Lower Separation Axioms Using Regular*-Open Sets

M. Dinesh ¹ , Dr. S. Pasunkilipandian ²

²Head and Associate professor, Dept of mathematics ^{1, 2} Aditanar College of Arts and Science, Tiruchendur -628215

Abstract- In this paper, we introduce the concepts of r-T0, r*-T1 and r*-T2 spaces using regular*-open sets and investigate some of their properties. We give characterizations for these spaces. We also study the relationships among themselves and with Tⁱ and r-Tⁱ spaces.*

Keywords- Regular open, regular* open, r* - Ti spaces

AMS classification: 54D10

I. INTRODUCTION

Separation axioms on topological spaces are those to classify the classes of topological spaces. Maheswari and Prasad introduced the notion of semi-T_i (i=0, 1, 2) spaces using semi-open sets in 1975. AskishKar and Bhattacharyya introduced the concepts of pre- T_i (i=0, 1, 2) spaces. Balasubramanian et al. defined the concept $r-T_i$ using regular open sets. Quite recently S. Pious Missier et al. introduced a new class of nearly open set, namely regular* open sets and studied some properties of these sets.

In this paper, we introduce r^* -T_i (i=0,1,2) spaces using regular*-open sets and investigate some of their basic properties. We also study the relationships among themselves and with known separation axioms T_i and r-T_i (i=0,1, 2).

II. PRELIMINARIES

Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are assumed, unless explicitly stated. If A is a subset of the space (X, τ) , *cl*(A) and *int*(A) respectively denote the closure and the interior of A in X .

Definition 2.1[4]: A subset A of a topological space (X, τ) is called

(i) generalized closed (briefly g-closed) if *cl*(A)⊆U whenever $A \subseteq U$ and U is open in X.

(ii) generalized open(briefly g-open) if $X \setminus A$ is g-closed in X.

Definition 2.2[3]: Let A be a subset of X. The generalized closure of A is defined as the intersection of all g-closed sets containing A and is denoted by $cl^*(A)$.

Definition 2.3[3]: Let A be a subset of X. The generalized interior of A is defined as the union of all g-open sets in X containing A and is denoted by $int^*(A)$.

Definition 2.4[8]: A subset A of a topological space (X, τ) is called regular open if $A=int(cl(A))$ and regular closed if $A=cl(int(A)).$

Definition 2.5[6]: A subset A of a topological space (X, τ) is called regular*-open if $A=int(cl^*(A))$ and regular*-closed if $A=cl(int[*](A)).$

Definition 2.6[6]: Let A be a subset of X. Then the regular^{*}closure of A is defined as the intersection of all regular* closed sets containing A and is denoted by $r * cl(A)$.

Definition 2.7: A space X is said to be T_0 (resp. r-T₀ [2]) if for every pair of distinct points x and y in X, there is an open (resp. regular-open) set in X containing one of x and y but not the other.

Definition 2.8: A space X is said to be T_1 (resp.r- T_1 [2]) if for every pair of distinct points x and y in X, there are open (resp. regular-open) sets U and V such that U contains x but not y and V contains y but not x.

Definition 2.9: A space X is said to be T_2 (resp. r- T_2 [2]) if for every pair of distinct points x and y in X, there are disjoint open (resp. regular-open) sets U and V in X containing x and y respectively.

Lemma 2.10 [10]: A topological space (X,τ) is T_1 if and only if $\{x\}$ is closed for every $x \in X$.

Definition 2.11[7]: A function $f: X \rightarrow Y$ is said to be

(i) regular^{*}-continuous if $f^{-1}(V)$ is regular^{*}-open in X for every open set V in Y

(ii) regular*-open if *f*(V) is regular*-open in Y for every open set V in X.

(iii) regular^{*}-closed if $f(V)$ is regular^{*}-closed in Y for every closed set V in X.

(iv) pre regular*-open if $f(V)$ is regular*-open in Y for every regular*-open set V in X.

(v) regular^{*}-irresolute if $f^{-1}(V)$ is regular^{*}-open in X for every regular*-open set V in Y.

(vi) strongly regular^{*}-irresolute if $f^{-1}(V)$ is open in X for every regular*-open set V in Y.

Theorem 2.12[6]: (i) Every regular open set is regular*-open. (ii) Every regular*-open set is open.

III. r*-T0Spaces

In this section we introduce r^* -T₀ spaces and investigate some of their basic properties.

Definition 3.1: A topological space X is said to be r^* -T₀ if for any two distinct points x and y of X, there exists a Regular* open set G such that ($x \in G$ and $y \notin G$) or ($y \in G$ and $x \notin G$).

Theorem 3.2: Every r^* -T₀ space is T₀.

Proof: Let X be a r^* -T₀ space. Let x and y be two distinct points in X. Since X is r^* -T₀, there exists a regular^{*}-open set U such that ($x \in U$ and $y \notin U$) or ($y \in U$ and $x \notin U$). Since every regular*-open set is open, we have U is an open set such that $(x \in U \text{ and } y \notin U)$ or $(y \in U \text{ and } x \notin U)$.

Hence X is T_0 .

Remark 3.3: The converse of the above theorem is not true, as seen from the following example.

Example 3.4: Consider the space (X, τ) , where $X = \{a, b, c, d, c\}$ e} and $\tau = {\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a,$ b, c, d}, X}. Clearly (X, τ) is T_0 . Here there is no regular open set containing one of the elements d and e but not other. So it is not r-T0.

Theorem 3.5: Every $r - T_0$ space is $r^* - T_0$.

Proof: Let X be a r^* -T₀ space. Let x and y be two distinct points in X. Since X is r -T₀, there exists a regular-open set U such that $x \in U$ and $y \notin U$ (or) $y \in U$ and $x \notin U$. since every regular-open set is regular*-open, we have U is an regular* open set such that $x \in U$ and $y \notin U$ (or) $y \in U$ and $x \notin U$. Hence X is r*-T0.

Remark 3.6: The converse of the above theorem is not true, as seen from the following example.

Example 3.7: Consider the space (X, τ) , where $X = \{a, b, c, d\}$ and $\tau = {\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X}$. Clearly (X, τ) is r^* - T₀. Here there is no regular open set containing one of the elements b and c but not other. So it is not $r-T_0$.

Theorem 3.8: Let $f : X \rightarrow Y$ be a bijective function. The following results hold.

(i) If *f* is regular*-open and X is T_0 , then Y is r*-T₀.

- (ii) If *f* is pre regular*-open and X is r^* -T₀, then Y is r^* -T₀.
- (iii) If *f* is regular*-continuous and Y is T_0 , then X is r*-T₀.
- (iv) If *f* is regular^{*} irresolute and Y is r^* -T₀, then X is r^* -T₀.

Proof:

(i) Suppose f is a regular^{*}-open bijection and X is T_0 . Let y_1 , $y_2 \in Y$ with $y_1 \neq y_2$

Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since f is one-to-one, $x_1 \neq x_2$. Since X is T₀, there exist open set U such that $x_1 \in U$ and $x_2 \notin U$ (or) $x_2 \in U$ and $x_1 \notin U$. Again since *f* is a bijection,

 $y_1 \in f(U)$ and $y_2 \notin f(U)$ (or) and $y_2 \in f(U)$ but $y_1 \notin f(U)$. Since *f* is regular*-open, *f* (U) is regular*-open set in Y. Hence Y is r*- T_0 .

(ii) Suppose *f* is a pre regular^{*}-open bijection and X is r^* -T₀. Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since *f* is one-to-one, $x_1 \neq x_2$. Since X is r^* -T₀, there exist regular^{*} open sets U such that $x_1 \in U$ and $x_2 \notin U$ (or) $x_2 \in U$ and $x_1 \notin U$. Again since f is a bijection, $y_1 \in f$ (U) and $y_2 \notin f$ (U) (or) $y_2 \in f$ (U) and $y_1 \notin f$ (U). Since *f* is pre regular^{*}-open, *f* (U) is regular*-open set in Y. Hence Y is r^* -T₁.

(iii) Suppose f is a regular^{*}-continuous bijection and Y is T_0 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-to-one, $y_1 \neq y_2$. Since Y is T₀, there exist open sets U in Y such that $y_1 \in U$ and $y_2 \notin U$ (or) $y_2 \in U$ and $y_1 \notin U$. Again since *f* is a bijection, $x_1 \in f^{-1}(U)$ and $x_2 \notin f^{-1}(U)$ (or) $x_2 \in f$ $L^{2-1}(U)$ and $x_1 \notin f^{-1}(U)$. Since *f* is regular^{*}- continuous, $f^{-1}(U)$ is a regular^{*}open set in X. Hence X is r^* -T₁.

(vi) Suppose f is a regular^{*}-irresolute bijection and Y is r^* -T₀. Let x_1 , $x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-to-one, $y_1 \neq y_2$. Since Y is r^{*}-T₀, there exist regular^{*}-open sets U in Y such that $y_1 \in U$ and $y_2 \notin U$ (or) $y_2 \in U$ but $y_1 \notin U$. Again since *f* is a bijection, $x_1 \in f^{-1}(U)$ and $x_2 \notin f$ $x_2 \notin f^{-1}$ ¹(U) (or) $x_2 \in f^{-1}(U)$ and $x_1 \notin f^{-1}(U)$. Since f is regular^{*}irresolute, $f^{-1}(U)$ is a regular^{*}-open set in X. Hence X is r^* -T₁.

Theorem 3.9: In an r^* -T₀ space X, the r^* -closures of distinct points are distinct.

Proof: Let X be an r^* -T₀ space. Let x and y be two distinct points in X. Then there exists a regular*-open set U such that $x \in U$ but $y \notin U$ (or) $y \in U$ but $x \notin U$. If $x \in U$ and $y \notin U$, then U is a regular*-open set containing x that does not intersect {y}. It follows that $x \notin r^*cl({y})$. But $x \in r^*cl({x})$, so we get r*cl({x}) \neq r*cl({y}). The proof for the other case is similar.

IV. r*-T¹ Spaces

In this section we introduce r^* -T₁ spaces and investigate some of their basic properties.

Definition 4.1: A space X is said to be r^* - T_1 if for every pair of distinct points x and y in X, there exist regular*-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Proposition 4.2: Every $r-T_1$ space is $r^* - T_1$.

Proof: Suppose X is a r-T₁ space. Let x and y be two distinct points in X. Since X is $r-T_1$, there exist regular-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Since every regular open set is regular*-open, we have U and V are regular*-open sets such tat $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is r^* -T₁.

Proposition 4.3: Every r^* - T_1 space is T_1 .

Proof: Suppose X is a r^* - T_1 space. Let x and y be two distinct points in X. Since X is r^* -T₁, there exist regular^{*}-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. since every regular*- open set is open, we have U and V are open sets such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is T_1 .

Theorem 4.4: A topological space (X,τ) is r^* -T₁, if and only if for every $x \in X$, $r^*cl\{x\} = \{x\}.$

Proof: Let (X,τ) be r^{*}-T₁ and $x \in X$. Then for each $y \neq x$, there exist regular*-open sets G and H such that $x \in G$ but $y \notin G$ and y \in H but x \notin H. This implies that $y \notin r^*cl\{x\}$, for every $y \in X$ and $y \neq x$. Thus $\{x\} = r^*cl\{x\}.$

Conversely, suppose $r * cl\{x\} = \{x\}$ for every $x \in X$. Let x, y be two distinct points in X. Then $x \notin \{y\} = r^*cl\{y\}$ implies that, there exists a regular*-closed set B₁such that $y \in B_1$, $x \notin B_1$. Therefore, $X\setminus B_1$ is a regular*-open set such that $x \in X\setminus B_1$ but $y \notin X \setminus B_1$. Also $y \notin \{x\} = r^*cl\{x\}$ implies that, there exists a regular*-closed set B₂ such that $x \in B_2$, $y \notin B_2$. It follows that, $X\setminus B_2$ is a regular*-open set such that $y \in X\setminus B_2$ but $x \notin X\setminus B_2$. Hence (X,τ) is r^* -T₁.

Theorem 4.5: Let $f : X \rightarrow Y$ be a bijective function. The following results hold.

(i) If *f* is regular*-open and X is T_1 , then Y is r^* - T_1 .

(ii) If *f* is pre regular*-open and X is r^* -T₁, then Y is r^* -T₁.

(iii) If *f* is regular*-continuous and Y is T_1 , then X is r*-T₁.

(iv) If *f* is regular* irresolute and Y is r^* -T₁, then X is r^* -T₁.

(v) If *f* is strongly regular^{*} irresolute and Y is r^* -T₁, then X is T_1 .

Proof:

(i) Suppose $f : X \rightarrow Y$ is a regular^{*}-open bijection and X is T₁. Let y₁, y₂∈Y with y₁≠y₂. Let x₁=f⁻¹(y₁) and x₂=f⁻¹(y₂). Since *f* is one-to-one, $x_1 \neq x_2$. Since X is T_1 , there exist open sets U and V such that $x_1 \in U$ but $x_2 \notin U$ and $x_2 \in V$ but $x_1 \notin V$. Again since *f* is a bijection, $y_1 \in f(U)$ but $y_2 \notin f$ (U) and $y_2 \in f(V)$ but $y_1 \notin f(V)$. Since *f* is regular^{*}-open, *f* (U) and $f(V)$ are regular*-open sets in Y. Hence Y is r^* -T₁.

(ii) Suppose $f: X \rightarrow Y$ is a pre regular*-open bijection and X is r^* -T₁. Let y_1 , $y_2 \in Y$ with $y_1 \neq y_2$. Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since *f* is one-to-one, $x_1 \neq x_2$. Since X is r^* -T₁, there exist regular* open sets U and V such that $x_1 \in U$ but $x_2 \notin U$ and $x_2 \in V$ but $x_1 \notin V$. Again since *f* is a bijection, $y_1 \in f(U)$ but $y_2 \notin f$ (U) and $y_2 \in f(V)$ but $y_1 \notin f(V)$. Since *f* is pre regular*-open, *f* (U) and *f* (V) are regular*-open sets in Y. Hence, Y is r^* -T₁.

(iii) Suppose $f: X \rightarrow Y$ is a regular^{*}-continuous bijection and Y is T₁. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since *f* is one-to-one, $y_1 \neq y_2$. Since Y is T₁, there exist open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since *f* is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since *f* is regular^{*}- continuous, *f* $f^{-1}(U)$ and $f^{-1}(V)$ are regular^{*}-open sets in X. Hence, X is r^{*}-T₁.

(vi) Suppose $f: X \rightarrow Y$ is a regular^{*}-irresolute bijection and Y is r^* -T₁. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since *f* is one-to-one, $y_1 \neq y_2$. Since Y is r^* -T₁, there exist regular*-open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since f is a bijection, $x_1 \in f^{-1}$ ¹(U) but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since f is regular^{*}- irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are regular^{*}-open sets in X. Hence, X is r^* -T₁.

(v) Suppose $f : X \rightarrow Y$ is a strongly regular^{*}-irresolute bijection and Y is r^* -T₁. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1=f(x_1)$ and $y_2=f(x_2)$. Since *f* is one-to-one, $y_1 \neq y_2$. Since Y

is r^* -T₁, there exist regular^{*}-open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since f is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(U)$ ¹(V). Since *f* is strongly regular^{*}-irresolute, f ⁻ $1(U)$ and $f^{-1}(V)$ are open sets in X. Hence, X is T₁.

V. r*-T² Spaces

In this section we introduce r^* -T₂ spaces and investigate some of their basic properties.

Definition 5.1: A space X is said to be r^* - T_2 if for every pair of distinct points x and y in X, there are disjoint R^* -open sets U and V in X containing x and y respectively.

Theorem 5.2: Every $r - T_2$ space is $r^* - T_2$.

Proof: Let X be a r -T₂ space. Let x and y be two distinct points in X. Since X is $r-T_2$, there exist disjoint regular-open sets U and V such that $x \in U$ and $y \in V$. Since every regularopen set is regular*-open, we have U and V are disjoint regular*-open sets such that $x \in U$ and $y \in V$. Hence X is r*-T₂.

Theorem 5.3: Every r^* -T₂ space is T₂.

Proof: Suppose X is a r^* -T₂ space. Let x and y be two distinct points in X. Since X is r^* -T₂, there exist disjoint regular^{*}-open sets U and V such that $x \in U$ and $y \in V$. Since every regular^{*}open set is open, we have U and V are disjoint open sets such that $x \in U$ and $y \in V$. Hence X is T_2 . **Theorem 5.4:** Every r^* -T₂ space is r^* -T₁.

Proof: Let X be a r^* -T₂ space. Let x and y be two distinct points in X. Since X is r^* -T₂, there exist disjoint regular^{*}-open sets U and V such that $x \in U$ and $y \in V$. Since U and V are disjoint, $x \in U$ but $y \notin U$ and $y \in V$ but x \notin V. Hence X is r^* -T₁.

Theorem 5.5: If X is a r^* -T₂ space and $x \in X$, then for each y≠x there exists a regular^{*}-open set U such that $x \in U$ and $y \notin r * cl(U).$

Proof: Suppose X is a r^* -T₂ space. Then for each $y \neq x$ there exist disjoint regular*-open sets U and V such that $x \in U$ and $y \in V$. Since V is regular*-open, X\V is regular*-closed and U⊆X\V. This implies that, r*cl(U)⊆X\V. Since $y \notin X \setminus V$, $y \notin r * cl(U).$

Theorem 5.6: Let $f: X \rightarrow Y$ be a bijective function. The following results hold.

(i) If *f* is regular*-open and X is T_2 , then Y is r^* - T_2 .

(ii) If *f* is pre regular*-open and X is r^* -T₂, then Y is r^* -T₂.

(iii) If *f* is regular*-continuous and Y is T_2 , then X is r*-T₂.

(iv) If *f* is regular^{*} irresolute and Y is r^* -T₂, then X is r^* -T₂.

(v) If f is strongly regular^{*} irresolute and Y is r^* -T₂, then X is $T₂$.

Proof:

(i) Suppose $f : X \rightarrow Y$ is a regular^{*}-open bijection and X is T_2 . Let y_1 , $y_2 \in Y$ with $y_1 \neq y_2$. Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Since f is one-to-one, $x_1 \neq x_2$. Since X is T_2 , there exist disjoint regular*-open sets U and V such that $x_1 \in U$ but $x_2 \notin U$ and $x_2 \in V$ but $x_1 \notin V$. Again since *f* is a bijection, $y_1 \in f$ (U) but $y_2 \notin f$ (U) and $y_2 \in f(V)$ but $y_1 \notin f(V)$. Since *f* is regular^{*}-open, *f* (U) and

 $f(V)$ are disjoint regular^{*}-open sets in Y. Hence Y is r^* -T₂.

(ii) Suppose $f: X \rightarrow Y$ is a pre regular*-open bijection and X is r^* -T₂. Let y₁, y₂ ∈ Y with y₁ \neq y₂. Let x₁= $f^{-1}(y_1)$ and x₂= $f^{-1}(y_2)$. Since *f* is one-to-one, $x_1 \neq x_2$. Since X is r^* -T₂, there exist disjoint regular* open sets U and V such that $x_1 \in U$ but $x_2 \notin U$ and $x_2 \in V$ but $x_1 \notin V$. Again since *f* is a bijection, $y_1 \in f$ (U) but $y_2 \notin f$ (U) and $y_2 \in f$ (V) but $y_1 \notin f$ (V). Since *f* is pre regular^{*}open, *f* (U) and *f* (V) are disjoint regular*-open sets in Y. Hence, Y is r^* -T₂.

(iii) Suppose $f: X \rightarrow Y$ is a regular^{*}-continuous bijection and Y is T_2 . Let x_1 ,

 $x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since *f* is one-toone, $y_1 \neq y_2$. Since Y is T₂, there exist disjoint open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since *f* is a bijection,

 $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since *f* is regular*- continuous,

 $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint regular*-open sets in X. This shows that, X is r^* -T₂.

(vi) Suppose $f: X \rightarrow Y$ is a regular^{*}-irresolute bijection and Y is r^* -T₂. Let x_1 ,

 $x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-toone, $y_1 \neq y_2$. Since Y is

 r^* -T₂., there exist disjoint regular^{*}-open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since *f* is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(U)$ $¹(V)$. Since *f* is regular^{*}- irresolute,</sup>

 $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint regular^{*}-open sets in X. Hence, X is r^* -T₁.

(v) Suppose $f : X \rightarrow Y$ is a strongly regular^{*}-irresolute bijection and Y is r^* -T₂.. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1=f(x_1)$ and $y_2=f(x_2)$. Since *f* is one-to-one, $y_1 \neq y_2$. Since *Y* is r^* -T₂., there exist disjoint regular^{*}-open sets U and V in Y such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since *f* is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(U)$ ¹(V). Since *f* is strongly regular^{*}-irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint open sets in X. Hence, X is T_1 .

REFERENCES

- [1] AshishKar and Bhattacharyya, Some weak separation axioms, *Bull. Cal. Math.Soc.*82(1990), 415-422.
- [2] Bala Subramanian, generalized separation axioms, *Scientia Magna*, 6(4)(2010), 1-14.
- [3] Dunham, W., A new closure operator for Non-T₁ topologies, *Kyungpook Math. J*. 22, (1982), 55-60.
- [4] Levine, N., Generalized closed sets topology, *Rend. Circ. Mat. Palermo* 19(2)(1970), 89-96.
- [5] Maheswari, S. N., and Prasad, R., Some new separation axioms, *Annales de la Societe Scientifique de Bruxelles*, T. 89 III (1975), 395-402.
- [6] S. Pious Missier and M. Annalakshmi, Between regular open and open sets, International journal of mathematical archive-7(5), 2016, 128-133.
- [7] S. Pious Missier, M. Annalakshmi and G.Mahadevan, On regular*-open sets, Global journal of pure and applied mathematics, Volume 13, Number 9(2017), pp.5717-5726.
- [8] Stone. M. H, Application of the theory of Boolean rings to general topology,Trans.Amer.Math.Soc., 41(1937), 374-481.
- [9] M.K.Singal and A.Mathur, On nearly compact spaces, *Boll. Un.Math. Ital.* 4(2) (1969), 702-710.
- [10] [Willard, S., General Topology, *Addison – Wesley Publishing Company*, *Inc*(1970).