On Micro-Regular Open Sets And Micro-Regular Continuous In Micro Topological Spaces

R. Malathi¹, Dr. J. Rajakumari² ¹Dept of MATHEMATICS ²Assistant Professor, Dept of MATHEMATICS ^{1, 2} Aditanar College of Arts and Science, Tiruchendur –TamilNadu

Abstract- Micro topology was introduced by S. Chandrasekar. The purpose of this paper is to define and study a new class of sets called Micro-Regular open sets in Micro topological Spaces. Basic properties of Micro-Regular open sets are analyzed. Also we introduced Micro-Regular interior and Micro-Regular closure and their properties are investigated. We also used this set to introduce the new type of continuous functions called Micro-Regular continuous function and its properties are investigated.

Keywords- Micro-Regular open sets, Micro-Regular interior, Micro-Regular closure, Micro-Regular continuous.

Mathematics Subject Classification: 54A05, 54C05, 54B05, 54C10.

I. INTRODUCTION

In 1937, Stone [3] introduced the concept of regular open sets in Topological Spaces. Nano Topology introduced by Thivagar [4] in the year 2013. The concept of Micro Topology was introduced by S. Chandrasekar [6] in the year 2018. In this paper, we introduce Micro-Regular open sets, Micro-Regular continuous functions and some of their properties are investigated.

II. PRELIMINARIES

Definition 2.1 [6]: $(U, \tau_R(X))$ is a Nano topological space here

 $\mu_{R}(X) = \{ N \cup (N' \cap \mu) \} \colon N, N' \in \tau_{R}(X) \text{ and}$ called its Micro topology of $\tau_{R}(X)$ by μ where $\mu \notin \tau_{R}(X)$.

Definition 2.2 [6]: The Micro Topology $\mu_{\mathbb{R}}(X)$ satisfies the following axioms.

(i) $\boldsymbol{U}, \boldsymbol{\emptyset} \in \boldsymbol{\mu}_{\boldsymbol{R}(X)}$.

(ii) The union of the elements of any sub-collection of \$\mu_R(X)\$ is in \$\mu_R(X)\$.
(iii) The intersection of the elements of any finite sub collection of \$\mu_R(X)\$ is in \$\mu_R(X)\$.

Then $\mu_{\mathbb{R}}(X)$ is called the Micro topology on U with respect to X. The triplet $(U_{J}\tau_{\mathbb{R}}(X), \mu_{\mathbb{R}}(X))$ is called Micro topological spaces and the element of $\mu_{\mathbb{R}}(X)$ are called Micro open sets and the complement of a Micro open set is called a Micro closed set.

Definition 2.3 [6]: The Micro interior of a set A is denoted by Mic-int(A) and is defined as $Mic-int(A) = U_{\{B:B \subseteq A, B \text{ is a Micro open set}\}}$. The Micro closure of a set A is denoted by Micro-cl(A) and is defined as Mic-cl(A) = $\bigcap_{\{B:A \subseteq B, B \text{ is a Micro closed set}\}}$.

Definition 2.4 [6, 7]: Let $(U, \tau_R(X), \mu_R(X))$ be a Micro topological space and $A \subseteq U$. Then A is said to be: (i) Micro-semi open if $A \subseteq$ Mic-cl(Mic-int(A)). (ii) Micr-pre open if $A \subseteq$ Mic-int(Mic-cl(A)). (iii) Micro-b open if $A \subseteq$ Mic-int(Mic-cl(A)) U Mic-cl(Mic-int(A)). (iv) Micro- α open if $A \subseteq$ Mic-int(Mic-cl(Mic-int(A))). (v) Micro-semi-pre open

if A \subseteq Mic-cl(Mic-int(Mic-cl(A)))

Theorem 2.5 [7]: If A is Micro open in
$$(U, \mathbf{r}_R(X), \boldsymbol{\mu}_{R(X)})$$
, then it is Micro- α open in U.

Proof: Since A is Micro open in $(U, \tau_R(X), \mu_{R(X)})$, (Mic-int(A) = A. Then Mic-cl(Mic-int(A)) = Mic-cl(A). Since Mic-cl(A) \supseteq A, Mic-cl(Mic-int(A) \supseteq A. Thus Mic-int(Mic-int(A))

 $cl(Mic-int(A))) \supseteq Mic-int(A)$. Hence $A \subseteq Mic-int(Mic-cl(Mic-int(A)))$.

III. MICRO-REGULAR OPEN SETS

Definition 3.1: Let $(U, \tau_R(X), \mu_R(X))$ be a Micro topological space and $A \subseteq U$. Then A is said to be Micro-Regular open if A =Mic-int(Mic-cl(A)).

Definition 3.2: Let $(U, \tau_R(X), \mu_R(X))$ be a Microtopological space and $A \subseteq U$. Then A is said to be Micro-Regular closed if its complement is Micro-Regular open in U. That is A = Mic-cl(Mic-int(A)).

Example 3.3: Let $U = \{a,b,c,d\}$ with $U/R = \{\{a\}, \{c\}, \{b,d\}\}\)$ and $X = \{b,d\}$. Then the Nano topology $\tau_R(X) = \{U, \emptyset, \{b,d\}\}\)$ and $\mu = \{b\}$ Micro open sets are $\mu_R(X) = \{U, \emptyset, \{b\}, \{b,d\}\}$. Here Micro-Regular open sets is U, \emptyset .

Theorem 3.4: Every Micro-Regular open set is Micro open.

Proof: Let A be a Micro open set in $(U, \tau_R(X), \mu_R(X))$. Then A = Mic-int (Mic-cl(A)) Now, Mic-int(A) = Mic-int (Mic-int(Mic-cl(A)) = Mic-int(Mic-cl(A)) = A. Hence A is Micro-Regular open in U.

Remark 3.5: The converse of the above theorem need not be true as shown in the following example.

Example 3.6: Let $U = \{a,b,c,d\}$ with $U/R = \{\{a\},\{b,c\},\{d\}\}$ and $X = \{a,c\}$. Then the Nano topology ${}^{T}R(X) = \{U, \emptyset, \{a\},\{a,b,c\}\{b,c\}\}$ and $\mu = \{b\}$. Micro open sets are $\mu R(X) = \{U, \emptyset, \{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\}\}$ and Micro closed sets is $\mu_{R}^{\sigma} = \{U, \emptyset, \{b,c,d\},\{a,c,d\},\{c,d\},\{a,d\}\}$. The Micro-Regular open sets are $U, \emptyset, \{a\}$ and $\{b,c\}$. Since $\{a,b,c\}$ is Micro open but it is not Micro-Regular open in U.

Remark 3.7: The union of two Micro-Regular open sets need not be Micro-Regular open as shown in the following example.

Example 3.8: In example 3.6, we have $\{a\}$ and $\{b,c\}$ are Micro-Regular open but $\{a\}^{\bigcup}\{b,c\} = \{a,b,c\}$ is not Micro-Regular open in U.

Remark 3.9: The intersection of two Micro-Regular closed sets need not be Micro-Regular closed as shown in the following example.

Example 3.10:In example 3.6, the Micro-Regular closed sets are U, \emptyset , {a,d}and{b,c,d} but {a,d} \bigcap {b,c,d} = {d} is not Micro-Regular closed in U.

Theorem 3.11: Every Micro-Regular open set is Micro-Pre open.

Proof: Let A be a Micro-Regular open set in $(U, \tau_R(X), \mu_R(X))$. Then A = Mic-int (Mic-cl(A)). Hence A \subseteq Mic-int(Mic-cl(A)). Thus A is Micro-Pre open.

Theorem 3.12: Every Micro-Regular open set is Micro-b open.

Proof: Let A be a Micro-Regular open set in $(U, \tau_R(X), \mu_R(X))$. Then A=Mic-int (Mic-cl(A)). Hence A \subseteq Mic-int(Mic-cl(A)) \cup Mic-cl(Mic-int(A)). Thus A is Micro-b open.

Theorem 3.13: Every Micro-Regular open set is Micro- α open.

Proof: Let A be a Micro-Regular open set in $(U, \tau_R(X), \mu_{R(X)})$. By theorem 2.5&3.4, A is Micro- α open.

Theorem 3.14: Every Micro-Regular open set is Micro-semi open.

Proof: Let A be a Micro-Regular open set in $(U, \tau_R(X), \mu_R(X))$. By theorem 3.13, we have A is Micro- α open. That is A \subseteq Mic-int(Mic-cl(Mic-int(A))). This implies A \subseteq Mic-cl(Mic-int(A)). Thus A is Micro-semi open.

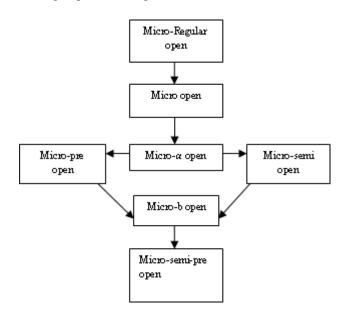
Theorem 3.15: Every Micro-Regular open set is Micro-semipre open.

Proof: Let A be a Micro-Regular open set in $(U, \tau_R(X), \mu_R(X))$. By theorem 3.11, we have A is Micro-pre open. That is $A \subseteq$ Mic-int(Mic-cl(A)). Hence $A \subseteq$ Mic-cl (Mic-int(Mic-cl(A))). Thus A is Micro-semi-pre open.

Remark 3.16: The converse of the above theorem need not true which can be seen from the following example.

Example 3.17: Let $U = \{a,b,c,d\}$ with $U/R = \{\{a\}, \{b,c\}, \{d\}\}$ and $X = \{a,c\}$. Then the nano topology $\tau_R(X) = \{U, \emptyset, \{a\}, \{a,b,c\} \{b,c\}\}$ and then $\mu = \{b\}$. Micro open sets are $\mu_R(X) = \{U, \emptyset, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$. The Micro-Regular open sets are $U, \emptyset, \{a\}$ and $\{b,c\}$. Now, $U, \emptyset, \{b\}, \{a,b\}, \{a,b,c\}$ and $\{a,b,d\}$ are Micro- α open but it is not Micro-Regular open. Now, $U, \emptyset, \{b\}, \{a,b\}, \{a,d\}, \{b,d\}$ and $\{b,c,d\}$ are Micro-semi open but they are not Micro-Regular open. Here $U, \emptyset, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}$ and $\{b,c,d\}$ are Micro-Pre open but they are not Micro-Regular open. Now $U, \emptyset, \{b\}, \{a,b\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}$ and $\{b,c,d\}$ are Microb open but it is not Micro-Regular open. Here $U, \emptyset, \{b\}, \{a,b\}, \{a,d\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}$ and $\{b,c,d\}$ are Microsemi-pre open but it is not Micro-Regular open.

Remark 3.18: From the above theorems we have the following implication diagram.



Definition 3.19: The union of all Micro-Regular open sets in a Micro topological space $(U, \tau_R(X), \mu_{R(X)})$ contained in A is called Micro-Regular-interior of A and is denoted Mic-R-int(A) = U {B:B \subseteq A, B is a Micro-Regular open set}.

Definition 3.20: The intersection of all Micro-Regular closed sets in a Micro topological space $(U, \tau_R(X), \mu_R(X))$ containing A is called Micro-Regular-closure of A and is

denoted by $Mic-R-cl(A) = \bigcap \{B:A \subseteq B, B \$ is a Micro-Regular $closed set\}.$

VI. MICRO-REGULAR CONTINUOUS FUNCTIONS

Definition 4.1: Let $(U, \tau_R(X), \mu_{R(X)})$ and $(V, \tau'_R(Y), \mu'_R(Y))$ be two Micro topological spaces. Then the mapping $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau'_R(Y), \mu'_R(Y))$ is said to be Micro-Regular continous if $f^{-1}(B)$ is Micro-Regular open in U for every Micro open set B in V.

Example 4.2: Let U={1,2,3,4} with U/R = {{1}, {3}, {2,4}} and X = {1,2}, $\tau_R(X) = \{U, \emptyset, \{1\}, \{1,2,4\}, \{2,4\}\}, \mu =$ {3}. $\mu_R(X) = \{U, \emptyset, \{1\}, \{3\}, \{1,3\}, \{2,4\}, \{2,3,4\}, \{1,2,4\}\}$ and Micro-Regular open sets are U, $\emptyset, \{1\}, \{3\}, \{1,3\}, \{2,4\}, \{2,3,4\}, \{1,2,4\}$. Let V = {a,b,c,d} with U/R = {{a}, {c}, {b,d}} and Y = {b,d}, $\tau_R'(Y) = \{U, \emptyset, \{b,d\}\}, \mu = {b}, \mu_R'(Y) =$ {U, $\emptyset, \{b\}, \{b,d\}$. Define f:(U, $\tau_R(X), \mu_R(X)) \rightarrow (V, \tau_R'(Y), \mu_R'(Y))$ by $f(1) = {b}, f(3) = {d}, f(2) = {a} and f(4) = {c}. Then f^{-1}(b) = {1} and f^{-1}(b,d) = {1,3}. Hence f is Micro-Regular continuous.$

Theorem 4.3: Every Micro-Regular continuous function is Micro continuous.

Proof:

Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau'_R(Y), \mu'_R(Y))$ be a Micro-Regular continuous function and B be a Micro open set in V. Since f is Micro-Regular continuous, $f^{-1}(B)$ is Micro-Regular open in U. By theorem3.4, $f^{-1}(B)$ is Micro open in U. Hence f is Micro continuous.

Theorem 4.4.: Every Micro-Regular continuous function is Micro-pre continuous.

Proof:

Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau_R'(Y), \mu_R'(Y))$ be a Micro-Regular continuous function and B be a Micro open set in V. Since f is Micro-Regular continuous, $f^{-1}(B)$ is Micro-Regular open in U. By theorem3.11, $f^{-1}(B)$ is Micro-pre open in U. Hence f is Micro-pre continuous. **Theorem 4.5:** Every Micro-Regular continuous function is Micro-b continuous.

Proof:

Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau_R'(Y), \mu_R'(Y))$ be a Micro-Regular continuous function and B be a Micro open set in V. Since f is Micro-Regular continuous, $f^{-1}(B)$ is Micro-Regular open in U. By theorem 3.12, $f^{-1}(B)$ is Micro-b open in U. Hence f is Micro-b continuous.

Theorem 4.6: Every Micro-Regular continuous function is Micro-semi continuous.

Proof:

Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau_R'(Y), \mu_R'(Y))$ be a Micro-Regular continuous function and B be a Micro open set in V. Since f is Micro-Regular continuous, $f^{-1}(B)$ is Micro-Regular open in U. By theorem 3.14, $f^{-1}(B)$ is Micro-semi open in U. Hence f is Micro-semi continuous.

Theorem 4.7: Every Micro-Regular continuous function is Micro- α continuous.

Proof: Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau_R'(Y), \mu_R'(Y))$ be a Micro-Regular continuous function and B be a Micro open set in V. Since f is Micro-Regular continuous, $f^{-1}(B)$ is Micro-Regular open in U. By theorem 3.13, $f^{-1}(B)$ is Micro- α open in U. Hence f is Micro- α continuous.

Theorem 4.8: Every Micro-Regular continuous function is Micro-semi-pre continuous.

Proof: Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau_R'(Y), \mu_R'(Y))$ be a Micro-Regular continuous function and B be a Micro open set in V. Since f is Micro-Regular continuous, $f^{-1}(B)$ is Micro-Regular open in U. By theorem 3.15, $f^{-1}(B)$ is Micro-semi-pre open in U. Hence f is Micro-ssemi-pre continuous.

Remark 4.9: The converse of the above theorem need not true which can be seen from the following example.

Example 4.10:Let $U = \{a,b,c,d\}$ with $U/R = \{\{a\}, \{b,c\}, \{d\}\}$ and $X = \{a,c\}, \tau_{R}(X) = \{U, \emptyset, \{a\}, \{a,b,c\}, \{b,c\}\}$. Then $\mu = \{u, v\}$ $\{b\}, \mu_{\mathcal{R}}(X) = \{U, \emptyset, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$ and Micro-Regular open sets are U, $\overset{\emptyset}{=}$, {a} and {b,c}. Let $V = \{1, 2, 3, 4\}$ with $U/R = \{\{1\}, \{3\}, \{2, 4\}\}$ and $Y = \{2, 4\}$, $\tau'_{R}(Y)_{=\{U, \emptyset, \{2,4\}\}}$. Then $\mu = \{2\}$. $\mu'_{R}(Y) = \{U, \emptyset, \{2\}\}$. $f_{:}$ $(U, \tau_R(X), \mu_{R(X)})$ Define $\{2,4\}\}.$ \rightarrow (V, $\tau'_{R}(Y)$, $\mu'_{R}(Y)$) by $f(a) = \{2\}, f(b) = \{4\}, f(c) = \{4\}, f(c) = \{4\}, f(c) = \{1\}, 2\}$ {1} and $f(d)_{= \{2\}}$. Then $f^{-1}(2) = \{a\}$ and $f^{-1}(2,4) = \{a\}$ {a,b}. Here f is Micro continuous, Micro-pre continuous, Micro-b continuous, Micro-semi continuous, Micro-a continuous and Micro-semi-pre continuous. But not Micro-Regular continuous. Since {a,b} is not Micro-Regular open in U.

Theorem 4.11: Composition of two Micro-Regular continuous function is Micro-Regular continuous.

Proof:

Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau'_R(Y), \mu'_R(Y))$ and $\mathcal{G}:$ $((V, \tau'_R(Y), \mu'_R(Y)) \to (W, \tau''_R(Y), \mu''_R(Y))_{be two Micro-}$ Regular continuous function and B be a Micro open set in W. Since \mathcal{G} is Micro-Regular continuous, $\mathcal{G}^{-1}(B)$ is Micro-Regular open in V. Since every Micro-Regular open set is Micro open, $\mathcal{G}^{-1}(B)$ is Micro open in V. Again since f is Micro-Regular continuous, $f^{-1}(\mathcal{G}^{-1}(B))$ is Micro-Regular open in U. That is $(\mathcal{G} \circ f)^{-1}(B)$ is Micro-Regular open in U. Hence $\mathcal{G} \circ f$ is Micro regular continuous.

Theorem 4.12: Composition of Micro continuous function and Micro-Regular continuous function is Micro-Regular continuous.

Proof:

Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau'_R(Y), \mu'_R(Y))$ be a Micro-Regular continuous function and

Let $g_{:}(V, \tau_{R}'(Y), \mu_{R}'(Y)) \rightarrow (W, \tau_{R}''(Y), \mu_{R}''(Y))$ be Micro continuous function and B be a Micro open set in W. Since \mathcal{G} is Micro continuous, $\mathcal{G}^{-1}(B)$ is Micro open in V. Since f is Micro-Regular continuous. $f^{-1}(\mathcal{G}^{-1}(B))$ is Micro-Regular open in U. That is $(g \circ f)^{-1}(B)$ is Micro-Regular open in U. Hence $g \circ f$ is Micro regular continuous.

Theorem 4.13: A function $f: (U, \tau_R(X), \mu_{R(X)})$ $\rightarrow (V, \tau_R'(Y), \mu_R'(Y))$ is Micro-Regular continuous if and only if the inverse image of every closed set in V is Micro-Regular closed.

Proof:

Let $f: (U, \tau_R(X), \mu_{R(X)}) \to (V, \tau'_R(Y), \mu'_R(Y))_{be a}$ Micro-Regular continuous function and B be a Micro closed set in U. Then V-B is Micro open in V. Since f is Micro-Regular continuous, $f^{-1}(V-B)$ is Micro-Regular open in U. That is U- $f^{-1}(B)$ is Micro-Regular open in U. Hence $f^{-1}(B)$ is Micro-Regular closed in U. Conversely, Suppose G is a Micro open set in V. Then V-G is Micro closed in V. By hypothesis $f^{-1}(V-G)$ is Micro-Regular closed in U. Thus U $f^{-1}(G)$ is Micro-Regular closed in U. Hence $f^{-1}(G)$ is Micro-Regular open in U. Hence f is Micro-Regular continuous.

REFERENCES

- A. Dhanis Arul Mary, I. Arockia Rani, On b-open sets and b-continuous functions in Nano Topological spaces, Mathematical Science International Rearch Journal : Vol 3 Issue 2 (2014).
- [2] J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54 (1-2), 51-55, 1983.
- [3] M.H. Stone, Application of the theory of Boolean rings to general Topology, Trans Amer. Math. Soc, 41, 375-381, 1937.
- [4] M. L. Thivagar and C. Richard, On Nano forms of weakly open sets, International Journal ssof Mathematics and Statistics Invention, 1/1 31-37, 2013.
- [5] M. Lellis Thivagar and Carmel Richard, On nano continuity, Mathematical Theory and modelings, Vol.3, No.7, (32-37), 2013.
- [6] S. Chandraseker, On Micro Topological Spaces, Journal of New Theory, 26, 23-31, 2019.
- [7] S. Chandrasekar and G. Swathi, Micro-^{CC}-open sets in Micro Topological Spaces, International Journal of Research in Advent Technology, Vol.6, No.10 (2018).