Finding Shortest Path For An Octagonal Fuzzy Network

Harshini K

Assistant Professor, Dept Of Mathematics Bharathiyar Arts And Science College For Women

Abstract- In this paper, I have presented two algorithms to find the shortest path from a source node to a destination node of a network. We also solved a numerical example in which each edge assigns an octagonal fuzzy number.

Keywords- Euclidean distance, network, octagonal fuzzy number, shortest path, $\alpha - c$ set.

I. INTRODUCTION

In a network, the most common problem and the main objective is to find the shortest path for a given network. This problem is circumvented with the model based on the

paper 'fuzzy shortest path with α -cuts' presented by

P.Sandhiya[1]. The fuzzy shortest path, which is used in many sources of applications such as route, communication, transportation etc.

In this paper, section 1 provides some elementary definitions need for this paper. In section 2, I proposed two algorithms for finding the shortest path for an octagonal fuzzy number network problem. In section3, a numerical example was solved. In section 4, some conclusions were discussed.

I. **PRELIMINARIES**

A. FUZZY SET

A fuzzy set A of a universal set X is defined by its membership function $\mu_A: X \to [0,1]$ which assigns real number $\mu_A(x)$ in the interval [0,1] to each element $x \in X$, where the value of $\mu_A(x)$ at x shows the grade of membership of x in A.

B. OCTAGONAL FUZZY NUMBER

Let $A = \{h, a, r, s, i, n, k, d\}$ be an octagonal fuzzy number whose membership function is given by

C. CUT FOR OCTAGONAL FUZZY NUMBER:

Let A be the fuzzy set in X and any real number $\alpha \in [0,1]$, it is denoted by $\alpha_{A} = \{x \in X / \mu_A(x) \ge \alpha\}$ whose membership function is given by

$$
\mu_A(x) = \begin{cases} \frac{x-h}{a-h} & h \leq x \leq a \\ \frac{x-a}{r-a} & a \leq x \leq r \\ \frac{x-r}{s-r} & r \leq x \leq s \\ \frac{x-x}{n-i} & i \leq x \leq n \\ \frac{k-x}{a-k} & n \leq x \leq k \\ \frac{a-x}{a-k} & k \leq x \leq d \end{cases}
$$

Then the α – cut of A is $\alpha = \frac{x-h}{a-h}$, $\alpha = \frac{x-a}{x-h}$ $\alpha = \frac{x-r}{s-r}, \alpha = \frac{n-x}{n-i}, \alpha = \frac{k-x}{k-n} \& \alpha = \frac{d-x}{d-k}$ Equating in terms of x, we get

 $[(a - h)\alpha + h, (r - a)\alpha + a, (s - r)\alpha + r, n - (n - i)\alpha, k - (k - n)\alpha, d - (d - k)\alpha]$.

D. OPERATION ON OCTOGONAL FUZZY NUMBER:

=

If $\hat{A} = (h, a, r, s, i, n, k, d)$ and $\tilde{B} = (h', a', r', s', i', n', k', d')$ then

Addition $\tilde{A} \bigoplus \tilde{B} = (h+h', a+a', r+r', s+s', i+i', n+n', k+k')$ $d+d'$

Subtraction $\tilde{A} \bigoplus \tilde{B}_{= (h - h', a - a', r - r', s - s', i - i', n - n', k-1)}$ $k', d-d'$

E. MINIMUM VALUE FOR **CALUTS**:

Let $\alpha_A = [q, r, s, t, u, v]_{and}$ $\alpha_B = [y, z, f, g, j, k]_{then the}$

minimum value of α_A and α_B is given by

 $MV = min \left[\alpha_A, \alpha_B \right]$

F. EUCLIDEAN DISTANCE:

Let $A = [a, b, c, d, e, f]$ and $B = [g, h, i, j, k, l]$ be two intervals, then the Euclidean distance D is defined as

$$
\bigg| \begin{array}{l} (g-a)^2 + ((h-b)^2 + (i-c)^2 + (j-d)^2 + (k-e)^2 + (h-f)^2 \end{array}
$$

II. ALGORITHMS

METHOD 1:

STEP 1: FINDING ALL POSSIBLE PATHS

- i. Find all the possible paths from a source node to a destination node.
- ii. Assign the number of possible paths in an acyclic network.

STEP 2: COMPUTATION OF LENGTH OF PATHS

- i. Set α value between [0, 1].
- ii. Find the α cut for every edge.
- iii. By adding the α -cuts, find the length of all the possible paths.

STEP 3: COMPARISON OF PATHS

i. Assume $L_{min} = L_1$ ii. For $i = 2$ to n

 $MV = min \{L_{min}, L_i\}$ $D_1 = D$ {MV, L_{min} } $D_2 = D$ {MV, L_i } If $D_1 < D_2$ then $L_{min} = L_{min}$

Otherwise $L_{min} = L_{i}$.

STEP 4: The shortest path is the corresponding path of \mathcal{L}_{min} .

METHOD 2:

STEP 1: FINDING SHORTEST PATH

- i. Find all the possible paths from a source node to a destination node.
- ii. Assign the number of possible paths in an acyclic network.

STEP 2: COMPUTATION OF LENGTH OF PATHS

- i. Set α value between [0, 1].
- ii. Find the α cut for every edge.

STEP 3: Assume $\overline{a_1} = (0,0,0,0,0,0)$ as a source node.

STEP 4: Find $\overline{a}_j = \min{\{\overline{a}_i \oplus \overline{a}_{ij}\}}$ where $j \neq 1$, $j=2,3,4,\ldots,n$ and $i=\{N/N=(1,2,3,\ldots(i-1))\}$

STEP 5: Find $P = i^{-\frac{1}{2}} J$ which is the minimum value of a_{J} . Find P for all the nodes, starting from a source node to destination node.

STEP 6: Discard the path which don't have link either directly (D) or indirectly (ID) with a source node and destination node. *STEP 7:* Compare the remaining paths to get the fuzzy shortest path from a source node to a destination node.

NOTATIONS:

 $\overline{a_i}$ = The membership function distance between node i and source node.

 $\overline{a_{ij}}$ = The fuzzy distance of the octagonal network between the nodesiand j

P = path of corresponding node in a_{J} .

 $N =$ Number of nodes in a network.

III. NUMERICAL EXAMPLE

Consider a fuzzy acyclic network whose edge weights are taken as the octagonal fuzzy number.

The fuzzy arc lengths are

 $A(1-2) = (0, 2, 3, 4, 5, 6, 7, 7)$ $B(1-4) = (4, 4, 5, 6, 7, 7, 8, 9)$ $C(2-3) = (3, 4, 4, 5, 6, 6, 7, 8)$ $D(4-3) = (0, 5, 5, 6, 7, 7, 9, 10)$ $E(2-5) = (6, 7, 8, 9, 10, 11, 12, 13)$ F (3-7) = (10, 10, 12, 14, 15, 16, 18, 20) $G (4-6) = (8, 9, 10, 11, 12, 14, 15, 16)$ H (5-7) = (13, 13, 15, 16, 17, 18, 19, 20) $I (6-7) = (12, 12, 14, 15, 15, 16, 18, 20)$

METHOD 1:

STEP 1: FINDING ALL POSSIBLE PATHS

 \triangleright Possible paths are $p_1 \cdot A \rightarrow E \rightarrow H$ $P2: A \rightarrow C \rightarrow F$ $p_3: B \to D \to F$ $p_4: B \rightarrow G \rightarrow I$ \triangleright The number of possible paths is 4.

STEP 2: COMPUTATION OF LENGTH OF PATHS

 \triangleright Set α value between 0 and 1. Let $\alpha = 0.5$ \triangleright **c** – cuts for every edge $\alpha_A = (1, 2.5, 3.5, 5.5, 6.5, 7)$ $\alpha_{\rm B} = (4, 4.5, 5.5, 7, 7.5, 8.5)$ $\alpha_{\rm C} = (3.5, 4, 4.5, 6, 6.5, 7.5)$ $\alpha_{\rm D} = (2, 5, 5.5, 7, 8, 9.5)$ $\alpha_{\rm E} = (6.5, 7.5, 8.5, 10.5, 11.5, 12.5)$ $\alpha_F = (10, 11, 13, 15.5, 17, 19)$ $\alpha_{\mathcal{G}} = (8.5, 9.5, 10.5, 13, 14.5, 15.5)$

 $\alpha_H = (13, 14, 15.5, 17.5, 18.5, 19.5)$ $\alpha_1 = (12, 13, 14.5, 15.5, 17, 19)$ \triangleright Length of the possible path L1: (20.5, 24, 27.5, 33.5, 36.5, 39) L2: (14.5, 17.5, 21, 27, 30, 33.5) L3: (16, 20.5, 24, 29.5, 32.5, 36) L4: (24.5, 27, 34.5, 35.5, 37.5, 43) *STEP 3: COMPARISON OF PATHS* $>$ Assume $L_{min} = (20.5, 24, 27.5, 33.5, 36.5, 39)$ \triangleright For i = 2 $MV = min \{L_{min}, L_2\}$ $=$ (14.5, 17.5, 21, 27, 30, 33.5) D_{1} $= D \{MV, L_{min}\}$ $= 15.3379$ D_{2} $= D \{MV, L_2\}$ $= 0$ $\therefore D_1 > D_2$ $L_{min} = (14.5, 17.5, 21, 27, 30, 33.5)$ \triangleright For i = 3 $MV = min \{L_{min}, L_{s}\}$ $=$ (14.5, 17.5, 21, 27, 30, 33.5) D_{1} $= D \{MV, L_{min}\}$ $= 0$ D., $= D \{MV, L_3\}$ $= 6.2449$ $\therefore D_1 < D_2$ $L_{min} = (14.5, 17.5, 21, 27, 30, 33.5)$ \triangleright For $i = 4$ $MV = min \{L_{min}, L_4\}$ $=$ (14.5, 17.5, 21, 27, 30, 33.5) $= D \{MV, L_{min}\}$ $D_{\rm T}$ $= 0$ $= D$ {MV, L_3 } D_{2} $= 24.3156$ $\therefore D_1 < D_2$ $L_{min} = (14.5, 17.5, 21, 27, 30, 33.5)$ *STEP 4:* The shortest path is P2: $A \rightarrow C \rightarrow F$. *METHOD 2: STEP 1:* FINDING ALL POSSIBLE PATHS \triangleright Possible paths are $P1: A \rightarrow E \rightarrow H$ $p_2 \cdot A \rightarrow C \rightarrow F$

 $p_3: B \to D \to F$

$$
P4: B \to G \to I
$$

 \triangleright The number of possible paths is 4.

STEP 2: COMPUTATION OF LENGTH OF PATHS

 \triangleright Set α value between 0 and 1.

Let $\alpha = 0.5$

 \triangleright α –cuts for every edge $\alpha_A = (1, 2.5, 3.5, 5.5, 6.5, 7)$ $\alpha_B = (4, 4.5, 5.5, 7, 7.5, 8.5)$ $\alpha_{\mathcal{C}} = (3.5, 4, 4.5, 6, 6.5, 7.5)$ $\alpha_p = (2, 5, 5, 5, 7, 8, 9, 5)$ $\alpha_{\rm E} = (6.5, 7.5, 8.5, 10.5, 11.5, 12.5)$ $\alpha_F = (10, 11, 13, 15.5, 17, 19)$ $\alpha_{\mathcal{G}} = (8.5, 9.5, 10.5, 13, 14.5, 15.5)$ $\alpha_H = (13, 14, 15.5, 17.5, 18.5, 19.5)$ $\alpha_{\rm I} = (12, 13, 14.5, 15.5, 17, 19)$

STEP 3: $A_{\text{ssume}} \overline{a_1} = (0,0,0,0,0,0)$ as a source node.

STEP 4&5:

 $\sum_{\text{Put}} i = 1 \text{ and } j = 2$ $\overline{a_2}$ = min $\{\overline{a_1} \oplus \overline{a_{12}}\}$ $=$ (1, 2.5, 3.5, 5.5, 6.5, 7) $P: 1 \rightarrow 2$ μ Put i= 1,2 and j = 3 $\overline{a_2}$ = min $\{\overline{a_1} \oplus \overline{a_{13}}, \overline{a_2} \oplus \overline{a_{23}}\}$ $=(4.5, 6.5, 8, 11.5, 13, 14.5)$ \perp $P: 2 \rightarrow 3$

 $_{\rm{Put}}$ $_{\rm{Put}}$ i= 1,2,3 and j = 4 $\overline{a_4} = \min \{ \overline{a_1} \oplus \overline{a_{14}}, \overline{a_2} \oplus \overline{a_{24}}, \overline{a_3} \oplus \overline{a_{34}} \}$ $=$ min {(4, 4.5, 5.5, 7, 7.5, 8.5),(6.5, 11.5, 13.5, 18.5, 21, 24) $=(4, 4.5, 5.5, 7, 7.5, 8.5)$ $P: 1 \rightarrow 4$

 $p_{\text{out i}} = 1,2,3,4 \text{ and } j = 5$ $\overline{a_5} = \min \{\overline{a_1} \oplus \overline{a_{15}}, \overline{a_2} \oplus \overline{a_{25}}, \overline{a_3} \oplus \overline{a_{35}}\}$ $\overline{a_4}\bigoplus \overline{a_{45}}$ = (7.5, 10, 12, 16, 18, 19.5) $P: 2 \rightarrow 5$

 $_{\rm p}$ $_{\rm pt}$ i= 1,2,3,4,5 and j = 6

 $\overline{a_6}$ = min $\{\overline{a_1} \oplus \overline{a_{16}}, \overline{a_2} \oplus \overline{a_{26}}, \overline{a_3} \oplus \overline{a_{36}}\}$ $\overline{a_4} \bigoplus \overline{a_{46}}$, $\overline{a_5} \bigoplus \overline{a_{56}}$ $=$ (12.5, 14, 16, 20, 22, 24) $\perp P: 4 \rightarrow 6$

 $\mu_{\text{put i}} = 1.2.34.5.6$ and $j = 7$ $\overline{a_7}$ = min { $\overline{a_1}$ \oplus $\overline{a_{17}}$, $\overline{a_2}$ \oplus $\overline{a_{27}}$, $\overline{a_3}$ \oplus $\overline{a_{37}}$, $\overline{a_4} \bigoplus \overline{a_{47}}, \overline{a_5} \bigoplus \overline{a_{57}} \overline{a_6} \bigoplus \overline{a_{67}},$ $=$ min {(14.5, 17.5, 21, 27, 30, 33.5), (20.5, 24, 27.5, 32.5, 36.5, 39), $(24.5, 27, 30.5, 35.5, 39, 43)$ $=$ (14.5, 17.5, 21, 27, 30, 33.5) $\perp P:3\rightarrow 7$

STEP 6:

Here D stands for direct link and IDL stands for indirect link.

STEP 7:

The optimized fuzzy shortest path is $1 \rightarrow 2 \rightarrow 3 \rightarrow 7$ (i.e.) P2: $A \rightarrow C \rightarrow F$

IV. CONCLUSION

In this paper, I presented two algorithms with the numerical example for finding the shortest path using α – cut set and Euclidean distance in which each edge is assigned to an octagonal fuzzy number. The fuzzy shortest path problem is solved for each node to a destination node and hence the optimized shortest path is obtained.

REFERENCES

- [1] P.Sandhiya, "Fuzzy shortest path with α cuts", volume58, issue3, june-2018.
- [2] P.Jayagowri and G.Geetharamani, "Finding Optimal path in a Network Problem Using Intuitionistic fuzzy arc length, volume3, issue3, march-2014.
- [3] L.Sujatha and J.Daphene Hyacinta, "The shortest path problem on Networks with Intuitionistic fuzzy edge weights", ISSN 0973-1768 volume 13, number 7 (2017), pp. 3285-3300.
- [4] L.A.Zadegh, "Fuzzy Logic and the Calculi of fuzzy rules, Fuzzy Graphs, Fuzzy Probabilities", Computers and Mathematics with Applications, Volume 37, p. 35, 1999.
- [5] Maheswari D and Harshini K, "Finding Shortest path in a network Using Trapezoidal Intuitionistic Fuzzy Number", ISSN:2455-3085, volume-04, issue-02.
- [6] Maheswari D, Harshini K, "A New Approach to Find Shortest Path Using Trapezoidal Intuitionistic Fuzzy Number", E-ISSN 2348-1269, P-ISSN 2349-5138, January 2019, volume6, issue1.