
IJSART - Volume 6 Issue 1 –JANUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 282 www.ijsart.com

SQL Data Sets Pivoting For Data Mining Analysis

Mrs. N.Pooja1, Dr.R.Bulli Babu2

1Dept of CSE
2Professor, Dept of CSE

1, 2 St.Marys Group of Institutions Guntur, AP

Abstract- Now a days many complex queries are required to

prepare data sets for data mining analysis. They require more

time and much effort is need for joining tables and aggregate

columns. Existing SQL methods have limitations to prepare

data sets because they return one column per aggregated

group. A data mining project, requires many SQL queries,

joining tables and aggregating columns. Conventional

RDBMS usually manage tables with vertical form. Aggregated

columns in a horizontal tabular layout returns set of numbers,

instead of one number per row. The system uses one parent

table and different child tables, operations are then performed

on the data loaded from multiple tables. In general, a

significant manual effort is required to build data sets, where

a horizontal layout is required. The system use specific

methods to generate SQL code to return aggregated columns

in a horizontal tabular layout, returning a set of numbers

instead of one number per row. This new class of functions is

called horizontal aggregations. Horizontal aggregations build

data sets with a horizontal de normalized layout which is the

standard layout required by most data mining algorithms. The

system propose three fundamental methods to generate data

sets for mining analysis.

Keywords- Pivot, CASE, Aggregation, OLTP

CASE: Exploiting the programming CASE construct; SPJ:

Based on standard relational algebra operators (SPJ queries);

PIVOT: Using the PIVOT operator, which is offered by some

DBMSs. Experiments with large tables compare the proposed

query evaluation methods. Our CASE method has similar

speed to the PIVOT operator and it is much faster than the SPJ

method. In general, the CASE and PIVOT methods exhibit

linear scalability, whereas the SPJ method does not.

I. INTRODUCTION

 Preparing a data set for analysis is generally the most

time consuming task in a data mining project, requiring many

complex SQL queries, joining tables and aggregating columns.

Existing SQL aggregations have limitations to prepare data

sets because they return one column per aggregated group. In

general, a significant manual effort is required to build data

sets, where a horizontal layout is required. We propose simple,

yet powerful, methods to generate SQL code to return

aggregated columns in a horizontal tabular layout, returning a

set of numbers instead of one number per row. This new class

of functions is called horizontal aggregations.

II. WHAT IS DATA MINING

In a relational database, especially with normalized

tables, a significant effort is required to prepare a summary

data set that can be used as input for a data mining or

statistical algorithm. Most algorithms require as input a data

set with a horizontal layout, with several Records and one

variable or dimension per column. That is the case with

models like clustering, classification, and regression. Each

research discipline uses different terminology to describe the

data set. In data mining the common terms are point-

dimension.

In This paper introduce a new class of aggregate

functions that can be used to build data sets in a horizontal

layout (de-normalized with aggregations), automating SQL

query writing and extending SQL capabilities. The proposed

system show evaluating horizontal aggregations is a

challenging and interesting problem and we introduced

alternative methods and optimizations for their efficient

evaluation.

Horizontal aggregations:

Some other aggregations return the average,

maximum, minimum or row count over groups of rows. There

exist many aggregation functions and operators in SQL.

Unfortunately, all these aggregations have limitations to build

data sets for data mining purposes. The main reason is that, in

general, data sets that are stored in a relational database or a

data warehouse come from On-Line Transaction Processing

(OLTP) systems where database schemas are highly

normalized. But data mining, statistical or machine learning

algorithms generally require aggregated data in summarized

form. Based on current available functions and clauses in

SQL, a significant effort is required to compute aggregations

when they are desired in a cross tabular (horizontal) form,

suitable to be used by a data mining algorithm. Such effort is

due to the amount and complexity of SQL code that needs to

be written, optimized and tested.

IJSART - Volume 6 Issue 1 –JANUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 283 www.ijsart.com

CASE, SPJ and PIVOT METHODS

This paper propose three fundamental methods to

evaluate horizontal aggregations:

 CASE (Exploiting the programming CASE on struct)

 SPJ(Based on standard relational algebra operators (SPJ

queries));

 PIVOT(Using the PIVOT operator, which is offered by

some DBMS)

Experiments with large tables compare the pro posed

query evaluation methods. The CASE method has similar

speed to the PIVOT operator and it is much faster than the SPJ

method. In general, the CASE and PIVOT methods exhibit

linear scalability, whereas the SPJ method does not.

This paper proposes a new class of aggregate

functions that aggregate numeric expressions and transpose

results to produce a data set with a horizontal layout.

Functions belonging to this class are called horizontal

aggregations. Horizontal aggregations represent an extended

form of traditional SQL aggregations, which return a set of

values in a horizontal layout somewhat similar to a

multidimensional vector, instead of a single value per row.

This article explains how to evaluate and optimize horizontal

aggregations generating standard SQL code.

Relation B/W CASE,SPJ and PIVOT METHODS and

Data Mining:

The proposed horizontal aggregations provide several

unique features. First, they represent a template to generate

SQL code from a data mining tool. Such SQL code automates

writing SQL queries, optimizing them and testing them for

correctness. This SQL code reduces manual work in the data

preparation phase in a data mining project.

Second, since SQL code is automatically generated it

is likely to be more efficient than SQL code written by an end

user. For instance, a person who does not know SQL well or

someone who is not familiar with the database schema (e.g. a

data mining practitioner). Therefore, data sets can be created

in less time.

Third, the data set can be created entirely inside the DBMS.

Importance of CASE, SPJ and PIVOT Methods :

This paper is analyzed in this phase and business

proposal is put forth with a very general plan for the project

and some cost estimates. During system analysis the feasibility

study of the proposed system is to be carried out. This is to

ensure that the proposed system is not a burden to the

company.

Fig 1. Example of F, FV and FH

Explanation:

This section defines the table that will be used to

explain SQL queries throughout this work. In order to present

definitions and concepts in an intuitive manner, we present our

definitions in OLAP terms. Let F be a table having a simple

primary key K represented by an integer, p discrete attributes

and one numeric attribute: F(K,D1, . . . , Dp,A).

Our definitions can be easily generalized to multiple

numeric attributes. In OLAP terms, F is a fact table with one

column used as primary key, p dimensions and one measure

column passed to standard SQL aggregations. That is, table F

will be manipulated as a cube with p dimensions [9]. Subsets

of dimension columns are used to group rows to aggregate the

measure column. F is assumed to have a star schema to

simplify exposition. Column K will not be used to compute

aggregations. Dimension lookup tables will be based on

simple foreign keys. That is, one dimension column Dj will be

a foreign key linked to a lookup table that has Dj as primary

key. Input table F size is called N (not to be confused with n,

the size of the answer set). That is, |F| = N. Table F represents

a temporary table or a view based on a “star join” query on

several tables.

The sytem now explain tables FV (vertical) and FH

(horizontal) that are used throughout the article. Consider a

standard SQL aggregation (e.g. sum()) with the GROUP BY

clause, which returns results in a vertical layout. Assume there

are j + k GROUP BY columns and the aggregated attribute is

A. The results are stored on table FV having j + k columns

making up the primary key and A as a non-key attribute.

Table FV has a vertical layout. The goal of a

horizontal aggregation is to transform FV into a table FH with

a horizontal layout having n rows and j+d columns, where

each of the columns represents a unique combination of the k

grouping columns. Table FV may be more efficient than FH to

IJSART - Volume 6 Issue 1 –JANUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 284 www.ijsart.com

handle sparse matrices (having many zeroes), but some

DBMSs like SQL Server [2] can handle sparse columns in a

horizontal layout. The n rows represent records for analysis

and the d columns represent dimensions or features for

analysis. Therefore, n is data set size and d is dimensionality.

In other words, each aggregated column represents a numeric

variable as defined in statistics research or a numeric feature

as typically defined in machine learning research.

Pattern of producing SQL Queries:

We now show actual SQL code for our small

example. This SQL code produces FH in Figure 1. Notice the

three methods can compute from either F or FV , but we use F

to make code more compact.

/* SPJ method */

INSERT INTO F1 SELECT D1, sum(A) AS A FROM F

WHERE D2=’X’ GROUP BY D1;

INSERT INTO F2 SELECT D1, sum(A) AS A

FROM F WHERE D2=’Y’ GROUP BY D1;

INSERT INTO FH SELECT F0.D1,F1.A AS D2_X,F2.A AS

D2_Y FROM F0 LEFT OUTER JOIN F1 on F0.D1=F1.D1

LEFT OUTER JOIN F2 on F0.D1=F2.D1;

/* CASE method */

INSERT INTO FH SELECT D1 ,SUM(CASE WHEN

D2=’X’ THEN A ELSE null END) as D2_X ,SUM(CASE

WHEN D2=’Y’ THEN A ELSE null END) as D2_YFROM F

GROUP BY D1;

/* PIVOT method */

INSERT INTO FH SELECT D1, [X] as D2_X ,[Y] as D2_Y

FROM (SELECT D1, D2, A FROM F) as p PIVOT (

SUM(A) FOR D2 IN ([X], [Y])

Time Complexity and I/O Cost for Each Method:

We now analyze time complexity for each method.

Recall that N = |F|, n = |FH| and d is the data set

dimensionality (number of cross-tabulated aggregations).We

consider one I/O to read/write one row as the basic unit to

analyze the cost to evaluate the query. This analysis considers

every method pre computes FV .

SPJ: We assume hash or sort-merge joins are available. Thus

a join between two tables of size O(n) can be evaluated in time

O(n) on average. Otherwise, joins take time O(n log2n).

Computing the sort in the initial query ”SELECT

DISTINCT..” takes O(N log2(N)). If the right key produces a

high d (say d ≥ 10 and a uniform distribution of values).

Then each σ query will have a high selectivity

predicate. Each |Fi| ≤ n. Therefore, we can expect |Fi| < N.

There are d σ queries with different selectivity with a

conjunction of k terms O(kn + N) each. Then total time for all

selection queries is O(dkn +dN). There are d GROUP-BY

operations with L1, . . ., Lj producing a table O(n) each.

Therefore, the d GROUP-BYs take time O(dn) with

I/O cost 2dn (to read and write). Finally, there are d outer joins

taking O(n) or O(nlog2(n)) each, giving a total time O(dn) or

O(d nlog2(n)). In short, time is O(Nlog2(N)+dkn+dN) and I/O

cost is Nlog2(N)+3dn+dN with hash joins. Otherwise, time is

O(Nlog2(N) + dknlog2(n) + dN) and I/O cost is Nlog2(N) +

2dn + dnlog2(n) + dN with sort-merge joins. Time depends on

number of distinct values, their combination and probabilistic

distribution of values.

CASE: Computing the sort in the initial query ”SELECT

DISTINCT..” takes O(N log2(N)). There are O(dkN)

comparisons; notice this is

fixed. There is one GROUP-BY with L1, . . ., Lj in time

O(dkn) producing table O(dn). Evaluation time depends on

the number of distinct value combinations, but not on their

probabilistic distribution. In short, time is

O(Nlog2(N)+dkn+N) and I/O cost is Nlog2(N)+n+N. As we

can see, time complexity is the same, but I/O cost is

significantly smaller compared to SPJ.

PIVOT:We consider the optimized version which trims F

from irrelevant columns and k = 1. Like the SPJ and CASE

methods, PIVOT depends on selecting the distinct values from

the right keys R1, . . . , Rk. It avoids joins and saves I/O when

it receives as input the trimmed version of F. Then it has

similartime complexity to CASE. Also, time depends on

number of distinct values, their combination and probabilistic

distribution of values.

REFERENCES

[1] J. Han and M. Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufmann, San Francisco, 1st

edition, 2001.

[2] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating

association rule mining with relational database systems:

alternatives and implications. In Proc. ACM SIGMOD

Conference, pages 343–354, 1998.

IJSART - Volume 6 Issue 1 –JANUARY 2020 ISSN [ONLINE]: 2395-1052

Page | 285 www.ijsart.com

[3] C. Ordonez. Data set preprocessing and transformation in

a database system. Intelligent Data Analysis (IDA), 15(4),

2011.

[4] C. Galindo-Legaria and A. Rosenthal. Outer join

simplification and reordering for query optimization.

ACM TODS, 22(1):43–73, 1997.

