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Abstract- Every year different type of topological spaces are 
introduced by many topologist. Micro topology is a simple 
extension of Nano topology. Micro topology provides wide 
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we want extend some open sets in Micro topology.  In this 
paper we introduce Micro-b-open sets and Micro-b-
continuous in Micro topological spaces.  Also we investigate 
some of their properties.   
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I. INTRODUCTION 
 
 In 1996, D. Andrijevic [1] introduced and studied a 
class of generalized open sets in a topological space called b-

open sets. This class of sets contained in the class of   open 
sets and contains all semi-open sets and all pre-open sets. In 
2013, notion of nano topology was introduced by  Lellis 
Thivagar [4] which was defined in terms of approximations 
and boundary region of a subset of an universe using an 
equivalence relation on it. In 2018, Micro topology was 
introduced by              S. Chandrasekar [7]. In this paper, we 
introduce a new class of sets on Micro topological spaces 
called Micro-b-open sets and the relation of this sets with 
existing sets. 
 

II. PRELIMINARIES 
 

Definition 2.1[7]:  is a Nano topological space 

here  and is 

called it Micro topology of  by  where . 
 

Definition 2.2[7]: The Micro topology  satisfies the 
following axioms: 
 

(i)  

(ii) The union of the elements of any sub-collection 

of is in . 
(iii) The intersection of the elements of any finite sub-

collection of  is in . 
 

Then  is called the Micro topology on  with 

respect to . The triplet  is called Micro 

topological spaces and the element of   are called 
Micro open sets and the complement of a Micro open set is 
called a Micro closed set. 

 

Definition 2.3[7, 8]: Let (X)  be a Micro 

topological space and .  
 

Then  is said to be: 
 

(i) Micro-semi-open if  

and Micro-semi-closed if  .                                        

(ii) Micro-pre-open if  and 
Micro-pre-closed if                       

                             
(iii) Micro- -open if 

 and Micro-

-closed if       

.           (iv) 

Micro-regular-open if  and 
Micro-regular-closed if  

.            (v) 
Micro-semi-pre-open if  

 and Micro-

semi-pre-closed if . 

a

nd  denote the families of all Micro-semi-open, 
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Micro-pre-open, Micro-regular-open, Micro-semi-pre-open 

and Micro- -open subsets of  respectively. 
 

III. MICRO-b-OPEN SET 
 

Definition 3.1: Let ( , (X), (X)) be Micro topological 

space and . Then A is said to be Micro-b-open 
(briefly Micro-b-open set) if 

                                                                 The complement of 
Micro-b-open set is called a Micro-b-closed set. (briefly 
Micro-b-closed).  
 

Example 3.2: Let  {1,2,3,4} with                     

={{1},{3},{2,4}} and X={1,2}.Then the nano topology 

(X)={U, ,{1},{1,2,4},{2,4}} and ={3}. Micro-b-open 

sets are (X)={U, ,{1}, {2},{3},{4},{1,2},{1,4},{1,3}, 
{2,4},{1,2,4}, {2,3,4},{1,3,4},{1,2,3},{2,3},{3,4}}. 
 
Theorem 3.3: Every Micro open set is Micro-b-open. 
 

Proof: Let A be Micro open in , (X), (X)). Since 

 
and

 and . This 

implies  

 and   is Micro-b-open in ( (X), (X)). 
  
Remark 3.4: The converse of the above theorem need not be 
true as shown in the following example. 
 

Example 3.5: Let ={a,b,c,d} with                      

={{a},{c},{b,d}} and X={a,b}. Then the nano 

topology (X)={U, ,{a},{b,d},{a,b,d}}  and ={b}. 

(X)={ , ,{a},{b},{a,b}{b,d}, {a,b,d}}. Mic-b-O (X) 
={{a},{b},{a,b},{a,c}, {b,d},{b,c},{a,b,c},{a,b,d}, {b,c,d}}. 
Here {{a,c},{b,c},{a,b,c},{b,c,d}}Micro-b-open but it is not 
Micro open. 
 

Theorem 3.6: Every Micro-semi-open set is Micro-b-open. 

Proof:  Let A be Micro-semi-open in  ( , (X), (X)). Then 

 Hence 

and  is Micro-b-open in ( , (X), (X)).  
 
Remark 3.7: The converse of the above theorem need not be 
true as shown in the following example.  
 

Example 3.8: Let {1,2,3,4}with                       

={{1},{3},{2,4}}and X={1,2}.Then the nano 

topology (X)={U, ,{1},{2,4},{1,2,4}}and ={3}. 

(X)={ , ,{1},{3},{1,3}{2,4},{1,2,4}, {2,3,4}}. -b-O 

(X) ,∅,{1},{3},{1,3}, 
{2,4},{1,2,4},{2,3,4},{2},{4},{1,2}, {1,4}, 
{1,3,4},{1,2,3},{2,3},{3,4}}. Here {{2},{4}, 
{1,2},{2,3},{1,4},{3,4},{1,3,4},{1,2,3}} is Micro-b-open but 
it is not Micro-semi-open. 
 
Theorem 3.9: Every  Micro-pre-open set is    Micro-b-open. 
 

Proof: Let  be Micro-pre-open in ( , (X), (X)). Then 

Hence 

and is Micro-b-open in ( , (X), (X)). 
 
Remark 3.10:The converse of the above theorem need not be 
true as shown in the following example. 
 

Example 3.11: Let = {1,2,3,4}with /R={{1},{3},{2,4}} 

and X = {1,2}.Then the nano topology (X) = 

{ , ,{1},{2,4},{1,2,4}} and ={2}. 

(X)={ , ,{1},{2},{1,3},{2,4}, {1,2},{1,2,4}}.                                                    

Mic-b-O (X)={ , , {1},{2},{3}, {4},{1,3}, 
{2,4},{1,2},{1,4},{2,3},{3,4},{1,2,3}, {1,2,4}, 
{2,3,4},{1,3,4}. Here{{1,3},{2,3},{2,3,4}} Micro-b-open but 
it is not Micro-pre-open. 
 
Theorem 3.12: Every Micro-regular-open set is Micro-b-
open. 
 

Proof: Let  be Micro-regular-open in    ( , (X), (X)). 

Then ). Since 
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This implies  Therefore 

 and  is Micro-b-open in ( , (X), (X)). 
 
Remark 3.13: The converse of the above theorem need not be 
true as shown in the following example. 
 

Example 3.14: Let  = {a,b,c,d} with                  = 

{{a},{c},{b,d}} and X={a,b}. Then the nano topology (X) 

= { , ,{a},{b,d},{a,b,d}} and ={b}. 

(X)={ , ,{a},{b},{a,b}{b,d}, {a,b,d}}. Mic-b-O (X) = 
{{a},{b},{a,b}{a,c}, {b,d},{b,c},{a,b,c},{a,b,d},{b,c,d}}. 
Here {{b}, {a,b}{a,c},{b,c},{a,b,c},{a,b,d}, {b,c,d}} Micro-
b-open but it is not Micro- regular-open. 
 
Theorem 3.15: Every Micro-b-open set is Micro-semi-pre-
open. 
 

Proof:  Let  be Micro-b-open in   ( (X), (X)). Then 

. This implies  and 

Hence 

 and  is semi-pre-open in ( (X) (X)). 
 
Remark 3.16: The converse of the above theorem need not be 
true as shown in the following example. 
 

Example 3.17: Let = {a,b,c,d} with                    

={{a},{d},{b,c}} and X = {a,c}. Then the nano 

topology (X) = {U, ,{a},{b,c},{a,b,c}} and ={b}. 

(X)={ , ,{a},{b},{a,b},{b,c},      {a,b,c}}. Mic-b-

O(X)={U, ,{a},{b},{c},{a,b}, 
{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,b,d}, 

{a,c,d},{b,c,d}}. Here {{b,d},{b,c}}Micro-semi-pre-open but 
it is not Micro-b-open. 
 

Theorem 3.18: Every Micro- -open set is      Micro b-open. 
 

Proof : Let  be Micro-α-open in ( , (X), (X)). Then 

This 

implies ic-

 
Hence

and A is Micro-b-open in , (X), (X)). 
 
Remark 3.19: The converse of the above theorem need not be 
true as shown in the following example. 
 

Example 3.20: Let = {a,b,c,d} with                    

{{a},{c},{b,d}}and X={a,b}.Then the nano 

topology (X) = {U, ,{a},{b,d},{a,b,d}} and ={b}. 

(X)={ , ,{a},{b},{a,b},{b,d}, {a,b,d}. Mic-b-
O(X)={a},{b},{a,b}{a,c},{b,d}, 
{b,c},{a,b,c},{a,b,d},{b,c,d}.Here {{a,c},{b,c}, {b,c,d}} is 
Micro-b-open but it is not Micro-α-open. 
 
Theorem 3.21: Arbitrary union of two Micro-b-open sets in 

( (X), (X)) is a Micro-b-open sets in ( , (X), (X)). 
 

Proof: Let  and  be two Micro-b-open sets. Then 

 and  

         
Then

                         
Hence
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Therefore is Micro-b-open. 
 
Remark 3.22: Finite intersection of two         Micro-b-open 
sets not a Micro-b-open. 
 

Example 3.23: Let  {a,b,c,d} with               

={{a},{c},{b,d}} and X={a,b}. Then the nano 

topology (X) = { , ,{a},{b,d},{a,b,d}} and ={b}. 

(X)={ , ,{a},{b},{a,b},{b,d},   {a,b,d}}. Mic-b-O(X) = 

{ , ,{a},{b},{a,b},{a,c}, 
{b,d},{b,c},{a,b,c},{a,b,d},{b,c,d}}. Here {{a,c},{b,c}} are 
Micro-b-open sets but their intersection {c} is not Micro-b-
open set. 
 
Definition 3.24: The union of all Micro-b-open set in a Micro 

topological space ( , (X), (X)) contained in is called 

Micro-b-interior of  and is denoted by 

is a Micro-b-open set}. 
 
Definition 3.25: The intersection of all Micro-b-closed set in a 

Micro topological space ( , (X), (X)) containing in  is 

called Micro-b-closure of  and is denoted by                             

is 
a Micro-b-closed set}. 
 

Remark 3.26: It is clear that  is Micro-b-

open set and  is a Micro-b-closed set. 
 
Theorem 3.27: 
 

1) ; 

2) ; 

3)  and   iff  is a  
Micro-b-closed set; 

4)  and                                    

iff  is a Micro-b-open set; 
 

Proof: 1) Let  . 

Then . Then there is no b-open set  

contained in A such that . Hence  for all 

closed set containing . Therefore (X A). 
Hence                      

. 

Conversely,   Let  (X A). Then for every b-

closed sets V containing (X ) such that . Then there 

is no b-open set  contained in A such that ∉ . Hence 

. Thus . 

Therefore . 

Hence . 

2)  Let .                        Then 

. Therefore, there exists an b-closed set 

 containing A such that . Hence is an open set 

containing  such that . Therefore 

( ). This implies  

. Hence          

. 

Conversely, Let . Then there 

exists an b-open set  containg  such that . Hence 

there exists an b-closed set  containing such that 

 Therefore            . Hence 

. Therefore 

                                                
. Hence 

 . 
Also 3) and 4) are obvious. 
 

IV. MICRO-b-CONTINUOUS 
 

Definition 4.1: Let  and 

(  be two Micro topological spaces. A 

function  (  is 

called a Micro-b-continuous  if  is Micro-b-open in 

 for every Micro-open set  in . 
 

Example 4.2: Let  = {a,b,c,d} with                     = 

{{a},{c},{b,d}}and X={a,b}. Then the nano topology (X) 

= {U, ,{a},{b,d},{a,b,d}} and ={b}. 

(X)={ , ,{a},{b},{a,b}{b,d},   {a,b, d}}. Mic-b-O (X) = 
{{a},{b},{a,b},{a,c}, {b,d},{b,c},{a,b,c},{a,b,d},{b,c,d}}.                       
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Let  = {a,b,c,d} with ={{a},{d},{b,c}} and Y={a,c}. 

Then the nano topology (Y) = { , , 

{a},{b,c},{a,b,c}}and ={b}. (Y) ={{a},{b}, 

{a,b},{b,c},{a,b,c}}. Define  by (a)=b, (b)=a, 

f(c)=c, f(d)=d . (b)=a, (a)=b, (a,b)=(a,b), 

(b,c)=(a,c), (a,b,c)=(a,b,c). Therefore for every 

Micro-open set  in ,  is Micro-b-open in . 

Hence is Micro-b-continuous. 
 
The following theorem characterizes Micro-b continuous 
functions in terms of Micro-b-closed sets. 
 

Theorem 4.3:A function  

(  is Micro-b-continuous iff the inverse 

image of every Micro-b-closed set in  is Micro closed in . 
 
Proof:   

Let  (  be 

Micro-b-continuous and  be Micro-b-closed in . That is -

 is Micro-b-open in . Since  is Micro continuous, 

( ) is Micro closed in . Thus the inverse image of every  

Micro-b-closed set in  is Micro closed in   Conversely , 

Suppose the inverse image of every Micro-b-closed set in  is 

Micro closed in  Let G be Micro-b-open in  Then  

is Micro-b-closed in . (  is Micro-b-closed in . 

That is  is Micro closed in . Therefore 

 is Micro open in  Hence  be Micro-b-continuous 

in  
 
The following theorem, we estabilish a characterization of 
Micro-b-continuous functions in terms of Micro-b-closure. 
 

Theorem 4.4. A function ( (X), (X))  ( , (Y), 

(Y)) is Micro-b-continuous iff  

(  for every 

subset A of  
 
Proof: 

Let  (  be 

Micro-b-continuous and . Then 

 is Micro-b-closed in  

Since f is Micro-b-continuous, (M is 

Micro closed in . Since 

 Thus ( ) is Micro-b-closed set 
containing A. Therefore  

That is 

 Conversely ,   

Let  for every 

subset of  of . If F is Micro-b-closed in  then 

 That is 

.  Therefore  is Micro-b-closed in  for every Micro-

b-closed set  in . Hence  is Micro-b-continuous. 
 

Theorem 4.5. A function , (X), (X))  ( , (Y), 

(Y)) be two Micro topological space. Then  is 
Micro-b-continuous function iff 

 
 
Proof:   
 

Suppose (   is 

Micro-b-continuous and - is Micro-b-closed 

in . Then ( - ( (A))) is Micro-b-closed in . 
Consequently,  Mic-

 Since , we have 

. Therefore, 

 Hence,  ….(1) 
Conversely, suppose 

. Let  be Mic-

b-closed set in , . By hypothesis, 
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. By equation (1)                 

 

Therefore,  Always,  

 Hence  is 

Micro-b-closed in  and  is Micro-b-continuous. 
 
In the following theorem, we characterize Micro-b-
continuous functions in terms of inverse image of  Micro 
closure. 
 
Theorem 4.6. A function 

 is Micro-
b-continuous if and only if 

 for 

every subset B of . 
 
Proof:    

Let  (  be a 

Micro-b-continuous and Mic  is Micro-

b-closed in  and hence Mic  is Micro 

closed in .  

Therefore, Mic

. Since 

,
. That implies 

.                      That is 

 for 

every . 

Conversely,  Let  be Micro-b-closed in .      Then 

. By assumption 

Mic

. Thus  

. But 

. Therefore, 

. Therefore,  is 

Micro closed in  for every Micro-b-closed set in  

Hence  is Micro-b-continuous on .   
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