Lower Separation Axioms Using Regular*-Open Sets

M. Dinesh¹, Dr. S. Pasunkilipandian²

²Head and Associate professor, Dept of mathematics ^{1, 2}Aditanar College of Arts and Science, Tiruchendur -628215

Abstract- In this paper, we introduce the concepts of r^*-T_0 , r^*-T_1 and r^*-T_2 spaces using regular*-open sets and investigate some of their properties. We give characterizations for these spaces. We also study the relationships among themselves and with T_i and $r-T_i$ spaces.

Keywords- Regular open, regular* open, r* - Ti spaces

AMS classification: 54D10

I. INTRODUCTION

Separation axioms on topological spaces are those to classify the classes of topological spaces. Maheswari and Prasad introduced the notion of semi- T_i (i=0, 1, 2) spaces using semi-open sets in 1975. AskishKar and Bhattacharyya introduced the concepts of pre- T_i (i=0, 1, 2) spaces. Balasubramanian et al. defined the concept r- T_i using regular open sets. Quite recently S. Pious Missier et al. introduced a new class of nearly open set, namely regular*-open sets and studied some properties of these sets.

In this paper, we introduce r^*-T_i (i=0,1,2) spaces using regular*-open sets and investigate some of their basic properties. We also study the relationships among themselves and with known separation axioms T_i and $r-T_i$ (i=0,1, 2).

II. PRELIMINARIES

Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are assumed, unless explicitly stated. If A is a subset of the space (X, τ) , cl(A) and int(A) respectively denote the closure and the interior of A in X.

Definition 2.1[4]: A subset A of a topological space (X, τ) is called

(i) generalized closed (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ii) generalized open(briefly g-open) if $X \setminus A$ is g-closed in X.

Definition 2.2[3]: Let A be a subset of X. The generalized closure of A is defined as the intersection of all g-closed sets containing A and is denoted by cl*(A).

Definition 2.3[3]: Let A be a subset of X. The generalized interior of A is defined as the union of all g-open sets in X containing A and is denoted by int*(A).

Definition 2.4[8]: A subset A of a topological space (X, τ) is called regular open if A=int(cl(A)) and regular closed if A=cl(int(A)).

Definition 2.5[6]: A subset A of a topological space (X, τ) is called regular*-open if A=int(cl*(A)) and regular*-closed if A=cl(int*(A)).

Definition 2.6[6]: Let A be a subset of X. Then the regular*closure of A is defined as the intersection of all regular*closed sets containing A and is denoted by r*cl(A).

Definition 2.7: A space X is said to be T_0 (resp. r- T_0 [2]) if for every pair of distinct points x and y in X, there is an open (resp. regular-open) set in X containing one of x and y but not the other.

Definition 2.8: A space X is said to be T_1 (resp.r- T_1 [2]) if for every pair of distinct points x and y in X, there are open (resp. regular-open) sets U and V such that U contains x but not y and V contains y but not x.

Definition 2.9: A space X is said to be T_2 (resp. $r-T_2$ [2]) if for every pair of distinct points x and y in X, there are disjoint open (resp. regular-open) sets U and V in X containing x and y respectively.

Lemma 2.10 [10]: A topological space (X,τ) is T_1 if and only if $\{x\}$ is closed for every $x \in X$.

Definition 2.11[7]: A function $f: X \rightarrow Y$ is said to be

(i) regular*-continuous if $f^{-1}(V)$ is regular*-open in X for every open set V in Y

(ii) regular*-open if f(V) is regular*-open in Y for every open set V in X.

(iii) regular*-closed if f(V) is regular*-closed in Y for every closed set V in X.

(iv) pre regular*-open if f(V) is regular*-open in Y for every regular*-open set V in X.

(v) regular*-irresolute if $f^{-1}(V)$ is regular*-open in X for every regular*-open set V in Y.

(vi) strongly regular*-irresolute if $f^{-1}(V)$ is open in X for every regular*-open set V in Y.

Theorem 2.12[6]: (i) Every regular open set is regular*-open.(ii) Every regular*-open set is open.

III. r*-T₀Spaces

In this section we introduce r^*-T_0 spaces and investigate some of their basic properties.

Definition 3.1: A topological space X is said to be r^*-T_0 if for any two distinct points x and y of X, there exists a Regular*open set G such that ($x \in G$ and $y \notin G$) or ($y \in G$ and $x \notin G$).

Theorem 3.2: Every r^* -T₀ space is T₀.

Proof: Let X be a r^*-T_0 space. Let x and y be two distinct points in X. Since X is r^*-T_0 , there exists a regular*-open set U such that ($x \in U$ and $y \notin U$) or ($y \in U$ and $x \notin U$). Since every regular*-open set is open, we have U is an open set such that ($x \in U$ and $y \notin U$) or ($y \in U$ and $x \notin U$).

Hence X is T₀.

Remark 3.3: The converse of the above theorem is not true, as seen from the following example.

Example 3.4: Consider the space (X, τ) , where $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, c, d\}, X\}$. Clearly (X, τ) is T₀. Here there is no regular open set containing one of the elements d and e but not other. So it is not r-T₀.

Theorem 3.5: Every $r-T_0$ space is r^*-T_0 .

Proof: Let X be a r^*-T_0 space. Let x and y be two distinct points in X. Since X is $r-T_0$, there exists a regular-open set U such that $x \in U$ and $y \notin U$ (or) $y \in U$ and $x \notin U$. since every regular-open set is regular*-open, we have U is an regular*-open set such that $x \in U$ and $y \notin U$ (or) $y \in U$ and $x \notin U$. Hence X is r^*-T_0 .

Remark 3.6: The converse of the above theorem is not true, as seen from the following example.

Example 3.7: Consider the space (X, τ) , where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. Clearly (X, τ) is r*- T_0 . Here there is no regular open set containing one of the elements b and c but not other. So it is not r- T_0 .

Theorem 3.8: Let $f : X \rightarrow Y$ be a bijective function. The following results hold.

(i) If f is regular*-open and X is T₀, then Y is r*-T₀.

- (ii) If f is pre regular*-open and X is r*-T₀, then Y is r*-T₀.
- (iii) If f is regular*-continuous and Y is T₀, then X is r*-T₀.
- (iv) If f is regular* irresolute and Y is r^*-T_0 , then X is r^*-T_0 .

Proof:

(i) Suppose *f* is a regular*-open bijection and X is T_0 . Let y_1 , $y_2 \in Y$ with $y_1 \neq y_2$

Let $x_1=f^{-1}(y_1)$ and $x_2=f^{-1}(y_2)$. Since f is one-to-one, $x_1\neq x_2$. Since X is T_0 , there exist open set U such that $x_1 \in U$ and $x_2 \notin U$ (or) $x_2 \in U$ and $x_1 \notin U$. Again since f is a bijection,

 $y_1 \in f(U)$ and $y_2 \notin f(U)$ (or) and $y_2 \in f(U)$ but $y_1 \notin f(U)$. Since *f* is regular*-open, f(U) is regular*-open set in Y. Hence Y is r*-T₀.

(ii) Suppose *f* is a pre regular*-open bijection and X is r*-T₀. Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since *f* is one-to-one, $x_1 \neq x_2$. Since X is r*-T₀, there exist regular* open sets U such that $x_1 \in U$ and $x_2 \notin U$ (or) $x_2 \in U$ and $x_1 \notin U$. Again since *f* is a bijection, $y_1 \in f$ (U) and $y_2 \notin f$ (U) (or) $y_2 \in f$ (U) and $y_1 \notin f$ (U). Since *f* is pre regular*-open, *f* (U) is regular*-open set in Y. Hence Y is r*-T₁.

(iii) Suppose *f* is a regular*-continuous bijection and Y is T₀. Let x₁, x₂∈X with x₁≠x₂. Let y₁=*f*(x₁) and y₂=*f*(x₂). Since *f* is one-to-one, y₁≠y₂. Since Y is T₀, there exist open sets U in Y such that y₁∈U and y₂∉U (or) y₂∈U and y₁∉U. Again since *f* is a bijection, x₁∈*f*⁻¹(U) and x₂∉*f*⁻¹(U) (or) x₂∈*f*⁻¹(U) and x₁∉*f*⁻¹(U). Since *f* is regular*- continuous, *f*⁻¹(U) is a regular*- open set in X. Hence X is r*-T₁.

(vi) Suppose *f* is a regular*-irresolute bijection and Y is r*-T₀. Let x₁, x $_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since *f* is one-to-one, $y_1 \neq y_2$. Since Y is r*-T₀, there exist regular*-open sets U in Y such that $y_1 \in U$ and $y_2 \notin U$ (or) $y_2 \in U$ but $y_1 \notin U$. Again since *f* is a bijection, $x_1 \in f^{-1}(U)$ and $x_2 \notin f^{-1}(U)$ (or) $x_2 \in f^{-1}(U)$ and $x_1 \notin f^{-1}(U)$. Since *f* is regular*-irresolute, $f^{-1}(U)$ is a regular*-open set in X. Hence X is r*-T₁.

Theorem 3.9: In an r^*-T_0 space X, the r^* -closures of distinct points are distinct.

Proof: Let X be an r^*-T_0 space. Let x and y be two distinct points in X. Then there exists a regular*-open set U such that

 $x \in U$ but $y \notin U$ (or) $y \in U$ but $x \notin U$. If $x \in U$ and $y \notin U$, then U is a regular*-open set containing x that does not intersect $\{y\}$. It follows that $x \notin r^*cl(\{y\})$. But $x \in r^*cl(\{x\})$, so we get $r^*cl(\{x\}) \neq r^*cl(\{y\})$. The proof for the other case is similar.

IV. r*-T1 Spaces

In this section we introduce r^*-T_1 spaces and investigate some of their basic properties.

Definition 4.1: A space X is said to be r^*-T_1 if for every pair of distinct points x and y in X, there exist regular*-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Proposition 4.2: Every r-T₁ space is r*-T₁.

Proof: Suppose X is a r-T₁ space. Let x and y be two distinct points in X. Since X is r-T₁, there exist regular-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Since every regular open set is regular*-open, we have U and V are regular*-open sets such tat $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is r*-T₁.

Proposition 4.3: Every r*-T₁ space is T₁.

Proof: Suppose X is a r^* -T₁ space. Let x and y be two distinct points in X. Since X is r^* -T₁, there exist regular*-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. since every regular*- open set is open, we have U and V are open sets such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is T₁.

Theorem 4.4: A topological space (X,τ) is r^*-T_1 , if and only if for every $x \in X$, $r^*cl\{x\} = \{x\}$.

Proof: Let (X,τ) be r^*-T_1 and $x \in X$. Then for each $y \neq x$, there exist regular*-open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. This implies that $y \notin r^*cl\{x\}$, for every $y \in X$ and $y \neq x$. Thus $\{x\} = r^*cl\{x\}$.

Conversely, suppose $r^*cl\{x\}=\{x\}$ for every $x \in X$. Let x, y be two distinct points in X. Then $x \notin \{y\}=r^*cl\{y\}$ implies that, there exists a regular*-closed set B₁such that $y \in B_1$, $x \notin B_1$. Therefore, X\B₁ is a regular*-open set such that $x \in X \setminus B_1$ but $y \notin X \setminus B_1$. Also $y \notin \{x\}=r^*cl\{x\}$ implies that, there exists a regular*-closed set B₂ such that $x \in B_2$, $y \notin B_2$. It follows that, X\B₂ is a regular*-open set such that $y \in X \setminus B_2$ but $x \notin X \setminus B_2$. Hence (X, τ) is r^*-T_1 . **Theorem 4.5:** Let $f : X \rightarrow Y$ be a bijective function. The following results hold.

(i) If *f* is regular*-open and X is T_1 , then Y is r*- T_1 .

(ii) If f is pre regular*-open and X is r*-T₁, then Y is r*-T₁.

(iii) If f is regular*-continuous and Y is T₁, then X is r*-T₁.

(iv) If f is regular* irresolute and Y is r^*-T_1 , then X is r^*-T_1 .

(v) If f is strongly regular* irresolute and Y is r*-T₁, then X is T₁.

Proof:

(i) Suppose $f : X \rightarrow Y$ is a regular*-open bijection and X is T₁. Let y₁, y₂ \in Y with y₁ \neq y₂. Let x₁= $f^{-1}(y_1)$ and x₂= $f^{-1}(y_2)$. Since f is one-to-one, x₁ \neq x₂. Since X is T₁, there exist open sets U and V such that x₁ \in U but x₂ \notin U and x₂ \in V but x₁ \notin V. Again since f is a bijection, y₁ \in f (U) but y₂ \notin f (U) and y₂ \in f (V) but y₁ \notin f (V). Since f is regular*-open, f (U) and f (V) are regular*-open sets in Y. Hence Y is r*-T₁.

(ii) Suppose $f: : X \rightarrow Y$ is a pre regular*-open bijection and X is r*-T₁. Let y_1 , $y_2 \in Y$ with $y_1 \neq y_2$. Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since f is one-to-one, $x_1 \neq x_2$. Since X is r*-T₁, there exist regular* open sets U and V such that $x_1 \in U$ but $x_2 \notin U$ and $x_2 \in V$ but $x_1 \notin V$. Again since f is a bijection, $y_1 \in f(U)$ but $y_2 \notin f(U)$ and $y_2 \in f(V)$ but $y_1 \notin f(V)$. Since f is pre regular*-open, f(U) and f(V) are regular*-open sets in Y. Hence, Y is r*-T₁.

(iii) Suppose $f: X \rightarrow Y$ is a regular*-continuous bijection and Y is T₁. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-to-one, $y_1 \neq y_2$. Since Y is T₁, there exist open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since f is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since f is regular*- continuous, f $f^{-1}(U)$ and $f^{-1}(V)$ are regular*-open sets in X. Hence, X is r*-T₁.

(vi) Suppose $f: X \rightarrow Y$ is a regular*-irresolute bijection and Y is r*-T₁. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-to-one, $y_1 \neq y_2$. Since Y is r*-T₁, there exist regular*-open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since f is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since f is regular*- irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are regular*- open sets in X. Hence, X is r*-T₁.

(v) Suppose $f : X \rightarrow Y$ is a strongly regular*-irresolute bijection and Y is r^*-T_1 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-to-one, $y_1 \neq y_2$. Since Y is r*-T₁, there exist regular*-open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since f is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since f is strongly regular*-irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are open sets in X. Hence, X is T₁.

V. r*-T₂ Spaces

In this section we introduce r^*-T_2 spaces and investigate some of their basic properties.

Definition 5.1: A space X is said to be r^*-T_2 if for every pair of distinct points x and y in X, there are disjoint R*-open sets U and V in X containing x and y respectively.

Theorem 5.2: Every r-T₂ space is r*-T₂.

Proof: Let X be a $r-T_2$ space. Let x and y be two distinct points in X. Since X is $r-T_2$, there exist disjoint regular-open sets U and V such that $x \in U$ and $y \in V$. Since every regular-open set is regular*-open, we have U and V are disjoint regular*-open sets such that $x \in U$ and $y \in V$. Hence X is r^*-T_2 .

Theorem 5.3: Every r^*-T_2 space is T_2 .

Proof: Suppose X is a r^*-T_2 space. Let x and y be two distinct points in X. Since X is r^*-T_2 , there exist disjoint regular*-open sets U and V such that $x \in U$ and $y \in V$. Since every regular*-open set is open, we have U and V are disjoint open sets such that $x \in U$ and $y \in V$. Hence X is T_2 . **Theorem 5.4:** Every r*-T₂ space is r^*-T_1 .

Proof: Let X be a r^*-T_2 space. Let x and y be two distinct points in X. Since X is r^*-T_2 , there exist disjoint regular*-open sets U and V such that $x \in U$ and $y \in V$. Since U and V are disjoint, $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is r^*-T_1 .

Theorem 5.5: If X is a r^*-T_2 space and $x \in X$, then for each $y \neq x$ there exists a regular*-open set U such that $x \in U$ and $y \notin r^*cl(U)$.

Proof: Suppose X is a r^*-T_2 space. Then for each $y \neq x$ there exist disjoint regular*-open sets U and V such that $x \in U$ and $y \in V$. Since V is regular*-open, X\V is regular*-closed and U \subseteq X\V. This implies that, $r^*cl(U) \subseteq$ X\V. Since $y \notin$ X\V, $y \notin r^*cl(U)$.

Theorem 5.6: Let $f : X \rightarrow Y$ be a bijective function. The following results hold.

(i) If f is regular*-open and X is T₂, then Y is r*-T₂.

(ii) If f is pre regular*-open and X is r*-T₂, then Y is r*-T₂.

(iii) If f is regular*-continuous and Y is T₂, then X is r*-T₂.

(iv) If f is regular* irresolute and Y is r*-T₂, then X is r*-T₂.

(v) If f is strongly regular* irresolute and Y is r*-T₂, then X is T₂.

Proof:

(i) Suppose $f : X \xrightarrow{\longrightarrow} Y$ is a regular*-open bijection and X is T₂. Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since f is one-to-one, $x_1 \neq x_2$. Since X is T₂, there exist disjoint regular*-open sets U and V such that $x_1 \in U$ but $x_2 \notin U$ and $x_2 \in V$ but $x_1 \notin V$. Again since f is a bijection, $y_1 \in f(U)$ but $y_2 \notin f(U)$ and $y_2 \in f(V)$ but $y_1 \notin f(V)$. Since f is regular*-open, f(U) and

f(V) are disjoint regular*-open sets in Y. Hence Y is r*-T₂.

(ii) Suppose $f: X \rightarrow Y$ is a pre regular*-open bijection and X is r*-T₂. Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since f is one-to-one, $x_1 \neq x_2$. Since X is r*-T₂, there exist disjoint regular* open sets U and V such that $x_1 \in U$ but $x_2 \notin U$ and $x_2 \in V$ but $x_1 \notin V$. Again since f is a bijection, $y_1 \in f(U)$ but $y_2 \notin f(U)$ and $y_2 \in f(V)$ but $y_1 \notin f(V)$. Since f is pre regular*-open, f(U) and f(V) are disjoint regular*-open sets in Y. Hence, Y is r*-T₂.

(iii) Suppose $f: X \rightarrow Y$ is a regular*-continuous bijection and Y is T₂. Let x₁,

 $x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since *f* is one-toone, $y_1 \neq y_2$. Since Y is T₂, there exist disjoint open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since *f* is a bijection,

 $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since f is regular*- continuous,

 $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint regular*-open sets in X. This shows that, X is r*-T₂.

(vi) Suppose $f: X \rightarrow Y$ is a regular*-irresolute bijection and Y is r*-T₂. Let x_1 ,

 $x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-toone, $y_1 \neq y_2$. Since Y is

r*-T₂., there exist disjoint regular*-open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since *f* is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since *f* is regular*- irresolute,

 $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint regular*-open sets in X. Hence, X is r*-T₁.

(v) Suppose $f : X \rightarrow Y$ is a strongly regular*-irresolute bijection and Y is r*-T₂.. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1=f(x_1)$ and $y_2=f(x_2)$. Since f is one-to-one, $y_1\neq y_2$. Since Y is r*-T₂., there exist disjoint regular*-open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since f is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since f is strongly regular*-irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint open sets in X. Hence, X is T₁.

REFERENCES

- [1] AshishKar and Bhattacharyya, Some weak separation axioms, *Bull. Cal. Math.Soc.*82(1990), 415-422.
- [2] Bala Subramanian, generalized separation axioms, *Scientia Magna*, 6(4)(2010), 1-14.
- [3] Dunham, W., A new closure operator for Non-T₁ topologies, *Kyungpook Math. J.* 22, (1982), 55-60.
- [4] Levine, N., Generalized closed sets topology, *Rend. Circ. Mat. Palermo* 19(2)(1970), 89-96.
- [5] Maheswari, S. N., and Prasad, R., Some new separation axioms, *Annales de la Societe Scientifique de Bruxelles*, T. 89 III (1975), 395-402.
- [6] S. Pious Missier and M. Annalakshmi, Between regular open and open sets, International journal of mathematical archive-7(5), 2016, 128-133.
- [7] S. Pious Missier, M. Annalakshmi and G.Mahadevan, On regular*-open sets, Global journal of pure and applied mathematics, Volume 13, Number 9(2017), pp.5717-5726.
- [8] Stone. M. H, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- [9] M.K.Singal and A.Mathur, On nearly compact spaces, Boll. Un.Math. Ital. 4(2) (1969), 702-710.
- [10] [Willard, S., General Topology, Addison Wesley Publishing Company, Inc(1970).