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I. INTRODUCTION 

 
 In 2000,G.B.Navalagi [1] presented the idea of Semi-

-open sets in topological spaces.The concept of Nano 
topology was introduced by LellisThivagar [3] in the year 
2013 which has defined in terms of approximations and 
boundary region of a subset of an universe using an 
equivalence relation on it. In 2018, S.Chandrasekar [6] 
introduced the concept of Micro topology by using the Nano 
topology. In this paper we introduce Micro-Semi Alpha-open 
sets, Micro-Semi Alpha-closed sets, Micro-Semi Alpha-
interior and Micro-Semi Alpha-closure. 

 

Throughout this paper, ( , ( ), ( )) (or simply 

) always mean a Micro topological space (or simply 
M.T.S.). The complement of a Micro-open set (briefly Mic-
O.S.) is called a Micro-closed set (briefly Mic-C.S.) in 

( , ( ), ( )) . For a set in a M.T.S. 

( , ( ), ( )) ,Mic-cl( ) and Mic-int( ) denote the 

Micro-closure of  and Micro-interior of  respectively. 
 
 
 

II. PRELIMINARIES 
 

Definition 2.1 [6, 7]: The subset  of a Micro topological 

space ( , ( ), ( )) is said to be:                  
                       

(i)A Micro-pre-open set (briefly Mic-p-O.S.) if Mic-

int(Mic-cl( )).The complement of a Mic-p-O.S. is called a 
Micro-pre-closed set (briefly Mic-p-C.S.) 

in( , ( ), ( )).The family of all Mic-p-O.S. (resp.Mic-

p-C.S.)of  is denoted by Mic-p.O( ,X)(resp.Mic-p.C 

( ,X)).                                                          

 (ii) AMicro-semi-open set (briefly Mic-s-O.S.) if Mic-

cl(Mic-int( )).The complement of a Mic-s-O.S. is called a 
Micro-semi-closed set (briefly Mic-s-C.S.) 

in( , ( ), ( )). The family of all Mic-s-O.S. (resp.Mic-

s-C.S.) of   is denoted by Mic-s.O ( ,X)(resp.Mic-s.C 

( ,X)).                           

  (iii)AMicro- -open set (briefly Mic- -O.S.) if Mic-

int(Mic-cl(Mic-int( ))). The complement of a Mic- -O.S. is 

called a Micro- -closed set (briefly Mic- -C.S.) 

in( , ( ), ( )). The family of all Mic- -O.S. (resp.Mic-

-C.S.) of   is denoted by Mic- .O ( ,X) (resp.Mic-

.C( ,X)).        
                                                       
Definition 2.2 [6, 7]:  
 

(i) The Micro-pre-interior of a set  of a Micro topological 

space ( , ( ), ( ))  is the union of all Mic-p-O.S. 

contained in  and is denoted by Mic-p-int( ).                                                         

(ii)The Micro-semi-interior of a set  of a Micro topological 

space ( , ( ), ( )) is the union of all Mic-s-O.S. 

contained in  and is denoted by Mic-s-int( ).                                                                                                                        
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(iii)The Micro- -interior of a set  of a Micro topological 

space ( , ( ), ( )) is the union of all Mic- -O.S. 

contained in  and is denoted by Mic- -int( ).    
 
Definition 2.3 [6, 7]: 
 

(i)The Micro-pre-closure                    of a set  of a Micro 

topological space ( , ( ), ( )) is the intersection of all 

Mic-p-C.S. that contain  and is denoted byMic-p-cl( ). 

(ii) The Micro-semi-closure of a set of a Micro topological 

space ( , ( ), ( )) is the intersection of all Mic-s-C.S. 

that contain and is denoted by Mic-s-cl( ).                                                                                                               

(iii) The Micro- -closure of a set  of a Micro topological 

space ( , ( ), ( ))  is the intersection of all Mic- -C.S. 

contain  and is denoted by Mic- -cl( ).        
 
Proposition 2.4 [7]:In a Micro topological 

space( , ( ), ( )), then the following statements hold:                                                                                                                                   

(i) Every Mic-O.S. (resp. Mic-C.S.) is aMic- -O.S. (resp.Mic-

-C.S.).                       

(ii) Every Mic- -O.S. (resp.Mic- -C.S.) is a Mic-s-O.S. 
(resp.Mic-s-C.S.).                      

(iii) Every Mic- -O.S. (resp.Mic- -C.S.) is a Mic-p-O.S. 
(resp.Mic-p-C.S.). 
 

Proposition 2.5 [7]:A subset of a M. 

T.S.( , ( ), ( ))  is aMic- -O.S. if and only if  is a 
Mic-s-O.S. and Mic-p-O.S.. 
 
Lemma 2.6:  

(i) If  is a Mic-O.S., then Mic-s-cl( ) = Mic-int(Mic-

cl( )).                                                              

  (ii) If  is a subset of a M.T.S. ( , ( ), ( )), then 

Mic-s-int(Mic-csl( )) = Mic-cl(Mic-int(Mic-cl( ))). 
 

III. MICRO-SEMI- -OPEN SETS 
 

Definition 3.1: A subset  of a M.T.S.( , ( ), ( )) is 

called Micro-Semi- -open set(briefly Mic- -O.S.) if there 

exists a Mic- -O.S. in  such that Mic-cl( ) or 

equivalently if Mic-cl(Mic- -int( )). The family of all 

Mic- -O.S. of  is denoted by Mic- O ( , X). 
 

Definition 3.2: The complement of Mic- -O.S.is called a 

Micro-Semi- -closed set (briefly Mic- -C.S.). The family of 

all Mic- -C.S. of  is denoted by Mic- C ( , X). 
 

Example 3.3: Let  = {a,b,c,d} with  = 

{{a},{c},{b,d}} and X = {a,b} , ( ) = 

{ , ,{a},{a,b,d},{b,d}}.Then = {b}.Mic-O ( , X) = 

( ) = { , ,{a},{b},{a,b,d},{a,b},{b,d}}.Mic-C ( , X) = 

{ , ,{c},{a,c,d},{b,c,d},{a,c},{c,d}}. The family of all Mic-

-O.S. of  is:Mic- O( , X) = 

{ , ,{a},{b},{a,b,d},{a,b},{b,d},{a,b,c}}.The family of 

allMic- -O.S. of  is: Mic- O ( , X) = 

{ , ,{a},{b},{a,b,d},{a,b},{b,d},{b,c},{a,c},{a,b,c},{b,c,d}

}. The family of all Mic- -C.S. of  is: Mic- C ( , X) = 

{ , ,{c},{d},{a,c,d},{b,c,d},{a,c},{c,d}}. The family of all 

Mic- -C.S. of  is: Mic- C ( , X) = 

{ , ,{c},{d},{a,c,d},{b,c,d},{a,c},{c,d},{a},{a,d},{b,d}}. 
 

Remark 3.4: In a M.T.S. ( , ( ), ( )),then the 
following statements hold: 
 

(i) Every Mic-O.S.(resp. Mic-C.S.) is a Mic- -O.S. (resp. 

Mic- -C.S.).                                                                                                                                                               

(ii) Every Mic- -O.S. (resp. Mic- -C.S.) is a Mic- -O.S. 

(resp. Mic- -C.S.). 
 
The converse of the above remark need not be true as shown 
in the following example. 
 
Example 3.5: In example 3.3, we have 
 

 (i) the sets {a,c},{b,c},{a,b,c} and {b,c,d} areMic- -O.S. 
but not Mic-O.S..  

(ii) Also, the sets {a,c},{b,c} and {b,c,d} are Mic- -O.S. but 

not Mic- -O.S.. 
 
Remark 3.6: If every Mic-O.S. is aMic-C.S., then the 
following conditions are hold:  
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(i) Every Mic- -O.S.is a Mic- -O.S..  

(ii) Every Mic- -O.S. is a Mic-p-O.S.. 
(iii) If every Mic-nowhere dense set is a Mic-C.S., then every 

Mic- -O.S. is a Mic-O.S.. 
 
Theorem 3.7: Every Mic-s-O.S.and Mic-p-O.S. of any 

M.T.S.( , ( ), ( )) is a Mic- -O.S..      
 
Proof: This follows from proposition (2.5) and remark (3.4) 
(ii). 
 

Theorem 3.8: For any subset  of a M.T.S. 

( , ( ), ( )), Mic- O ( , X) iff there exists a 

Mic-O.S. such that Mic-int(Mic-cl( )). 
 

Proof: Let  be a Mic- -O.S..Then Mic-int(Mic-

cl(Mic-int( ))), so let  = Mic-int( ), we get Mic-

int( ) Mic-int(Mic-cl(Mic-int( ))). Then there 

exists a Mic-O.S.Mic-int( )  such that Mic-

int(Mic-cl( )), where  = Mic-int( ). 
 

Conversely, suppose that there is a Mic-O.S. such that 

Mic-int(Mic-cl( )).Since Mic-int( ) is the 

largest Mic-O.S. contained in ,we get Mic-int( ).                                          

Then Mic-cl( ) Mic-int(Mic-cl( ) implies that  Mic-

int(Mic-cl( )) Mic-int(Mic-cl(Mic-int( ))). Hence 

Mic-int(Mic-cl(Mic-int( ))). Therefore, Mic- O 

( , X). 
 

Theorem 3.9: For any subset  of a M.T.S. 

( , ( ), ( )) . The following properties are equivalent:                                                                                                                                                                        
 

(i) Mic- O ( , X). 

(ii) There exists a Mic-O.S. say  such that Mic-

cl(Mic-int(Mic-cl( ))).   

 (iii) Mic-cl(Mic-int(Mic-cl(Mic-int( )))). 
 

Proof: (i) (ii) Let Mic- O ( , X). Then there exists 

Mic- O ( , X), such that Mic-cl( ). Then 

there exists Mic-O.S. such that Mic-int(Mic-

cl( )) (by theorem 3.8). Therefore, Mic-cl( ) Mic-cl( ) 

Mic-cl(Mic-int(Mic-cl( ))), implies that Mic-cl( ) Mic-

cl(Mic-int(Mic-cl( ))). Hence Mic-cl( ) 

Mic-cl(Mic-int(Mic-cl( ))). Therefore, Mic-

cl(Mic-int(Mic-cl( ))), for some Mic-O.S..              (ii) 

(iii) Suppose thatthere exists a Mic-O.S.  such that 

Mic-cl(Mic-int(Mic-cl( ))). We know that Mic-

int( ) . On the other hand, Mic-cl( ) (since 

Mic-int( ) is the largest Mic-O.S. contained in ). 

ThenMic-cl( ) Mic-cl(Mic-int( )), then Mic-int(Mic-

cl( )) Mic-int(Mic-cl(Mic-int( ))), therefore Mic-cl(Mic-

int(Mic-cl( ))) Mic-cl(Mic-int(Mic-cl(Mic-int( )))). 

Hence Mic-cl(Mic-int(Mic-cl( ))) Mic-cl(Mic-

int(Mic-cl(Mic-int( )))), thus Mic-cl(Mic-int(Mic-

cl(Mic-int( )))).                                                   (iii) (i) 

Let Mic-cl(Mic-int(Mic-cl(Mic-int( )))). To prove: 

Mic- O ( , X).Let  = Mic-int( ). Since Mic-

int(Mic-cl(Mic-int( ))) Mic-cl(Mic-int( )), then Mic-

cl(Mic-int(Mic-cl(Mic-int( )))) Mic-cl(Mic-cl(Mic-

int( ))) = Mic-cl(Mic-int( )). But Mic-cl(Mic-

int(Mic-cl(Mic-int( )))) (by hypothesis). Hence Mic-

cl(Mic-int(Mic-cl(Mic-int( )))) Mic-cl(Mic-int( )) 

Mic-cl(Mic-int( )). Hence there exists a Mic-O.S. 

say  such that Mic-cl( ). On the other hand,  

is a Mic- -O.S..Hence Mic- O ( , X).  
 

Corollary 3.10:For any subset  of a M.T.S. 

( , ( ), ( )) . The following properties are equivalent:  
                                                                                                                             

(i) Mic- C ( , X).                                                                                                                           

(ii) There exists a Mic-C.S.  such that Mic-int(Mic-cl(Mic-

int( ))) .                                                                  

(iii) Mic-int(Mic-cl(Mic-int(Mic-cl( )))) . 
 
Proof: This follows directly from the theorem (3.9). 
 

Proposition 3.11: The union of any family of Mic- -O.S. is a 

Mic- -O.S.. 
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Proof: Let  be a family of Mic- -O.S. of  To 

prove:  is a Mic- -O.S., that is, Mic-

int(Mic-cl(Mic-int( ))). Then Mic-int(Mic-

cl(Mic-int( ))), i  Since Mic-int( ) Mic-

int( ) and Mic-cl( ) Mic-cl( ) hold 

for any Micro topology, we have Mic-

int(Mic-cl(Mic-int( ))) Mic-int( Mic-cl(Mic-

int( ))) Mic-int(Mic-cl( Mic-int( ))) Mic-int(Mic-

cl(Mic-int( ))).Hence  is aMic- -O.S.. 
 

Theorem 3.12: The union of any family of Mic- -O.S. is a 

Mic- -O.S.. 
 

Proof:Let  be a family of Mic- -O.S.of  To 

prove:  is a Mic- -O.S..Since Mic- O ( , 

X), then there is a Mic- -O.S. such that Mic-

cl( ), i  Hence Mic-

cl( ) Mic-cl( ). By proposition (3.11), 

Mic- O ( , X).. Hence Mic- C 

( , X). 
 

Corollary 3.13: The intersection of any family of Mic- -

C.S. is a Mic- -C.S.. 
 
Proof: This follows directly from the theorem (3.12). 
 

Remark 3.14: (i) The union of any two Mic- -C.S. is not 

necessary Mic- -C.S.                                                         (ii) 

The intersection of any two Mic- -O.S. is not necessaryMic-

-O.S.. 
 
Example 3.15: In example (3.3), we have(i) {a,c} and {b,c} 

are two Mic- -O.S., but {a,c} {b,c} = {c} is not  aMic- -

O.S.. (ii) {a} and {b,d} are Mic- -O.S., but {a} {b,d} = 

{a,b,d} is not aMic- -O.S.. 
 
 
 
 
 

IV. MICRO-SEMI- -INTERIOR AND MICRO-SEMI-

-CLOSURE 
 

Definition 4.1: The union of all Mic- -O.S. in a M.T.S. 

( , ( ), ( )) contained in  is called Micro- -

interior of  and is denoted byMic- -int( ), Mic- -

int( ) = {  : ,  is a Mic- -O.S.}. 
 

Definition 4.2: The intersection of all Mic- -C.S. in a 

M.T.S. ( , ( ), ( )) containing  is called Micro- -

closure of  and is denoted by Mic- -cl( ), Mic- -

cl( ) = {  : ,  is a Mic- -C.S.}. 
 

Proposition 4.3: Let  be any set in a M.T.S. 

( , ( ), ( )), the following properties are true:(i) Mic-

-int( ) =  iff  is a Mic- -O.S..                                                           

(ii) Mic- -cl( ) =  iff  is a Mic- -C.S..    (iii) Mic-

-int( ) is the largest Mic- -O.S. contained in .                                                         

(iv)Mic- -cl( ) is the smallest Mic- -C.S. containing .     
                                                                                            
Proof: (i), (ii), (iii) and (iv) are obvious. 
 

Proposition 4.4: Let  be any set in a M.T.S. 

( , ( ), ( )), the following properties are true:  (i) Mic-

-int( ) =  (Mic- -cl( ))                                     

(ii) Mic- -cl( ) = (Mic- -int( ). Proof: (i) By 

definition (4.2), Mic- -cl( ) = {  : ,  is a Mic-

-C.S.}.                      Now,  (Mic- -cl( )) =  

{  : ,  is a Mic- -C.S.} = {  

: ,  is a Mic- -C.S.} = {  : , 

 is a Mic- -O.S.} = Mic- -int( ) .                       
(ii) The proof is similar to (i). 
 

Theorem 4.5: Let  and  be two sets in a 

M.T.S.( , ( ), ( )), the following properties hold: 

(i)Mic- -int( ) = , Mic- -int( ) = .  (ii) Mic- -

int( ) .  (iii) Mic- -int( ) Mic- -

int( ). (iv) Mic- -int( ) Mic- -int( ) Mic- -

int( ).   (v) Mic- -int( ) Mic- -
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int( ) Mic- -int( ).   (vi) Mic-

-int(Mic- -int( )) =Mic- -int( ).       
 
Proof: (i), (ii), (iii), (iv),(v) and (vi) are obvious. 
 

Corollary 4.6: Let  and  be two sets in a 

M.T.S.( , ( ), ( )), the following properties hold: (i) 

Mic- -cl( ) = , Mic- -cl( ) = (ii) Mic- -cl( ) 

.   (iii) Mic- -cl( ) Mic- -

cl( ).     (iv) Mic- -cl( ) Mic- -cl( ) Mic- -

cl( ).    (v) Mic- -cl( ) Mic-

-cl( ) Mic- -cl( ).   (vi) Mic-

-cl(Mic- -cl( )) = Mic- -cl( ).     
 
Proof: This proof follows from theorem (4.5). 
 

Theorem 4.7: For any subset  of a M.T.S. 

( , ( ), ( )), then:                                              

(i) Mic-int( ) Mic- -int( ) Mic- -int( ) Mic- -

cl( ) Mic- -cl( ) Mic- ( ) (ii) Mic-int(Mic- -

int( ) = Mic- -int(Mic-int( )) = Mic-int( ).  (iii) 

Mic- -int(Mic- -int( )) = Mic- -int(Mic- -int( )) 

=Mic- -int( ).(iv) Mic-cl(Mic- -cl( ) = Mic- -cl(Mic-

cl( )) = Mic-cl( ). (v) Mic- -cl(Mic- -cl( )) = Mic- -

cl(Mic- -cl( )) =Mic- -cl( ).(vi) Mic-int(Mic- ( )) 

Mic- -int(Mic- -cl( )). 
 
Proof: (i) obvious.    

 (ii) Since Mic-int( ) is a Mic-O.S., then Mic-int( ) 

is a Mic- -O.S.. This implies thatMic- -int(Mic-int( )) = 

Mic-int( ) (by proposition (4.3)) Mic- -int(Mic-int( )) 

= Mic-int( ). Since Mic-int( ) Mic- -int( ) Mic-

int(Mic-int( )) Mic-int(Mic- -int( )) Mic-int( ) 

Mic-int(Mic- -int( )). Also Mic- -int( ) 

Mic-int(Mic- -int( )) Mic-int( ). Hence Mic-

int(Mic- -int( ) =Mic-int( ). This proves (ii).  

 (iii) Since Mic- -int( ) is a Mic- -O.S.,then Mic-

-int( ) is a Mic- -O.S.. Mic- -int(Mic- -int( )) = 

Mic- -int( ) (by proposition (4.3)). Therefore Mic- -

int(Mic- -int( )) =Mic- -int( ). Since Mic- -int( ) 

Mic- -int( ) Mic- -int(Mic- -int( )) Mic- -

int(Mic- -int( )) Mic- -int( ) Mic- -int(Mic- -

int( )). Also Mic- -int( ) Mic- -int(Mic- -

int( )) Mic- -int( ). Hence Mic- -int(Mic- -int( ) 

=Mic- -int( ( ). This proves (iii).  (iv) and (v) 

follows from (ii) and (iii).  (vi) Since Mic- -cl( ) 

is a Mic- -C.S., then Mic-int(Mic-cl(Mic-int(Mic-cl(Mic- -

cl( ))))) Mic- -cl( ) (by corollary (3.10)). Therefore, 

Mic-int(Mic- ( )) Mic-int(Mic-cl(Mic-int(Mic-cl( )))) 

Mic- -cl( ) (by part (iv)). HenceMic- -int(Mic-

int(Mic- ( ))) Mic- -int(Mic- -cl( )) Mic-

int(Mic- ( )) Mic- -int(Mic- -cl( )) (by part (ii)). 
 

Theorem 4.8:For any subset  of a M.T.S. 

( , ( ), ( )). The following properties are equivalent: 

(i) Mic- O ( , X).   (ii) Mic-

cl(Mic-int(Mic-cl( ))), for some Mic-O.S., . 

 (iii) Mic-s-int(Mic-cl( )), for some 

Mic-O.S., .   (iv) Mic-s-int(Mic-

cl(Mic-int( ))).               Proof:  (i) (ii) Let Mic-

O ( , X), then Mic-cl(Mic-int(Mic-cl(Mic-int( )))) 

and Mic-int( ) . Hence Mic-cl(Mic-int(Mic-

cl( ))), where  = Mic-int( ) . (ii) (iii)  Suppose 

Mic-cl(Mic-int(Mic-cl( ))), for some Mic- -

O.S., .But Mic-s-int(Mic-cl( )) = Mic-cl(Mic-int(Mic-

cl( ))) (by lemma (2.6)). Then Mic-s-int(Mic-

cl( ))), for some Mic- -O.S., . (iii) (iv)  

Suppose Mic-s-int(Mic-cl( )), for some Mic- -

O.S., .Since  is a Mic-O.S. contained in . Then 

Mic-int( ) Mic-cl( ) Mic-cl(Mic-

int( )) Mic-s-int(Mic-cl( )) Mic-s-int(Mic-cl(Mic-

int( ))). By hypothesis, we get Mic-s-int(Mic-cl(Mic-

int( ))).   (iv) (i)  Let Mic-

s-int(Mic-cl(Mic-int( ))). But Mic-s-int(Mic-cl(Mic-int( ))) 

= Mic-cl(Mic-int(Mic-cl(Mic-int( )))) (by lemma (2.6)). 

Hence Mic-cl(Mic-int(Mic-cl(Mic-int( )))) 

Mic- O ( , X).                                                                                                                           
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Corollary 4.9: For any subset  of a M.T.S. 

( , ( ), ( )). The following properties are equivalent: 

(i) Mic- C( , X). 

(ii) Mic-int(Mic-cl(Mic-int( ))) , for some Mic-

C.S., .    

(iii)Mic-s-cl(Mic-int( ))) ,for some Mic-C.S.,  

(iv) Mic-s-cl (Mic-int(Mic-cl( ))) .      
 
Proof: This follows from theorem (4.8). 
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