply and present how to use machine learning to
generate a scheduling function based on the dataset from
workload logs.

VII. CONCLUSION

This study of straggler detection using machine

learning approach has been done and proposed methodology is
stated in this paper for implementation smart decision driven
scheduler in Hadoop that can be used to improve resource
utilization

IJSART - Volume 6 Issue 4 – APRIL 2020 ISSN [ONLINE]: 2395-1052

Page | 556 www.ijsart.com

REFERENCES

[1] Minh Thanh Chung, KienTrung Pham, Nam Thoai “A
New Approach for Scheduling Job with The
Heterogeneity-aware Resource in HPC Systems” 2019
IEEE 21st International Conference on High Performance
Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International
Conference on Data Science and Systems.

[2] Manu Agrawal, KartikManchanda, Akshita Agarwal, ”A
Supervised Approach-based Job Scheduling Technique
for Distributed Real-Time Systems” , 2018 IEEE
International Conference on Advanced Networks and
Telecommunications Systems (ANTS).

[3] Wei Dai , Ibrahim Ibrahim, Mostafa Bassiouni,”An
Improved Straggler Identification Scheme for Data-
Intensive Computing on Cloud Platforms”, 2017 IEEE 4th
International Conference on Cyber Security and Cloud
Computing.

[4] YixinBao, Yanghua Peng, ChuanWu,”Deep Learning-
based Job Placement in Distributed Machine Learning
Clusters” ieee transaction 2019.

[5] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
Ion Stoica, “Effective Straggler Mitigation: Attack of the
Clones”, 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’2013).

[6] Yashverdhan P Singh, ShyamDeshmukh ,”Improvement
Of Scheduling In Hadoop Using Machine Learning”,
JETIR (ISSN-2349-5162) April 2017, Volume 4, Issue
04

[7] Qi Chen, Cheng Liu, and Zhen Xiao, “Improving
MapReduce Performance Using Smart Speculative
Execution Strategy”, IEEE Transactions On Computers
2014.

[8] Ashwin Bhandare, Jitin George, Supreet Deshpande,
“Review and Analysis of Straggler HandlingTechniques”,
(IJCSIT) International Journal of Computer Science and
Information Technologies, Vol. 7 (5) , 2016,2270-2276

[9] Xue Ouyang, Peter Garraghan, David Mckee,”Straggler
Detection in Parallel Computing Systems through
Dynamic Threshold Calculation”, 2016 IEEE 30th
International Conference on Advanced Information
Networking and Applications.

[10] Giacomo Domeniconi, Eun Kyung Lee,
AlessandroMorari “CuSH: Cognitive ScHeduler for
Heterogeneous HighPerformance Computing System”.
DRL4KDD, 2019, Alaska – USA.

[11] Zixia Liu, Hong Zhang, Bingbing Rao, Liqiang Wang, A
Reinforcement Learning Based Resource Management
Approach for Time-critical Workloads in Distributed
Computing Environment.

[12] W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N.
Mustafee, G. Wainer Towards Efficient Mapping,
Scheduling, and Execution of HPC Applications on
Platforms in Cloud Simulation Of Hpc Job Scheduling
And Large-Scale Parallel Workloads, Proceedings of the
2017 Winter Simulation Conference

[13] Albert Reuther, Chansup Byun, William Arcand,
Scheduler Technologies in Support of High Performance
Data Analysis.

[14] Kazumasa Sakiyama,, Shinpei Kato, Yutaka Ishikawa,
Atsushi Hori, Abraham Monrroy,, Deep Learning on
Large-scale Muticore Clusters, 2018 30th International
Symposium on Computer Architecture and High
Performance Computing

[15] Eric Gaussier, David Glesser “Improving Backfilling by
using Machine Learning to Predict Running Times.” SC
’15, November 15-20, 2015, Austin, TX, USA

