Quotient of Ordered Join Hyper Lattices With A Regular Relation

Saravana Priya.G¹ , Senthamil Selvi.V²

¹Assistant professor, Dept of mathematics

²Dept of mathematics

^{1, 2} Thassim Beevi Abdul Kader College for women, Kilakarai, Tamil Nadu, India.

Abstract- In this paper, we consider join hyperlattices and we define ordered join hyperlattices. It is already introduced that there exists product of hyperlattices [5]. We introduce the notion of product of two ordered join hyperlattices in this paper. Moreover, we define the quotient of ordered join hyperlattices with a regular relation. Also, we investigate isomorphism on the product of two ordered join hyperlattices with a regular relation.

Keywords- joinhyper lattice [1], regular relation, Quasiordered relation.

I. INTRODUCTION

We define a regular relation on Ordered join hyperlattice such that its quotient [4] is an ordered hyperlattice and we study some properties of such relations.

Definition 1.1:

Let H be a non-empty set. A Hyper operation on H is a map \circ from H×H to P*(H), the family of non-empty subsets of H. The Couple (H, \circ) is called a hypergroupoid. For any two non-empty subsets A and B of H and $x \in H$, we define A \circ $B = U_{\alpha \in A, \beta \in B, a \circ b}$

 $A \circ x = A \circ \{x\}$ and $x \circ B = \{x\} \circ B$

A Hypergroupoid (H, \circ) is called a Semihypergroup if for all a, b, c of H we have $(a \circ b) \circ c = a \circ (b \circ c)$. Moreover, if for any element a \in H equalities

 $A \circ H = H \circ a = H$ holds, then (H, \circ) is called a Hyper group.

Definition 1.2:

A Lattice is a partially ordered set L such that for any two elements x, y of L, glb $\{x, y\}$ and lub $\{x, y\}$ exists. If L is a lattice, then we define $x \vee y = g \uplus \{x, y\}$ and lub $\{x, y\}$.

Definition 1.3:

Let L be a non-empty set, Λ **:** L \times L \rightarrow p^{*} (L) be a hyper operation and ∨: $L \times L \rightarrow L$ be an operation. Then (L, V , **∧**) is a join Hyperlattice if for all x, y, z Є L. The following conditions are satisfied:

- 1) $x \in x \land x$ and $x = x \lor x$
- 2) x ∨ (y ∨ z) = (x ∨ y) ∨ z and x **∧** (y **∧** z) = (x **∧** y) **∧** z
- 3) $x \vee y = y \vee x$ and $x \wedge y = y \wedge x$
- 4) x Є x **∧** (x ∨ y) x ∨ (x **∧** y)

Definition 1.4[3]:

Let $(L_1, \mathbf{V}_1, \Lambda_1, \leq_1)$ and $(L_2, \mathbf{V}_2, \Lambda_2, \leq_2)$ be two ordered joinhyperlattice.

Give $(L_1 \times L_2, V', \Lambda')$, he two hyperoperations V' and Λ' on $L_1 \times L_2$ such that for any (\mathfrak{X}_1 , \mathfrak{Y}_1), (\mathfrak{X}_2 , \mathfrak{Y}_2) $\in L_1 \times L_2$, we have $({}^{x_1}, {}^{y_1}) \wedge' {}^{(x_2, y_2)} = {(u, v)}; u \in {}^{x_1 \wedge_1 x_2}, v \in$ $\mathcal{Y}_1 \wedge_2 \mathcal{Y}_2$, $(\mathcal{X}_1, \mathcal{Y}_1) \leq (\mathcal{X}_2, \mathcal{Y}_2)$ if and only if $\mathcal{X}_1 \leq_1 \mathcal{X}_2$, $y_1 \leq_2 y_2$

The Hyper operation V' is defined similar to **∧**'.

Definition 1.5:

Let R be an equivalence relation on a non-empty set L and A, B C L, A \overline{R} B means that for all a C A, there exists some b \in B such that a $\mathcal R$ b, for all $b^{\dagger} \in B$, there exists a' $\in A$ such that $a' \mathcal{R} b'$.

Also, ℛ is called a regular relation respect to **∧** if x ℛ y implies that $x \wedge z \overline{\mathcal{R}} y \wedge z$, or all $x, y, z \in L$. \mathcal{R} is called a Regular relation if it is regular respect to \vee and \wedge , at the same time.

Definition 1.6:

IJSART - *Volume 6 Issue 3 – MARCH 2020 ISSN* **[ONLINE]: 2395-1052**

An Ideal P of a join hyperlattice L is Prime [2] if for all x, $y \in L$ and $x \vee y \in P$, we have $x \in P$ and $y \in P$.

II. QUOTIENT OF ORDERED JOIN HYPERLATTICES WITH A REGULAR RELATION.

In this section, we study special relation which is regular on ordered join hyperlattices which has connection with order on L and we derive ordered join hyperlattice from an ordered join hyperlattice with such regular relation.

Let (L, v, ∧, ≤) be an ordered join hyperlattice and ^v be a relation which is transitive and contains the relation \leq . Moreover, for any x, $y \in L$, if x^y , we have $x \wedge z^{\overline{v}} y \wedge z$ and $x \vee z \overline{v}$ y \vee z, for all $z \in L$ and $x \in y \wedge z$ implies that $x^{\nu}y, y^{\nu}x$, $x^{\nu}z$, $z^{\nu}x$, we call such relations as quasi-ordered relations. We know that if V is a regular relation, the quotient L/V is a hyperlattice. But this relaton is not equivalence relation. So, we define $V^* = \{(a, b) \in V \times V; a \cup b, b \cup a\}.$

Theorem 2.1:

Let (L,∨, **∧,**≤) be an ordered strong join hyperlattice and V^* be a relation defined by

 $V^* = \{(a, b) \in V \times V; a V b, b V a\}.$ Thus, L/V^* is an ordered hyperlattice.

Proof:

We can easily show that v^* is an equivalence relation.

Now we show that v^* is a regular relation.

Let $x^{\Psi*}v$, $z \in L$ and $x' \in x \wedge z$.

Thus, $x \nabla v$ and $v \nabla x$.

Therefore x ^{A}Z \overline{v} y ^{A}Z , y ^{A}Z \overline{v} x ^{A}Z and we conclude that there exists $y' \in y \wedge z$ such that $x' \vee y'$.

By the property of V , we have y' V z and z V x'. So, $y' V x'$ and $x \wedge z \overline{v} * y \wedge z$.

Since V is a binary operation, we show that x $V_{z \bar{v} * y} V$ z.

So, V^* is a regular relation and L/V^* is a hyperlattice. We have to show that L/Ψ^* is an ordered hyperlattice. Let $V^*(x) \leq V^*(y)$.

Since L/ V^* is a hyperlattice, we have $V^*(x) \wedge V^*(z) = V^*(z')$ where $z' \in X \wedge Z$ and $V^*(y) \wedge V^*(z) = V^*(w)$, $w \in Y \wedge Z$. Thus, there exists $x' \in V^*(x)$ and $y' \in V^*(y)$ such that $x' \leq y'$. Therefore, we have $(x' \wedge z) \leq (y' \wedge z)$ and so $(x' \wedge z) \vee (y' \wedge z)$. So, $V^*(x') \land V^*(z) \leq V^*(y') \land V^*(z)$. Since $V^*(x) = V^*(x)$ and $V^*(y) = V^*(y)$, we have $V^*(x)$ $\lambda v *_{(z)} * v *_{(y)} \lambda v *_{(z)}$.

Therefore, L/V^* is an ordered hyperlattice.

Theorem 2.2:

Let $(L, V, \Lambda \leq)$ be an ordered strong join hyperlattice and ν be a quasi-ordered relation. There is one to one correspondence between quasi-ordered relations on L which contain V and quasi ordered relations on L/V^* .

Proof:

Let η be a quasi-ordered relation on L/ v^* .

We have to prove that $\mathbf{F} = \{ (x, y); (\mathbf{V}^*(x), \mathbf{V}^*(y)) \mathbf{\mathcal{V}} \}$ is a quasiordered relation on L which contains^{ν}.

Let $x \leq y$. So, $x \vee y$ and $(V^*(x), V^*(y)) \in L/V^*$. Since η is a quasi-ordered relation, it is clear that $(1^k*(x))$, $V^*(y)$ and so (x, y) and $\leq \Gamma$. We can prove that \bar{f} has the transitive property. Now, let $x \in y \wedge z$. Therefore, $v*(x) \in v*(y) \wedge v*(z)$ where \wedge is a hyper operation on L/V^* . Therefore, $(V^*(x), V^*(y))$ and $(V^*(x), V^*(z))$ en. So, $(x, y) \in \mathcal{T}$, $(x, z) \in \mathcal{T}$, $(y, x) \in \mathcal{T}$, $(z, x) \in \mathcal{T}$ and let $(x, y) \in \mathcal{T}$, a ϵ _x Λ _z. So, $V^*(a)$ $\in V^*(x)$ $\Lambda V^*(z)$ and since η is a quasi-ordered relation, there exists $V^*(b)$ $\in V^*(y)$ $\Lambda V^*(z)$ such that $(V^*(a))$, $V^*(b)$) T_L

Hence (a, b) ^{τ}.

Also, we can show for **V** that \bar{r} is a quasi-ordered relation on L.

Similarly, if we have a quasi-ordered relation on L which contains \mathbf{v} , then there exists a quasi-ordered relation on \mathbf{L}/\mathbf{v}^* .

Theorem 2.3:

Let $(L, V, \wedge S)$ be an ordered strong join hyperlattice and ν , τ be two quasi-ordered relations on L such that $V \subseteq T$ and $V*(x)$ $V \subseteq V$ if and only if there exists a $\in V^*(x)$, then there exists b $\in V^*(y)$, a ^v b. Then, $\sqrt[T]{v}$ is a quasi-ordered relation on L/V^* .

Proof:

Let $(V^*(x), V^*(y)) \in \mathbb{Z}/V$.

Thus, there exists $x \in \mathbb{F}^*(a)$, $y \in \mathbb{V}^*(b)$ such that $x \vee y$.

Hence, a V x and y V b.

So, a ^v b and since $v \subseteq \tau$, we have a ^{τ} b.

We can easily prove that \mathbb{F}^N contains \mathbb{F}^N on L/ \mathbb{V}^* and has the transitive property.

Now, we let $(V^*(x), V^*(y)) \in T/V$ and $V^*(z) \in L/V^*$, $V^*(c)$ $\in v \ast_{(x)} \wedge v \ast_{(z)}$.

Thus, $(x, y) \in V$ and $c \in x \wedge z$.

Since \bar{r} is a quasi-ordered relation, there exists $u \in V$ Λ _Z such that $c \mathbf{v}$ u.

Therefore, there exists $V^*(u) \in V^*(y) \wedge V^*(z)$ such that $(V^*(c),$ $v_{*(u)}) \in \tau/v$

Also, let $V*(z) \in V*(x) \wedge V*(y)$.

Thus, $z \in x \wedge y$ and $z \in x$, $z \in y$, $x \in z$, $y \in z$.

Therefore, $({}^{\mathbb{V}*}(z), {}^{\mathbb{V}*}(x)) \in \mathbb{T}/\mathbb{V},$ $({}^{\mathbb{V}*}(z), {}^{\mathbb{V}*}(y)) \in \mathbb{V}/\mathbb{V},$ $({}^{\mathbb{V}*}(x),$ $v *_{(z)} \in \overline{\tau}/v$ and $(v *_{(y)}, v *_{(z)}) \in \overline{\tau}/v$.

Similarly, we can prove for \mathbf{V} .

In the following theorem we are going to investigate quasi-ordered relation on the product of two ordered join hyperlattices.

Theorem 2.4:

Let $(L_1, V_1, \Lambda_1, \leq_1)$ and $(L_2, V_2, \Lambda_2, \leq_2)$ be two ordered strong join hyperlattices and v_1 , v_2 be quasi-ordered relations on L_{1} and L_{2} . Then, $(L_{1} \times L_{2})$ / v_{*} is isomorphic to $L_1/\nu_1*\times L_2/\nu_2*$.

Proof:

We define f: $(L_1\times L_2)$ / $v^* \rightarrow L_1/v_1^* \times L_2/v_2^*$ by $f(V^*(a), V^*(b)) = (V_1^*(a), V_2^*(b)).$

We can show that f is well defined and one to one.

Now, we claim that f is a homomorphism between two ordered join hyperlattices.

f $(V*(a_1, b_1) \wedge V*(a_2, b_2)) = f(V*(u, v))$ where u $\in a_1 \wedge a_{2}$ $\vee \in b_1 \wedge b_2$ So, we have f $(V^*(a_1, b_1) \wedge V^*(a_2, b_2)) = (V^*(a_1) \wedge_1 V^*(a_2))$. $v*(b_1)$ Λ_2 $v*(b_2)$ $= f(V*(a_1, b_1)) \times f(V*(a_2, b_2)).$

Similarly, these relations also hold for the binary operation V and by the definition of order on $(L_1 \times L_2)$, if $V^*(a_1, b_1)$ $\leq v*(a_2, b_2)$, we have (a_1, b_1) \vee (a_2, b_2) .

Therefore, $(a_1, a_2) \in \nu_1$ and $(b_1, b_2) \in \nu_2$.

Thus, $V_1 * (a_1) \leq_1 V_1 * (a_2)$ and $V_2 * (b_1) \leq_2 V_2 * (b_2)$.

Therefore, f is an order preserving map and it is clear that f is onto.

So, f is an isomorphism and the proof is completed.

III. CONCLUSION

In this paper, we have successfully derived a ordered join hyperlattice from a ordered join hyperlattice with a regular relation induced in it. We have also investigated quasiordered relations on the product of two ordered join hyperlattices.

REFERENCES

- [1] https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJP AM/Vol46_2015_5_ART04.pdf
- [2] https://www.researchgate.net/publication/317743259_Ord ered_join_hyperlattices
- [3] https://www.researchgate.net/publication/233366844_Latt ices_Derived_from_Hyperlattices
- [4] X. L. Xin and X. G. Li, On hyperlattices and quotient hyperlattices, Southeast Asian Bulletin of Mathematics, 33 (2009), 299-311.
- [5] X. Z. Guo and X. L. Xin, Hyperlattice, Pure Appl. Math., 20 (2004), 40-43.