
IJSART - Volume 6 Issue 2 – FEBRUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 93 www.ijsart.com

Design & Implementation of Cyclic Redundancy

Check Generator

Kaluram Makwana1, Prof. Madhvi Singh Bhanwar2
1, 2 Dept of Electronics & Communication Engineering

1, 2 SIRT Indore

Abstract- Cyclic Redundancy Check is the most important

method to detect the errors occurred during transmission of

any data. Errors transpired in communication due to internal

and external factors i.e. due to components, link, design, noise

and interference etc. This paper focused on implementation

and analysis of encoder and checker of CRC. The whole

design is functionally verified using MATLAB & Xilinx ISE

14.1i.

Keywords- CRC, Error detection, Communication, VLSI.

I. INTRODUCTION

In an advanced transmission system, an error

occurred when a bit is adjusts in the middle of transmission

and gathering in a channel. A binary 1 is moved and a binary 0

is gotten or a binary 0 is moved and a binary 1 is gotten. There

are two kinds of errors that can happen: single-bit error and

burst error [1]. A single bit error is a sequestered error that

changes one bit however do not trouble neighboring bits. A

burst error is a error in a bordering sequence of B bits in which

the first and last bits and any number of halfway bits are

gotten in error.

A single-bit error can arise in the occurrence of white

noise, due to a slight arbitrary worsening of the signal-to-noise

ratio, which is adequate to complicate the receiver’s

conclusion of a single bit. Spurt errors can be initiated by

impulse noise or waning in a mobile wireless background and

are more common and more problematic to contract with. The

effects of rupture errors are larger at complex data rates. Bit

errors occur in digital communication schemes due to inherent

or extrinsic factors [2]. Intrinsic errors are due to the

constituents, design and application of a link. They are

produced due to internal noise causes, poor electrical

influences, and sometimes receiver sampler error. In optical

contacts the errors occur mainly because of the bodily

components such as optical driver, optical receiver,

connectors, optical fiber, etc. Errors are also caused due to

optical attenuation and optical dispersion. CRCs have a long

history of use for error detection in computing [3]. Error

correction codes deliver a means to identify and correct errors

presented by a transmission network.

Common Cyclic Redundancy Check polynomials are able to

notice following types of errors:

a. Single bit error,

b. Double bit errors

c. All odd number of errors having sufficient constraint

length

d. Any burst error for which the burst length is less than

the polynomial length

e. Large burst errors [4].

Cyclic Redundancy Check uses binary symbols, 0

and 1. Arithmetic is based on GF (2) i.e. modulo-2 calculation

(logical XOR) and multiplication (logical AND). The coding

arrangement uses systematic codes. Suppose m(x) is the

message polynomial, c(x) the code word polynomial and g(x)

the generator polynomial. We have c(x)= m(x)g(x) which is

also written using the systematic form as c(x)= m(x)xn-k +

r(x) , where r(x) is the remainder of the division of m(x)xn-k

by g(x) and r(x) represents the CRC bits. The transmitted

message c(x) contain k-information bits followed by ‘n-k’

CRC bits.

If c’(x) is the received message, then no error or

untraceable errors have occurred if c’(x) is multiple of g(x) ,

which is equivalent to determining that if c’(x)xn-k is a

multiple of g(x), that is, if the remainder of the division from

c’(x)xn-k by g(x) is 0.

Figure 1: Basic structure of CRC

IJSART - Volume 6 Issue 2 – FEBRUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 94 www.ijsart.com

II. OPERATION OF COUNTERS

Counter Cyclic Redundancy Check (CRC) is an error

detecting technique in which a transferred message is attached

with a few redundant bits from the sender and then the

codeword is plaid at the receiver using modulo-2 arithmetic

for errors. The message is then communicated from the

encoder and is received by the receiver where a CRC check is

conceded out. This procedure supports to regulate any errors

in communication over the channel.

The assortment of producer polynomial is the most

important part of implementing the CRC algorithm. The

polynomial essential be chosen to maximize the error-

detecting capabilities while minimizing overall collision

probabilities. CRC is divided into the following types:

Table 1: Standard CRC and their polynomials

S.No CRC Polynomial Application

1 CRC4 x4 + x3 + 1 Telephone

2 CRC8 x8 + x2 + x + 1 ATM header

3 CRC8

CCIT

x8 + x7 + x2 + x + 1 1 wire bus

4 CRC10 x10 + x9 + x5 + x4 + x +1 ATM AAL

5 CRC16 x16 + x15 + x2 + 1 HDLC/USB

6 CRC16

CCIT

x16 + x15 + x5 + 1 X.25/Modem

7 CRC32 x32 + x26 + x23 + x22 + x16

+ x12 + x11 + x10 + x8 + x7

+ x5 + x4 + x2 + 1

Ethernet

A polynomial termed generator polynomial must be

designated before the user calculates the CRC of a transferred

message. The generator polynomial must have a degree

greater than zero and a non-zero coefficient in the MSB and

LSB positions.

III. PROPOSED DESIGN & SOLUTION

There are four major CRC implementation solutions

[5]. CRC implementation can use either hardware or software

solutions. In the traditional hardware implementation, a simple

shift register circuit performs the computations by handling

the data one bit at a time and parallel implementation by

handling data in one word (n-bit) at a time [6, 7]. Software

implementations of CRC encoding/ decoding do not resort to

dedicated hardware requirements; their applicability, however,

is limited to lower encoding rates.

Figure 2: Division in CRC

Figure 3: Simple hardware implementation of 16 bit

CRC

Division operation of CRC is modulo-2 operation.

The divider circuit of CRC can be made up of shift registers

and mod-2 adders. The calculation of CRC can be done by the

Xilinx to reduce the cost.

ENCODER ALGORITHM

a. Read the message vector.

b. Take the generator polynomial order ‘k’.

c. Shift the message vector ‘k’ times and store it order as

‘n’. Compute (n-k).

d. Shift generator polynomial (n-k) times and store the result

‘h’.

e. XOR the generator polynomial and message vector and

store the result in ‘x’.

f. Determine the highest polynomial index position of ‘x’

where 1 is occurred and take it as ‘n’.

g. If n >=k go to step 4.

h. Concatenate the check bits with the message bits.

CHECKER ALGORITHM

a. Read the received data and take its order as ‘n’ and store

it in ‘h’.

IJSART - Volume 6 Issue 2 – FEBRUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 95 www.ijsart.com

b. Take the order of generator polynomial as ‘k’. Compute

(n-k).

c. Shift the generator polynomial left (n-k) times and store

the result in ‘e’.

d. XOR the generator polynomial and received vector and

store the results in ‘x’.

e. Determine the highest index of ‘x’ where 1 is occurred

and take it as a ‘n’.

f. If n >= k go to step 3.

g. Store ‘x’ in rem.

h. If rem = 0 then the received data is error free else data

contains error.

IV. SIMULATION AND RESULTS

In this section we have showed the result generated

from MATLAB then whole design is implemented into Xilinx

to check the power dissipation, output delay and memory

used.

Case 1: In this Cyclic Redundancy check, polynomial length

is 5 and input data has a length of 8 bits.

Input Data is 10010011 and 11001001

CRC polynomial is (x4+x3+1) i.e. 11001

Remainder generated is 0001 and 1001

Final codeword transmitted is 100100110001 and

110010011001

Figure 4: Output waveform for CRC 4 (MATLAB)

Figure 5: Output waveform for CRC 4 (Xilinx)

Case 2: In this Cyclic Redundancy check, polynomial length

is 9 and input data has a length of 8 bits.

Input Data is 10010011 and 11001001

CRC polynomial is (x8+x2+x+1) i.e. 100000111

Remainder generated is 11110000 and 01110001

Final codeword transmitted is 1001001111110000 and

1100100101110001

Figure 6: Output waveform for CRC 8 (MATLAB)

Figure 7: Output waveform for CRC 8 (Xilinx)

Case 3: In this Cyclic Redundancy check, polynomial length

is 9 and input data has a length of 8 bits.

Input Data is 10010011 and 11001001

CRC polynomial is (x8+ x7+x2+x+1) i.e. 110000111

Remainder generated is 00100111 and 10100100

Final codeword transmitted is 1001001100100111 and

1100100110100100

IJSART - Volume 6 Issue 2 – FEBRUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 96 www.ijsart.com

Figure 8: Output waveform for CRC 8 CCIT (MATLAB)

Figure 9: Output waveform for CRC 8 CCIT (Xilinx)

Table 2 describes the logic utilization summary for CRC4,

CRC8 and CRC8 CCIT obtained during the analysis of cyclic

redundancy check in Xilinx

Table 2: Device utilization summary

Slice Logic Utilization CRC4 CRC8
CRC8

CCIT

Number of Slice LUTs 17 30 30

Number used as logic 17 30 30

Number of occupied

Slices
7 15 16

Number of LUT Flip Flop

pairs used
17 30 32

Number of bonded IOBs 25 40 42

Average Fanout of Non-

Clock Nets
3.47 3.86 3.74

V. CONCLUSIONS

The method of calculating the remainder for CRC,

creating codeword for a given message and generator is

described here. Table 2 describes the overall parameter for

cyclic redundancy generator. This CRC can be used in

different application as per suggested in table 1.

REFERENCES

[1] T Stallings, William, "Data and computer

communications", Upper Saddle River, N.J.:

Pearson/Prentice Hall, 8th Edition, 2007.

[2] Palani Subbaiah, "Bit- Error Rate for High Speed Serial

Data Communication", Data-communications Division,

Cypress Semiconductor, November 2008.

[3] Peterson, W. & E. Weldon, "Error-Correcting Codes",

Second Edition, MIT Press, 1972.

[4] Ulf Nordqvist, Thesis: "Protocol Processing in Network

Terminals", Department of Electrical Engineering,

Linkopings University, SE-581 83 Linkoping, Sweden

2004.

[5] U. Nordqvist, T. Henriksson, D. Liu, "CRC Generation

for Protocol Processing", Norchip 2000, Turku, Finland,

pp. 288-293.

[6] Ming-Der Shieh, Ming-Hwa Sheu, Chung-Ho Chen,

Hsin-Fu Lo, "A Systematic Approach for Parallel CRC

Computations", Journal of Information Science And

Engineering, Vol. 17, 2001 pp. 445-461.

[7] Giuseppe Campobello, Giuseppe Patane, Marco Russo,

"Parallel CRC Realization", IEEE Transactions On

Computers, Vol. 52, No. 10, 2003, pp. 245-256.

[8] A. H. Saleh, K. M. Saleh and S. Al-Azawi, "Design and

simulation of CRC encoder and decoder using VHDL,"

2018 1st International Scientific Conference of

Engineering Sciences - 3rd Scientific Conference of

Engineering Science (ISCES), IEEE 2018, pp. 221-225.

[9] A. K. Panda, S. Sarik and A. Awasthi, "FPGA

Implementation of Encoder for (15, k) Binary BCH Code

Using VHDL and Performance Comparison for Multiple

Error Correction Control," International Conference on

Communication Systems and Network Technologies,

Rajkot, 2012, pp. 780-784.

[10] Bajarangbali P., Aparna Anand, “Design of High Speed

CRC Algorithm for Ethernet on FPGA using reduced

lookup table algorithm”, IEEE Annual India Conference

(INDICON) 2016

[11] Zavodnik, T; Kekely, L.; and Pus, V., "CRC based

hashing in FPGA using DSP blocks," in Design and

Diagnostics of Electronic Circuits & Systems, 17th

International Symposium on , vol., no., pp.179-182, 23-25

April 2014

[12] Kounavis, M.E. and Berry, F.L. "Novel Table Lookup-

Based Algorithms for High-Performance CRC

Generation," in Computers, IEEE Transactions. pp.

vol.57, no.11, pp.1550-1560, Nov. 2008

[13] M.D. Shieh, M.H. Sheu, C.H. Chen, and H.F. Lo, “A

Systematic Approach for Parallel CRC Computations,” J.

Information Science and Eng., vol. 17, pp. 445-461, 2001.

file:///C:/Users/Ashish/Desktop/Arpita%20new%20code/encoderr/crc_new_map.xrpt

IJSART - Volume 6 Issue 2 – FEBRUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 97 www.ijsart.com

[14] Christopher E. Kennedy and Mehran Mozaffari-

Kermani,“Generalized Parallel CRC Computation on

FPGA”, Proceeding of the IEEE 28th Canadian

Conference on Electrical and Computer Engineering

Halifax, Canada, May 3-6, 2015

[15] Jubin Mitra and Tapan K. Nayak, “Reconfigurable

Concurrent VLSI (FPGA) Design Architecture of CRC-

32 for high-speed data communication”, 2015 IEEE

International Symposium on Nanoelectronic and

Information Systems

