Quotient of Ordered Join Hyper Lattices With A Regular Relation

Saravana Priya.G¹, Senthamil Selvi.V²

¹Assistant professor, Dept of mathematics

²Dept of mathematics

^{1,2} Thassim Beevi Abdul Kader College for women, Kilakarai, Tamil Nadu, India.

Abstract- In this paper, we consider join hyperlattices and we define ordered join hyperlattices. It is already introduced that there exists product of hyperlattices [5]. We introduce the notion of product of two ordered join hyperlattices in this paper. Moreover, we define the quotient of ordered join hyperlattices with a regular relation. Also, we investigate isomorphism on the product of two ordered join hyperlattices with a regular relation.

Keywords- joinhyper lattice [1], regular relation, Quasi-ordered relation.

I. INTRODUCTION

We define a regular relation on Ordered join hyperlattice such that its quotient [4] is an ordered hyperlattice and we study some properties of such relations.

Definition 1.1:

Let H be a non-empty set. A Hyper operation on H is a map \circ from H×H to P*(H), the family of non-empty subsets of H. The Couple (H, \circ) is called a hypergroupoid. For any two non-empty subsets A and B of H and x C H, we define A \circ B = $\bigcup_{\alpha \in A, \beta \in \overline{\alpha}} a \circ b$;

 $A \circ x = A \circ \{x\}$ and $x \circ B = \{x\} \circ B$

A Hypergroupoid (H, \circ) is called a Semihypergroup if for all a, b, c of H we have (a \circ b) \circ c = a \circ (b \circ c). Moreover, if for any element a \in H equalities

A \circ H = H \circ a = H holds, then (H, \circ) is called a Hyper group.

Definition 1.2:

A Lattice is a partially ordered set L such that for any two elements x, y of L, glb {x, y} and lub {x, y} exists. If L is a lattice, then we define $x \lor y = glb \{x, y\}$ and lub {x, y}.

Definition 1.3:

Let L be a non-empty set, Λ : L × L → p* (L) be a hyper operation and V: L × L →L be an operation. Then (L, V, Λ) is a join Hyperlattice if for all x, y, z \in L. The following conditions are satisfied:

- 1) $x \in x \land x$ and $x = x \lor x$
- 2) $x \lor (y \lor z) = (x \lor y) \lor z$ and $x \land (y \land z) = (x \land y) \land z$
- 3) $x \lor y = y \lor x$ and $x \land y = y \land x$
- 4) $x \in x \land (x \lor y) \cap x \lor (x \land y)$

Definition 1.4[3]:

Let $(L_1, \mathbf{V}_1, \Lambda_1, \leq_1)$ and $(L_2, \mathbf{V}_2, \Lambda_2, \leq_2)$ be two ordered joinhyperlattice.

Give $(L_{1\times} L_2, \bigvee, \Lambda')$, he two hyperoperations \bigvee' and Λ' on $L_{1\times} L_2$ such that for any $(x_1, y_1), (x_2, y_2) \in L_{1\times} L_2$, we have $(x_1, y_1) \wedge (x_2, y_2) = \{(u, v); u \in x_1 \wedge_1 x_2, v \in y_1 \wedge_2 y_2\}, (x_1, y_1) \leq (x_2, y_2) \text{ if and only if } x_1 \leq_1 x_2, y_1 \leq_2 y_2.$

The Hyper operation \mathbf{V}' is defined similar to Λ '.

Definition 1.5:

Let \mathcal{R} be an equivalence relation on a non-empty set L and A, B \underline{C} L, A $\overline{\mathcal{R}}$ B means that for all a \in A, there exists some b \in B such that a \mathcal{R} b, for all $\underline{b}^{r} \in$ B, there exists a' \in A such that a' \mathcal{R} b'.

Also, \mathcal{R} is called a regular relation respect to \wedge if x \mathcal{R} y implies that x \wedge z $\overline{\mathcal{R}}$ y \wedge z, or all x, y, z \in L. \mathcal{R} is called a Regular relation if it is regular respect to V and \wedge , at the same time.

Definition 1.6:

IJSART - Volume 6 Issue 3 – MARCH 2020

An Ideal P of a join hyperlattice L is Prime [2] if for all x, $y \in L$ and $x \lor y \in P$, we have $x \in P$ and $y \in P$.

II. QUOTIENT OF ORDERED JOIN HYPERLATTICES WITH A REGULAR RELATION.

In this section, we study special relation which is regular on ordered join hyperlattices which has connection with order on L and we derive ordered join hyperlattice from an ordered join hyperlattice with such regular relation.

Let (L, \vee, Λ, \leq) be an ordered join hyperlattice and ν be a relation which is transitive and contains the relation \leq . Moreover, for any x, y \in L, if x ν y, we have x Λ z $\overline{\nu}$ y Λ z and x \vee z $\overline{\nu}$ y \vee z, for all z \in L and x \in y Λ z implies that x ν y, y ν x, x ν z, z ν x, we call such relations as quasi-ordered relations. We know that if ν is a regular relation, the quotient L/ν is a hyperlattice. But this relaton is not equivalence relation. So, we define ν * = {(a, b) $\in \nu \times \nu$; a ν b, b ν a}.

Theorem 2.1:

Let (L, V, Λ, \leq) be an ordered strong join hyperlattice and $\forall *$ be a relation defined by

 $\mathbb{V}^* = \{(a, b) \in \mathbb{V} \times \mathbb{V}; a \mathbb{V} b, b \mathbb{V} a\}$. Thus, L/\mathbb{V}^* is an ordered hyperlattice.

Proof:

We can easily show that v^* is an equivalence relation.

Now we show that v* is a regular relation.

Let $x^{\vee} * v$, $z \in L$ and $x' \in x^{\wedge} z$.

Thus, x^{ν} y and y^{ν} x.

Therefore $x \wedge_z \overline{v} y \wedge_z, y \wedge_z \overline{v} x \wedge_z$ and we conclude that there exists $y' \in y \wedge_z$ such that $x' \vee y'$.

By the property of \overline{v} , we have y' \overline{v} z and z \overline{v} x'. So, y' \overline{v} x' and x $^{\Lambda}z \overline{v}* y ^{\Lambda}z$.

Since V is a binary operation, we show that $x \bigvee_{z \bar{\nu}^* y} V$ z.

So, v* is a regular relation and L/v* is a hyperlattice. We have to show that L/v* is an ordered hyperlattice. Let $v*(x) \leq v*(y)$. Since L/\mathbb{V}^* is a hyperlattice, we have $\mathbb{V}^*(x) \wedge \mathbb{V}^*(z) = \mathbb{V}^*(z')$ where $z' \in x \wedge z$ and $\mathbb{V}^*(y) \wedge \mathbb{V}^*(z) = \mathbb{V}^*(w)$, $w \in y \wedge z$. Thus, there exists $x' \in \mathbb{V}^*(x)$ and $y' \in \mathbb{V}^*(y)$ such that $x' \leq y'$. Therefore, we have $(x' \wedge z) \leq (y' \wedge z)$ and so $(x' \wedge z) \mathbb{V}(y' \wedge z)$. So, $\mathbb{V}^*(x') \wedge \mathbb{V}^*(z) \leq \mathbb{V}^*(y') \wedge \mathbb{V}^*(z)$. Since $\mathbb{V}^*(x') = \mathbb{V}^*(x)$ and $\mathbb{V}^*(y') = \mathbb{V}^*(y)$, we have $\mathbb{V}^*(x)$

Since $\mathfrak{P}(X) = \mathfrak{P}(X)$ and $\mathfrak{P}(Y) = \mathfrak{P}(Y)$, we have $\mathfrak{P}(X)$ $\mathbb{A} \mathfrak{P}(z) \neq \mathfrak{P}(z)$.

Therefore, L/ \mathbb{V}^* is an ordered hyperlattice.

Theorem 2.2:

Let $(L, \bigvee, \land \leq)$ be an ordered strong join hyperlattice and ν be a quasi-ordered relation. There is one to one correspondence between quasi-ordered relations on L which contain ν and quasi ordered relations on L/ ν *.

Proof:

Let η be a quasi-ordered relation on L/ ν_* .

We have to prove that $\mathbb{T} = \{(x, y); (\mathcal{V}^*(x), \mathcal{V}^*(y)) \ \mathcal{V}\}$ is a quasiordered relation on L which contains \mathbb{V} .

Let $x \leq y$. So, $x^{\nabla} y$ and $(\mathcal{V}^*(x), \mathcal{V}^*(y)) \in L/\mathcal{V}^*$. Since \mathfrak{N} is a quasi-ordered relation, it is clear that $(\mathcal{V}^*(x), \mathcal{V}^*(y)) \in \mathfrak{N}$ and so $(x, y) \in \mathfrak{T}$ and $\leq \subseteq \mathfrak{T}$. We can prove that \mathfrak{T} has the transitive property. Now, let $x \notin y \wedge z$. Therefore, $\mathcal{V}^*(x) \notin \mathcal{V}^*(y) \wedge \mathcal{V}^*(z)$ where \wedge is a hyper operation on L/\mathcal{V}^* . Therefore, $(\mathcal{V}^*(x), \mathcal{V}^*(y)) \notin \mathfrak{N}$ and $(\mathcal{V}^*(x), \mathcal{V}^*(z)) \notin \mathfrak{N}$. So, $(x, y) \notin \mathfrak{T}$, $(x, z) \notin \mathfrak{T}$, $(y, x) \notin \mathfrak{T}$, $(z, x) \notin \mathfrak{T}$ and let $(x, y) \notin \mathfrak{T}$, a $\notin_x \wedge_z$. So, $\mathcal{V}^*(a) \notin \mathcal{V}^*(x) \wedge \mathcal{V}^*(z)$ and since \mathfrak{N} is a quasi-ordered relation, there exists $\mathcal{V}^*(b) \notin \mathcal{V}^*(z)$ such that $(\mathcal{V}^*(a), \mathcal{V}^*(b)) \mathfrak{N}$.

Hence (a, b) ^T.

Also, we can show for \mathbf{V} that $\overline{\mathbf{r}}$ is a quasi-ordered relation on L.

Similarly, if we have a quasi-ordered relation on L which contains $^{\nu}$, then there exists a quasi-ordered relation on L/ $^{\nu*}$.

Theorem 2.3:

Let $(L, \bigvee, \land, \leq)$ be an ordered strong join hyperlattice and \mathbb{V} , \mathbb{F} be two quasi-ordered relations on L such that $\mathcal{V} \subseteq \mathcal{T}$ and $\mathcal{V}^*(x) = \mathcal{T}/\mathcal{V}\mathcal{V}^*(y)$ if and only if there exists a $\in v_*(x)$, then there exists $b \in v_*(y)$, a v b. Then, \overline{v}/v is a quasi-ordered relation on L/V^* .

Proof:

Let $(\mathbb{V}^*(\mathbf{x}), \mathbb{V}^*(\mathbf{y})) \in \mathbb{T}/\mathbb{V}$.

Thus, there exists $x \in \overline{\tau}*(a)$, $y \in \overline{\nu}*(b)$ such that $x \vee y$. Hence, a $^{\mathcal{V}}$ x and y $^{\mathcal{V}}$ b.

So, a v b and since $^{v} \subseteq ^{\tau}$, we have a $^{\tau}$ b.

We can easily prove that \mathbb{Z}/\mathbb{V} contains son L/ \mathbb{V} and has the transitive property.

Now, we let $(\mathcal{V}*(x), \mathcal{V}*(y)) \in \mathcal{T}/\mathcal{V}$ and $\mathcal{V}*(z) \in L/\mathcal{V}*, \mathcal{V}*(c)$ $\in \mathcal{V}^{*}(\mathbf{x}) \stackrel{\mathsf{l}}{\leftarrow} \mathcal{V}^{*}(\mathbf{z}).$

Thus, $(x, y) \in v$ and $c \in x \wedge_Z$.

Since $\overline{\tau}$ is a quasi-ordered relation, there exists $u \in v^A z$ such that c T u.

Therefore, there exists $\mathcal{V}*(u) \subseteq \mathcal{V}*(y) \stackrel{\mathbb{A}}{\to} \mathcal{V}*(z)$ such that $(\mathcal{V}*(c),$ $\mathbf{v}_{*(\mathbf{u})} \in \mathbf{v}_{\mathbf{v}}$

Also, let $\mathbb{V}_{*}(z) \in \mathbb{V}_{*}(x) \stackrel{\text{\tiny \wedge}}{\longrightarrow} \mathbb{V}_{*}(y)$.

Thus, $z \in x^{\Lambda}y$ and $z^{\tau}x$, $z^{\tau}y$, $x^{\tau}z$, $y^{\tau}z$.

Therefore, $(\mathcal{V}*(z), \mathcal{V}*(x)) \in \overline{\tau}/\overline{\mathcal{V}}, (\mathcal{V}*(z), \mathcal{V}*(y)) \in \overline{\tau}/\overline{\mathcal{V}}, (\mathcal{V}*(x), \overline{\tau})$ $\mathcal{V}_{*}(z) \in \mathcal{T}/\mathcal{V}$ and $(\mathcal{V}_{*}(v), \mathcal{V}_{*}(z)) \in \mathcal{T}/\mathcal{V}$.

Similarly, we can prove for V.

In the following theorem we are going to investigate quasi-ordered relation on the product of two ordered join hyperlattices.

Theorem 2.4:

Let $(L_1, \bigvee_{1, \wedge_1, \leq_1})$ and $(L_2, \bigvee_{2, \wedge_2, \leq_2})$ be two ordered strong join hyperlattices and ^v1, ^v2 be quasi-ordered relations on L_{1} and L_{2} . Then, $(L_{1} \times L_{2}) / \nu_{*}$ is isomorphic to $L_{1}/\nu_{1}* \times L_{2}/\nu_{2}*$

Proof:

We define f: $(L_1 \times L_2) / \nu_* \longrightarrow L_1/\nu_1 * \times L_2/\nu_2 * \text{ by}$ $f(\mathcal{V}^{*}(a), \mathcal{V}^{*}(b)) = (\mathcal{V}_{1}^{*}(a), \mathcal{V}_{2}^{*}(b)).$

We can show that f is well defined and one to one.

Now, we claim that f is a homomorphism between two ordered join hyperlattices.

f $(\mathcal{V}*(a_1, b_1) \land \mathcal{V}*(a_2, b_2)) = f(\mathcal{V}*(u, v))$ where u $\in a_1 \wedge a_2 \vee \in b_1 \wedge b_2$ So, we have $f(\nu * (a_1, b_1) \land \nu * (a_2, b_2)) = (\nu * (a_1) \land_1 \nu * (a_2))$ $v_{*}(b_{1}) \wedge_{2} v_{*}(b_{2}))$ $= f(v*(a_1, b_1)) \times f(v*(a_2, b_2)),$

Similarly, these relations also hold for the binary operation \mathbb{Y} and by the definition of order on $(L_1 \times L_2)$, if $v * (a_1, b_1)$ $\ll \nu * (a_2, b_2)$, we have $(a_1, b_1) \nu (a_2, b_2)$.

Therefore, $(a_1, a_2) \in v_1$ and $(b_1, b_2) \in v_2$.

Thus, $v_1 * (a_1) \leq v_1 * (a_2)$ and $v_2 * (b_1) \leq v_2 * (b_2)$.

Therefore, f is an order preserving map and it is clear that f is onto.

So, f is an isomorphism and the proof is completed.

III. CONCLUSION

In this paper, we have successfully derived a ordered join hyperlattice from a ordered join hyperlattice with a regular relation induced in it. We have also investigated quasiordered relations on the product of two ordered join hyperlattices.

REFERENCES

- [1] https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJP AM/Vol46_2015_5_ART04.pdf
- [2] https://www.researchgate.net/publication/317743259 Ord ered_join_hyperlattices
- [3] https://www.researchgate.net/publication/233366844_Latt ices_Derived_from_Hyperlattices
- [4] X. L. Xin and X. G. Li, On hyperlattices and quotient hyperlattices, Southeast Asian Bulletin of Mathematics, 33 (2009), 299-311.
- [5] X. Z. Guo and X. L. Xin, Hyperlattice, Pure Appl. Math., 20 (2004), 40-43.