Pronic Product Cordial Labeling Of Star Related Graphs

S. Anusuya¹, Dr. S. Shenbaga Devi² ¹Dept of mathematics ²Assistant Professor, Dept of mathematics ^{1, 2} Aditanar College of Arts andScience, Tiruchendur – TamilNadu

Abstract-Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a simple graph with \mathbf{P} vertices and \mathbf{q} edges. \mathbf{G} is said to have Pronic Product cordial labeling if there is an injective map

 $f: V(G) \rightarrow_{\{0,1,2,3,\ldots,} Pr_{F} \} \text{ such that for every edge } uv,$ the induced edge

f*is defined as,

$$f^*(uv) = \begin{cases} 1iff(u).f(v) \\ isa \\ pronicnumber \\ 0iff(u).f(v) \\ is not \ a \\ pronicnumber \end{cases}$$

with the condition that,

 $|e_f(0) - e_f(1)| \le 1_{where,} e_f(0)$ is the number of edges with label 0 and $e_f(1)$ is the number of edges with label 1. If **G** admits Pronic product cordial labeling then **G** is called a Pronic product cordial graph.

In this paper we have proved the star $K_{1,n}$, Star related graphs Globe Gl(n), Bi-Star $B_{n,m}$, Subdivided Star $\langle K_{1,n}:n \rangle_{are Pronic product cordial graphs.}$

Keywords- Pronic number, Pronic Product cordial labeling, Pronic product cordial graph, Star graphs.

AMS Classification 05C78 Notation: Pr – Pronic Number

I. INTRODUCTION

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges. The vertex set and the edge set of G are denoted by V (G) and E (G) respectively. The concept of cordial labeling was introduced by **I.Cahit[1]**. It motivated us to define Pronic product cordial labeling.

II. PRELIMINARIES

Definition 2.1: (Sequence A002378 in the OEIS)

A **Pronic number** is a number which is the product of two consecutive integers, that is, a number of the form n. (n+1).

REMARK: Clearly, all pronicnumbers are even.

Definition 2.2: Let G = (V, E) be a simple graph with p vertices and q edges. G is said to have **Pronic product cordial labeling** if there is an injective map

 $f: V(G) \rightarrow_{\{0,1,2,3,\dots,P_{p}\}} \text{ such that for every edge } uv,$ the induced edge f^{*} is defined as,

$$f^*(uv) = \begin{cases} 1iff(u).f(v) \\ isa \\ pronicnumber \\ 0iff(u).f(v) \\ is not \ a \\ pronicnumber \end{cases}$$

with the condition that,

 $|e_f(0) - e_f(1)| \le 1$ where $e_f(0)$ is the number of edges with label 0 and $e_f(1)$ is the number of edges with label 1. If G admits Pronic product cordial labeling then G_{is} called a Pronic product cordial graph.

Definition 2.3: A star $K_{1,\infty}$ is a tree with one internal vertex and n edges.

Definition 2.4: Globe is defined as the two isolated vertices are joined by n path of length 2. It is denoted by Gl(n).

Definition 2.5: The **Bi-Star** $B_{n,m}$ is a graph obtained from K_2 by identifying the centers of $K_{1,m}$ and $K_{1,m}$ at the end vertices of K_2 respectively.

Definition 2.6: A **Subdivided graph** is obtained by replacing every edge of G by P_3 . It is denoted by S (G)

Definition 2.7: Subdivided star is a graph obtained as one point union of n paths of path length 2. It is denoted by $< K_{1,n}$: n >.

III. MAIN RESULTS

THEOREM 3.1: The star $K_{1,m}$ is a Pronic Product cordial graph.

Proof: Let $G = K_{1,n}$ be a graph where $V(G) = \{v, u_{i: 1} \le i \le n\}$ and $E(G) = \{(v, u_{i): 1} \le i \le n\}$ Then |V(G)| = n + 1 and |E(G)| = n

Case(i): When n is even, $n = 2k_{(say)}$ Define $f: V(G) \rightarrow \{0,1,2,3,\ldots, Pr_{2k+1}\}$ as follows: f(v) = 1 $f_{(}^{u_i)} = \begin{cases} Pr_i & ,1 \leq i \leq k \\ Pr_i - 1 & , k+1 \leq i \leq 2k \end{cases}$

The induced edge labels are given below: For $1 \le i \le k$, $f(v) \cdot f(u_i) = 1 \cdot Pr_i = Pr_i$ $f^*(vu_i)_{=1}$ For $k + 1 \le i \le 2k$, $f(v) \cdot f(u_i) = 1 \cdot [Pr_i - 1] = Pr_i - 1$ (Which is odd and not a Pronic number) $f^*(vu_i)_{=0}$.

Case(ii): When n is odd, n = 2k + 1 (say) Define $f: V(G) \rightarrow \{0, 1, 2, 3, \dots, Pr_{2k+2}\}$ as follows: f(v) = 1 $f_{(u_i)} = \begin{cases} Pr_i , 1 \le i \le k+1 \\ Pr_i - 1 , k+2 \le i \le 2k+1 \end{cases}$ The induced edge labels are given below:

For $1 \leq i \leq k+1$,

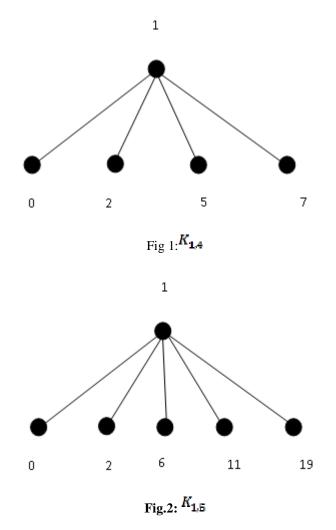
$$f(v) \cdot f_{i}(u_{i}) = 1 \cdot Pr_{i} = Pr_{i}$$

$$f^{*}(vu_{i}) = 1$$
For $k + 2 \leq i \leq 2k + 1$,
$$f(v) \cdot f(u_{i}) = 1 \cdot [Pr_{i} - 1] = Pr_{i} - 1$$
(Which is odd, not a pronic number)
$$f^{*}(vu_{i}) = 0$$
It is observed that,
$$e_{f}(0) = k_{and}e_{f}(1) = k , n - even.$$

$$e_{f}(0) = k_{and}e_{f}(1) = k + 1, n - odd.$$
Clearly, $|e_{f}(0) - e_{f}(1)| \leq 1$.
Then f is a Pronic Product cordial labeling.

Hence the star $K_{1,m}$ is a Pronic Product cordial graph.

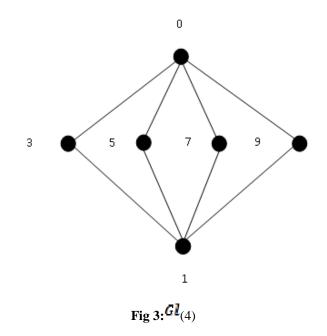
Example 3.2: Fig 1 and 2 represents the pronic product cordial labeling of $K_{1,4}$ and $K_{1,5}$ respectively

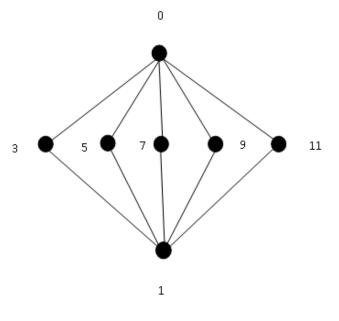


THEOREM 3.3: Globe Gl(n) is a Pronic product cordial graph.

Proof:Let G = Gl(n) be a graph where $V(G) = \{u, v, w_{i: 1} \le i \le n\}$ and $E(G) = \{(u, w_i): 1 \le i \le n\}$ $\bigcup_{\{(v, w_i): 1 \le i \le n\}}$ Then $|V(G)|_{=} n + 2_{\text{and}} |E(G)| = 2n$ Define $f: (G) \rightarrow \{0, 1, 2, 3, \dots, Pr_{n+2}\}$ as follows: $f(u) = 0_{\text{and}} f(v) = 1$ $f(w_i) = 2i + 1, 1 \le i \le n$ The induced edge labels are given below: For $1 \leq i \leq n$, $f(u) \cdot f(w_i) = 0 \cdot (2i+1)_{=0} = Pr_1$ $f^{*}(uw_{i}) = 1.$ $f(v) \cdot f_i(w_i) = 1 \cdot (2i+1) = 2i+1$ (Which is odd, not a Pronic number) $f^*(vw_i) = 0.$ It is observed that, $e_{f(0)} = n and e_{f(1)} = n$ $|e_f(0) - e_f(1)| \leq 1$ Then f is a Pronic product cordial labeling. Hence the Globe Gl(n) is a Pronic product cordial graph.

Example 3.4: Fig 3 and 4 represents the Pronic product cordial labeling of Gl(4) and Gl(5) respectively





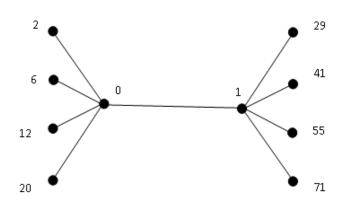
THEOREM 3.5: Bi-Star $B_{n,m}$ is a Pronic product cordial graph.

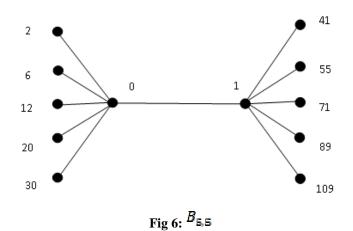
Proof: Let
$$G = B_{n,n}$$
 be a graph where,
Let $V(G) = \{u,v,u_i,v_{i:1} \le i \le n\}$
Let $E(G) = \{(u,v)\}$
 $\cup \{(u,u_i): 1 \le i \le n\}$
 $\cup \{(v,v_i): 1 \le i \le n\}$
Then $|V(G)| = 2n + 2$ and $|E(G)| = 2n + 1$
Define $f: V(G) \rightarrow \{0,1,2,3,\dots,Pr_{2n}+2\}$ as follows:
 $f(u) = 0, f(v) = 1$
 $f(u_i) = Pr_{i+1,1} \le i \le n$
The induced edge labels are given below:
 $f(u) \cdot f(v) = 0 \cdot 1 = 0 = Pr_1$
 $f^*(uv) = 1$
For $1 \le i \le n$
 $f(u) \cdot f(u_i) = 0 \cdot Pr_{i+1} = 0 = Pr_1$
 $f^*(uu_i) = 1$
 $f(v) \cdot f(v_i) = 1 \cdot [Pr_{n+1+i} - 1]$
 $= Pr_{n+1+i} - 1$
(Which is odd, not a pronic number)
 $f^*(vv_i) = 0$
It is observed that,
 $e_{f(0)} = n_{and} e_{f(1)} = n + 1$

Clearly, $\left|e_f(0) - e_f(1)\right| \leq 1$.

Then f is a Pronic product cordial labeling.

Hence the Bi-Star B_{nm} is a Pronic product cordial graph. Example 3.6: Fig 5 and 6 represents the Pronic product cordial labeling of $B_{4,4}$ and $B_{5,5}$ respectively.





THEOREM 3.7: The subdivided star $K_{1,n}$: n > is aPronic product cordial graph.

Proof:Let $G = K_{1,n} : n > be a graph.$ Let $V(G) = \{u, u_i, v_i : 1 \leq i \leq n\}$ Let $E(G) =_{\{(u,u_i):1 \leq i \leq n\}}$ $\bigcup_{\{(u_i, v_i)\} \in I} \leq i \leq n\}$ Then |V(G)| = 2n + 1 and |E(G)| = 2nDefine $f: V(G) \rightarrow \{0, 1, 2, 3, \dots, Pr_{2n+1}\}$ as follows: $f(u) = Pr_{1=0}$ $f(u_i) = 2l - 1 \quad , 1 \leq l \leq n$ $f(v_i) = 2(n + i) - 1 \le i \le n$

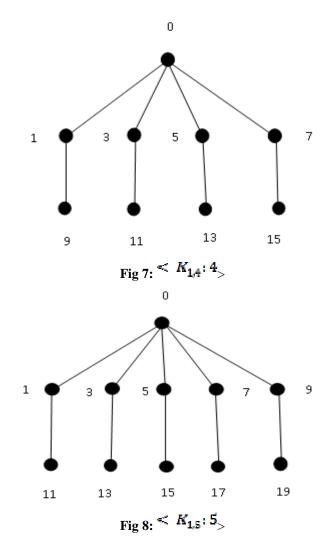
For
$$1 \le i \le n_i$$

 $f(u) \cdot f(u_i) = 0 \cdot (2i - 1) = 0 = Pr_1$
 $f^*(uu_i) = 1$
 $f(u_i) \cdot f(v_i) = (2i - 1) \cdot [2(n + i) - 1]_{(Which is}$
odd ,not a Pronic number)
 $f^*(u_i v_i) = 0$
It is observed as,
 $e_{f(0)} = n_{and} e_{f(1)} = n$
 $Clearly, |e_f(0) - e_f(1)| \le 1$.

Then f is a Pronic product cordial labeling.

Hence the subdivided star $< K_{1,n}$: $n_{>is}$ a Pronic product cordial graph.

Example 3.8: Fig 7 and 8 represents the Pronic product cordial labeling of the Subdivided star $< K_{1,4}:4 >$ and < K_{1,5}: 5> respectively.



IV. CONCLUSION

We have introduced here a new ideaof Pronic product cordial labeling. This will add a new dimension to the research work in graph labeling on various numbers. Here we have proved that Starand a few Star related graphs are pronic product cordial graphs.

V. ACKNOWLEDGEMENT

The authors would like to express their sincere appreciation to the referee for the valuable suggestions for revision of the paper.

REFERENCES

- I. Cahit, "Cordial graphs: a weaker version of graceful and harmonious graphs", Arts combinatorial, 23(1987), 201-207
- [2] J.A. Gallian "A Dynamic Survey of Graph Labeling", the electronic Journal of Combinatoics, 6(2001) #DS6, 2013.