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Abstract- Today’s most popular computer applications and 
Internet services to millions of users produce large volume of 
data at server. Such large volume of data services work with 
interest in parallel processing of commodity clusters. A big 
data processing network such as Map Reduce implemented 
big cluster of data to compute the large amounts of raw data, 
such as documents, Web request logs, etc., to compute various 
kinds of derived data, such as inverted indices. A Map Reduce 
job generally splits the input into multiple inputs which are 
processed by the map tasks is in completely parallel manner. 
In this scenario it is equally importantly, if a node is available 
but it takes more time to perform particular task it called as 
straggler. The problems of straggler occur in the way when 
processing big data, the straggler occur in the cluster will 
delay the job execution time and reduce the cluster throughput 
the number of jobs completed per second in the cluster. 
 

I. INTRODUCTION 
 
 Drastically increments in volume of data leads to 
putting lot of burden on servers in terms of storage cost and 
performance issues, here we find ma scope to get the feasible 
solutions, like scheduling of jobs in big data framework such 
as MapReduce where we can discover straggler nodes by 
machine leaning technology to serve valuable input to 
scheduler so that early scheduling decision is to be made and 
unnecessary resource utilization can be avoided  This research 
is an aim at  designing and implementation of machine 
learning driven a novel straggler detection algorithms in order 
to improve the performance and throughput of cluster. The 
efficient use of the available computing devices is an 
important issue for heterogeneous cluster computing systems. 
The ability to choose a CPU or GPU processor and other 
resources for a specific task has a positive impact on the 
performance of systems. It helps to reduce the total processing 
time and to achieve the uniform system utilization. As a 
consequence, the proper job management system should be 
adapted to deal with such complexity by determining efficient 
allocation of resources and scheduling strategies that can deal 
with such complexity, we can adapt evolutionary strategic 
based on machine learning technology to solve this difficult 
challenges. 

II. REVIEW OF LITERATURE 
 
Study has been carried out by the author that stated 

that by engaging state of art machine learning techniques can 
speed up the optimization process which could otherwise take 
many machine to explore the runtime and efficiency of jobs. 
The complex machine learning methodologies to applied to 
solve difficult real world problems using parallel 
programming models. Parallel machine learning aims to 
capitalize on the simultaneous execution of sophisticated 
machine learning algorithms using modern hardware 
architectures. [3] 
 

Recent research done by Yigitbasi et al. [8] have 
focused on employing machine learning-based auto-tuning for 
diverse MapReduce applications and cluster configurations in 
Hadoop framework. Work shows that HPC can be studied 
under two categories such as adaptation of machine learning 
techniques and HPC techniques for code optimization in big 
data frameworks. Given the problem of scheduling possible 
parallel tasks, that are dependent on one another, in distributed 
and heterogeneous systems, there are many researches and 
experiments published, some of them using heuristic 
approaches while others using evolutionary algorithms. 

 
In this research MateiZaharia,  AndyKonwinski [6] 

author discuss about Hadoop scheduler behavior that shows 
Low response time is critical for data intensive application. 
Hadoop's performance is closely tied to its task scheduler, that 
implicitly assumes that cluster nodes are homogeneous and 
tasks make progress linearly, and uses these assumptions to 
decide when to speculatively re-execute tasks that appear to be 
stragglers. The sheer volume of data that these services work 
with has led to interest in parallel processing on commodity 
clusters.  A key benefit of MapReduce is that it automatically 
handles failures, hiding the complexity of fault-tolerance from 
the programmer. If a node crashes, MapReduce re-runs its 
tasks on a different machine. Equally importantly, if a node is 
available but is performing poorly, a condition that we call 
a straggler, MapReduce runs a speculative copy of its task 
(also called a "backup task") on another machine to finish the 
computation faster. Without this mechanism of speculative 
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execution, a job would be as slow as the misbehaving task. 
Stragglers can arise for many reasons, including faulty 
hardware and misconfiguration. Hadoop's scheduler starts 
speculative tasks based on a simple heuristic comparing each 
task's progress to the average progress, although this heuristic 
works well in homogeneous environments where stragglers 
are obvious. The speculative execution to be a simple matter 
of duplicating tasks that are sufficiently slow. In reality, it is a 
complex issue for several reasons. First, speculative tasks are 
not free - they compete for certain resources, such as the 
network, with other running tasks. Second, choosing the node 
to run a speculative task on is as important as choosing the 
task. Third, in a heterogeneous environment, it may be 
difficult to distinguish between nodes that are slightly slower 
than the mean and stragglers. Finally, stragglers should be 
identified as early as possible to reduce response times. 

 
Dolly: [9] Proposed by Ganesh A. et. al, it uses the 

progress rate for identification of straggler. This progress rate 
is calculated for each phase i.e. map, reduce and join. The 
progress rate defines as size of its input data divided by its 
duration. They use progress rate instated of the task duration 
which remain agnostic to skews in work assignment among 
tasks. The advantage of this it identifies the straggler 
proactively. Dolly is presented in [7], which uses task cloning 
to address the straggler problem for small parallel processing 
jobs generated by interactive data analyses. Dolly launches 
multiple clones of every task, and only uses the output of the 
clone that completes first. Dolly employs a technique called 
“delay assignment” to avoid contention for intermediate data, 
which is the main challenge faced by task cloning. 
 

Ganesh A et. al [14] proposed a Mantri, outliers 
detection mechanism by which identifies the point at which 
task are unable to make progress at the average rate. It 
diagnoses the straggler depending on expected execution time 
of the task. Which is the addition of time taken by the task till 
now and remaining time? This uses the progress score [20] 
and progress rate (used by the LATE) to find the remaining 
time. It categories the root cause of straggler as static and 
dynamic. Where the static such as hardware reliability and 
dynamic such as contention for processor, memory etc. It uses 
the network characteristics which define the data transfer rate 
in the system and data skew in input size of the task for 
straggler detection. They consider the straggler if its expected 
execution time is greater than 1.5 * average execution time of 
the task. Mantri is presented in [5], which is a system that can 
monitor the performance of processing nodes in MapReduce 
clusters and remove stragglers based on their causes. Mantri 
employs three major techniques: restarting tasks running on 
stragglers, network-aware task placement, and protecting the 
output of valuable tasks. 

[13] Present the default straggler identification technique 
which is used in hadoop is based on progress score which 
varies in between 0 to 1. This progress score shows the 
amount of task executed out of the complete task. This 
progress score applicable for the map as well as reduce 
function of Hadoop 
 

LATE (Longest Approximation Time to End 
Scheduling) Algorithm M. Zaharia [20] claims that progress 
score alone does not gives the accurate result because 
accurately shows how fast a task runs as different tasks start at 
different moments. They calculated the progress rate for each 
task using formula, PR[i]= PR[i]/T, where T is the amount of 
time the task has been running for, and then calculate the time 
required for the completion of task as (1 – ProgressScore) / 
ProgressRate. LATE performance is evaluated in two 
environments: large clusters on EC2, and a local virtualized 
tested. The Longest Approximate Time to End (LATE), an 
improved task scheduling algorithm for Hadoop, is proposed 
in [8]. LATE is developed to address Hadoop’s problem of 
performance degradation in heterogeneous environments by 
speculatively executing tasks that hurt the job completion time 
the most based on projected task finish times. The evaluation 
results show that LATE can improve the job completion time 
of Hadoop by a factor of two. Load imbalance among cluster 
nodes is also a major reason for the occurrence of stragglers in 
parallel processing. In our previous work, we address the load 
balance issue of Hadoop from two different perspectives: task 
assignment and replica placement 
  

Wrangler: NeerajaYadwadkaret. al. [12] proposed a 
proactive straggler identification using the machine learning 
approach. It selects the feature for ML algorithm as specified 
ganglia [22].It uses the support vector machine for the 
classification. Wrangler predicts the straggler using a linear 
modeling technique based on cluster resource usage counter 
and uses this prediction to provide the insights to the 
scheduler. As cause behind the straggler are varies from node 
to node and time to time, but wrangler is capable of adapting 
such a situations that complement to the straggler. 

 
SAMR: [15] Self-Adaptive MapReduce proposed by 

Q. Chen which calculates the progress of the tasks 
dynamically and it has implemented the concept of LATE 
scheduling algorithm which identifies slow tasks by 
approximating execution time of a task. To get more accurate 
progress score than LATE, SAMR uses the historical 
information recorded on each node in the cluster to tune the 
weights of map and reduce stages and also it updates the 
weights after each task execution. Therefore, SAMR scheduler 
performance is enhanced in heterogeneous environment as 
compared to MapReduce default scheduler and LATE 
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scheduler. The major hurdle in Self-Adaptive MapReduce is, 
it does not consider that different job types can have different 
weights for map and reduce stages. 

 
Qi Chen, Cheng Liu, has been stated in his paper 

MapReduce is a widely used parallel computing framework 
for large scale data processing. The two major performance 
metrics in MapReduce are job execution time and cluster 
throughput. They can be seriously impacted by straggler 
machines – machines on which tasks take an unusually long 
time to finish. Speculative execution is a common approach 
for dealing with the straggler problem by simply backing up 
those slow running tasks on alternative machines. These 
researches provide an analysis of the pitfalls of current 
speculative execution strategies in MapReduce. We present 
scenarios which affect the performance of those strategies: 
data skew, tasks that start asynchronously, improper 
configuration of phase percentage and abrupt resource 
competitions. Based on the analysis, we develop a new 
speculative execution strategy called MCP to handle these 
scenarios. MCP takes the cost performance of cluster 
computing resources into account, aiming at not only 
decreasing the job execution time but also improving the 
cluster throughput .[7] Maximum Cost Performance (MCP), a 
new speculative execution strategy, is presented in [6]. MCP 
uses both progress rate and process bandwidth within a phase 
to identify stragglers, uses exponentially weighted moving 
average to predict the processing speed of cluster nodes and 
calculate the remaining running time of tasks, and performs 
speculative execution based on a cost-benefit model. 

 
Ashwin Bhandari, Jitin George shows in his paper 

that Distributed processing frameworks split a data intensive 
computation job into multiple smaller tasks, which are then 
executed in parallel on commodity clusters to achieve faster 
job completion. A natural consequence of such a parallel 
execution model is that slow running tasks, commonly called 
stragglers potentially delay overall job completion. Straggler 
tasks continue to be a major hurdle in achieving faster 
completion of data intensive applications running on modern 
data-processing frameworks. They reviewed and analyzed 
various straggler mitigation approaches. These studies have 
been shown the broad subcategories of straggler mitigation i.e. 
proactive and reactive methods.  
 

III. ABOUT WORKING OF HADOOP 
 

Hadoop's implementation of MapReduce closely 
resembles Google's [1]. There is a single master managing a 
number of slaves. The input file, which resides on a 
distributed filesystem throughout the cluster, is split into even-
sized chunks replicated for fault-tolerance. Hadoop divides 

each MapReduce job into a set of tasks. Each chunk of input is 
first processed by a map task, which outputs a list of key-value 
pairs generated by a user-defined map function. Map outputs 
are split into buckets based on key. When all maps have 
finished, reduce tasks apply a reduce function to the list of 
map outputs with each key.a virtual Hadoop cluster powered 
by campus clouds becomes a common environment to run 
MapReduce jobs, which leads to non-trivial heterogeneity in 
resource capacities by reasons like multiple generations of 
hardware, the employment of edge resources, layered network 
connections and even different policies on resource sharing. 
Such heterogeneity damages the MapReduce jobs’ response 
time by intensifying the straggler problem In the design of 
Hadoop, there is an inherent assumption that the underlying 
infrastructure should be homogeneous, which means that the 
capacities of underlying computing and network resources 
should be equivalent. 

 
Assumptions in Hadoop's Scheduler 
 
Hadoop's scheduler makes several implicit assumptions: 
 

1. Nodes can perform work at roughly the same rate. 
2. Tasks progress at a constant rate throughout time. 
3. There is no cost to launching a speculative task on a 

node that would otherwise have an idle slot. 
4. A task's progress score is representative of fraction of 

its total work that it has done. Specifically, in a 
reduce task, the copy, sort and reduce phases each 
take about 1/3 of the total time. 
 
Slow tasks may dominate the life of each phase, thus 

dominate the response time of a MapReduce job. A slow task 
is called straggler task and on which it runs is called straggler. 
Response time is most important for short jobs that the quick 
answers are required, which is a major use case for 
MapReduce[4]. Therefore, minimizing the response time, i.e. 
minimizing the running time of straggler tasks is a crucial 
target for a MapReduce job scheduler [9].  

 
The straggler problem can break into three sub-problems: 
 
• How to reduce the occurrences of straggler tasks? 
• How to identify a straggler task? 
• How to mitigate the impact of straggler tasks? 
 

IV. PROBLEM ANALYSIS & PROPOSED WORK 
 

Today’s computing has achieved widespread 
adoption due to its ability to automatically parallelize a job 
into multiple short tasks, and transparently deal with the 
challenge of executing these tasks in a distributed setting. One 
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such fundamental challenge is straggling tasks, which is faced 
by all cloud frameworks, such as MapReduce [1], Dryad [2], 
and Spark [3].  

 
The MapReduce architecture provides self-managed 

parallelization with fault tolerance for large-scale data 
processing. Stragglers, the tasks running slower than other 
tasks of job, could potentially degrade the overall cluster 
performance by increasing the job completion time. The 
original MapReduce paper [1] identified that Stragglers could 
arise due to various reasons including software mis-
configurations, hardware degradation, overloaded nodes or 
resource contention. The Hadoop use commodity hardware 
and the task failure become part of the straggler. 
 
Straggler Problem:  
 

Stragglers are tasks that run much slower than other 
tasks, and since a job finishes only when its last task finishes, 
stragglers delay job completion. Stragglers especially affect 
small jobs, i.e., jobs that consist of a few tasks. Such jobs 
typically get to run all their tasks at once. Therefore, even if a 
single task is slow, i.e., straggle, the whole job is significantly 
delayed 

 
The Straggle in the Distributed system when the 

master allocate the task to slave machine to complete it , if the 
slave machine takes too much time to complete the particular 
task beyond the threshold limit so we can say the straggler 
occur in the particular slave machine. In the production 
clusters at Facebook and Microsoft Bing, even after applying 
state-of-the-art straggler mitigation techniques, these latency 
sensitive jobs have stragglers that are on average 8 times 
slower than the median task in that job. Such stragglers 
increase the average job duration by 47%.  
 
The Straggler defined as:  
 
Let normalized durations, nd(ti ) = Task execution time  
Amount of work done by task ti 
A straggler is defined if for task tiof a job J  
nd(ti ) > ( β x median{nd( ti )})  

 
Where, β is threshold coefficient (β ~ 1.3) or signifies 

the extent to which a task is allowed to slow down before it is 
called a straggler.  A current study shows that the straggler 
existing mitigation techniques, the impact of straggler in 
straggler tasks can be 6- 8% slower than the median task in 
job on a production cluster. The production is the cluster 
where the actually job is the job is execute in the system 
execute. The straggler occur 22% to 28% in the system so to 
eliminate or mitigate the straggler is our main objective. 

Causes of Stragglers: 
 
We can categorize the causes for stragglers into 

internal and external reasons as shown in table 1. Internal 
reasons can be solved by the MapReduce service provider, 
while external reasons cannot. For example, MapReduce 
clusters in the real world may be over-committed with 
multiple tasks running on the same worker node. This creates 
resource competition and may lead to heterogeneous 
performance. We can avoid this “internal reason” by limiting 
each worker node to run at most one task simultaneously or by 
only allowing tasks with different resource usage intensity to 
share the same worker node. 

 
Internal Factors: 
 

1. Heterogeneous resource capacity of worker nodes 
2. Resource competition due to other MapReduce tasks 

running on the same worker node 
 
External Factors: 
 

1. Resource competition due to co-hosted applications. 
2. Remote input or output source being too slow. 
3. Input data skew 
4. Faulty hardware 

 
V. STRAGGLER MITIGATION TECHNIQUE 

 
There are two way to mitigate the Straggler they are 

Reactive Straggler mitigation and proactive straggler 
mitigation.In reactive straggler mitigation when the straggler 
occur in the slave machine then the master run the duplicate 
copy to another slave machine to removing the straggler 
because of this throughput is degrade and job completion time 
is increase.  

 
I. Reactive Straggler mitigation Technique: The problem of 
stragglers has received considerable attention already, with a 
slew of straggler mitigation techniques [1, 4, 5] being 
developed. These techniques can be broadly divided into two 
classes: black-listing and speculative execution. 
 
1. Blacklisting: identifies machines in bad health (e.g., due to 
faulty disks) and avoids scheduling tasks on them. The 
Facebook and Bing clusters, in fact, blacklist roughly 10% of 
their machines. Hadoop provides manual way of blacklisting a 
node (by modifying the mapred-site.xml configuration file) 
manual blacklisting could result in wastage of resources. Other 
challenges to effective blacklisting are offered by Complex 
interactions involving network interactions, resource 
contentions. Black-listing is hence considered inefficient as 
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simple counting-based techniques or heuristics are incapable 
of finding the exact reasons behind slower task-executions. 
 
2. Speculative execution: [5, 7] was explored to deal with 
stragglers. Instead of fixing the stragglers, Hadoop tries to 
detect such tasks and launches back-up copies. This is called 
speculative execution. Speculative execution is an 
optimization with a hope that these copies will finish faster. 
Speculative execution increases contention over the available 
resources resulting into higher latencies for new tasks. 
 
3.  LATE: allows the slow nodes in the cluster to be utilized as 
long as this does not hurt response time. In contrast, a progress 
rate based scheduler would always re-execute tasks from slow 
nodes, wasting time spent by the backup task if the original 
finishes faster.  
 
4. MANTRI: Mantri where a system that monitors tasks and 
outliers using cause- and resource-aware techniques. These 
strategies include restarting outliers, network-aware placement 
of tasks and protecting outputs of valuable tasks. Using real-
time progress reports, Mantri detects and acts on outliers early 
in their lifetime. Early action frees up resources that can be 
used by subsequent tasks and expedites the job overall. 
 
II. Proactive straggler mitigation 

 
In Proactive Straggler mitigation technique the 

machine learning technique is used to mitigate the straggler. In 
proactive straggler mitigation technique where the straggler 
occurs in slave machine predict earlier before the scheduling.  

There are various way proactive technique is existing 
they are  

 
1. Dolly: Clone of small jobs only marginally increases 
utilization the execution of the because workloads show that 
while the majority of jobs are small, they only consume a 
small fraction of the resources. The main challenge of cloning 
is, however, that extra clones can cause contention for 
intermediate data. We use a technique, delay assignment, 
which efficiently avoids such contention where Evaluation of 
our system, Dolly, using production workloads. 
2. Wrangler: Wrangler is a system that predicts stragglers 
using an interpretable linear modeling technique. Wrangler 
prevents wastage of resources by removing the need for 
replicating tasks.Wrangler introduces a notion of a confidence 
measure with these predictions to overcome the modeling 
error problems; this confidence measure is then exploited to 
achieve a reliable task scheduling [7] 
 
 
 

VI. METHODOLOGY 
 
Today heterogeneous systems with both CPU and 

accelerator become more popular to adopt the demand of 
large-scale applications. Whether or not we can find a better 
scheduling policy based on the workload logs and trace file of 
execution of jobs from server. For this reason we mention 
machine learning technique and information that was extracted 
from these logs and traces. Fundamentally, we will apply 
machine learning technique called nonlinear regression to 
generate a dynamic scheduling function for improving the 
performance.  

 
Most of the existing jobs scheduling techniques do 

not consider the future workload while assigning the sub-jobs 
to the processors [7], [12]. It reduces the resource utilization 
and leads to wastage of resources on jobs. 

 
Fundamentally, the behaviors of large-scale programs 

on an HPC system can be extracted from the history or log 
files then draw a relational model between its characteristic 
and an objective function. This problem can be fitful in 
applying machine learning to find a scheduling function for 
job submission. Job submission with workload managers is 
considered as an efficient way to support users and manage 
the computing resources. 

 
We use a two-stage approach: first using simulation 

to simulate all situations of run jobs, in order to generate a 
dataset which then is used for training models with machine 
learning. 

 
This model enables to improve the scheduling 

performance and fit well the relationship between the jobs 
characteristics and criteria in practice. 
 
Secondly, we evaluate all policies on the CPU/coprocessor-
based cluster. This work presents the following contributions: 
  
• We show that the possible scheduling functions can be 
obtained from the workload logs on heterogeneous system. 
• We apply and present how to use machine learning to 
generate a scheduling function based on the dataset from 
workload logs. 
 

VII. CONCLUSION 
 
This study of straggler detection using machine 

learning approach has been done and proposed methodology is 
stated in this paper for implementation smart decision driven 
scheduler in Hadoop that can be used to improve resource 
utilization   
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