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Abstract- While recent advances in deep learning have 

significantly advanced the state of the art for vessel detection 

in color fundus (CF) images, the success for detecting vessels 

in fluorescein angiography (FA) has been stymied due to the 

lack of labeled ground truth datasets. Deep learning based 

image processing algorithms have shown compelling 

improvement in the analysis of color fundus (CF) images. 

Propose a novel pipeline to detect retinal vessels in FA images 

using deep neural networks (DNNs). The input FA image is 

decomposed into a two scale Gaussian image pyramid: one at 

the original image resolution and the other down sampled by 

a factor of 2. The images in each scale are processed 

independently. The resulting vessel maps in the lower 

resolution are upsampled to the original size using Gaussian 

pyramid expansion. Pixels where vessel is detected at any 

scale collectively comprise the estimated vessel map. The 

approach significantly reduces manual labeling effort while 

increasing engagement. 

 

Keywords- Fluorescein angiography, generative adversarial 

networks, vessel detection, retinal image analysis, deep 

learning. 

 

I. INTRODUCTION 

 

 Recently deep learning based image processing 

algorithms have shown compelling improvement in the 

analysis of color fundus (CF) images. The CF images are color 

images of the retina captured under white light illumination 

using a fundus camera that consists of a specialized 

microscope equipped with a camera. The images mimic what 

physicians see with ophthalmoscopy and are the predominant 

form of retinal images. A DNN can detect retinal vessels in 

CF imagery with high accuracy and robustness and achieve 

performance close to human experts. Manually labeled ground 

truth datasets are a key ingredient in the success of these 

techniques. Three commonly used datasets that provide CF 

images and corresponding manually labeled pixel-wise binary 

vessel maps include DRIVE (forty 584 × 565 pixel images), 

STARE (twenty 605 × 700 pixel images), and the high 

resolution HRF (forty-five 504×2336 images) datasets.  

  

The detection of retinal vessels is also of interest for 

alternative imaging modalities that are of independent 

diagnostic utility in the clinic. For instance, fluorescein 

angiography (FA) and optical coherence tomography 

angiography (OCT-A) are used for assessing retinal non-

perfusion. FA provides a larger field of imaging beyond the 

macula, while commercially available OCT-A provides more 

detailed imaging of the macular micro-vasculature. FA images 

are captured after intravenous injection of sodium fluorescein 

dye. Blue illumination, over the wavelength range from 465 to 

490 nm, causes the dye to fluoresce and emit photons in the 

520-530 nm green-yellow wavelength band. The spatial 

pattern of fluorescence intensity is captured as an FA image, 

in which, the vessels with blood flowing through them appear 

brighter because of the fluorescent dye in the blood. Although, 

conceptually, one could redeploy the DNN architectures that 

are successful in CF imagery to these alternative modalities, 

the fundamental differences between the modalities require 

fresh training and the lack of ground truth labeled data 

becomes a key obstacle to such reuse. Specifically, for FA 

images, only one dataset is available: VAMPIRE which 

provides eight ultra-wide field FA (UWFFA) images (3072 × 

3900 pixels, each) along with limited accuracy ground truth 

binary vessel maps. Manually annotating vessel maps for 

training a DNN is not a trivial task. Specifically, UWFFA 

images have high resolution and exhibit variations in contrast 

between the background and the vasculature, which pose a 

significant challenge for manual annotation. Fig. 1 shows 

sample FA images and highlights the particular challenge of 

contrast variations. The patch labeled in cyan in the middle 

UWFFA image is shown in an enlarged view on the right, as 

captured and with contrast enhanced. From the contrast 

enhanced view, one can appreciate that the region 

corresponding to the patch contains a large number of fine 

vessels that are rather difficult to see without contrast 

enhancement. In particular, ophthalmologists normally have 

difficulty in identifying fine vessels in the peripheral region 

without image enhancement because of the low contrast and  

brightness. High-quality annotation requires carefully 

adjusting image contrast for the entire FA image and labeling 

both major and minor vessels, making it a tedious, time-

consuming, and labor-intensive process. 
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Fig. 1. Sample fluorescein angiography (FA) images. left: 

fundus FA. Middle: ultra-widefield FA. Right: enlarged view 

of the cyan rectangle (top and bottom: the original and the 

contrast-enhanced views, respectively). For a larger version of 

this figure see Fig. 1H in the Supplementary Material. 

 

II. LITERATURE SURVEY 

 

Presents a method for automated vessel segmentation 

in retinal images. For each pixel in the field of view of the 

image, a 41-D feature vector is constructed, encoding 

information on the local intensity structure, spatial properties, 

and geometry at multiple scales. An AdaBoost classifier is 

trained on 789 914 gold standard examples of vessel and 

nonvessel pixels, then used for classifying previously unseen 

images. The algorithm was tested on the public digital retinal 

images for vessel extraction (DRIVE) set, frequently used in 

the literature and consisting of 40 manually labeled images 

with gold standard. Results were compared experimentally 

with those of eight algorithms as well as the additional manual 

segmentation provided by DRIVE. Training was conducted 

confined to the dedicated training set from the DRIVE 

database, and feature-based AdaBoost classifier (FABC) was 

tested on the 20 images from the test set. FABC achieved an 

area under the receiver operating characteristic (ROC) curve 

of 0.9561, in line with state-of-the-art approaches, but 

outperforming their accuracy (0.9597 versus 0.9473 for the 

nearest performer).   

 

Automatic segmentation of retinal blood vessels has 

become a necessary diagnostic procedure in ophthalmology. 

The blood vessels consist of two types of vessels, i.e., thin 

vessels and wide vessels. Therefore, a segmentation method 

may require two different processes to treat different vessels. 

However, traditional segmentation algorithms hardly draw a 

distinction between thin and wide vessels, but deal with them 

together. The major problems of these methods are as follows: 

(1) If more emphasis is placed on the extraction of thin 

vessels, the wide vessels tend to be over detected; and more 

artificial vessels are generated, too. (2) If more attention is 

paid on the wide vessels, the thin and low contrast vessels are 

likely to be missing. To overcome these problems, a novel 

scheme of extracting the retinal vessels based on the radial 

projection and semi-supervised method is presented in this 

paper. The radial projection method is used to locate the vessel 

centerlines which include the low-contrast and narrow vessels. 

Further, we modify the steerable complex wavelet to provide 

better capability of enhancing vessels under different scales, 

and construct the vector feature to represent the vessel pixel 

by line strength. Then, semi-supervised self-training is used 

for extraction of the major structures of vessels. The final 

segmentation is obtained by the union of the two types of 

vessels. Our approach is tested on two publicly available 

databases. Experiment results show that the method can 

achieve improved detection of thin vessels and decrease false 

detection of vessels in pathological regions compared to rival 

solutions. 

 

Retinal images can be used in several applications, 

such as ocular fundus operations as well as human 

recognition. Also, they play important roles in detection of 

some diseases in early stages, such as diabetes, which can be 

performed by comparison of the states of retinal blood vessels. 

Intrinsic characteristics of retinal images make the blood 

vessel detection process difficult. Here, we proposed a new 

algorithm to detect the retinal blood vessels effectively. Due to 

the high ability of the curvelet transform in representing the 

edges, modification of curvelet transform coefficients to 

enhance the retinal image edges better prepares the image for 

the segmentation part. The directionality feature of the 

multistructure elements method makes it an effective tool in 

edge detection. Hence, morphology operators using 

multistructure elements are applied to the enhanced image in 

order to find the retinal image ridges. Afterward, 

morphological operators by reconstruction eliminate the ridges 

not belonging to the vessel tree while trying to preserve the 

thin vessels unchanged. In order to increase the efficiency of 

the morphological operators by reconstruction, they were 

applied using multistructure elements. A simple thresholding 

method along with connected components analysis (CCA) 

indicates the remained ridges belonging to vessels. 

 

Detecting blood vessels in retinal images with the 

presence of bright and dark lesions is a challenging unsolved 

problem. In this paper, a novel multiconcavity modeling 

approach is proposed to handle both healthy and unhealthy 

retinas simultaneously. The differentiable concavity measure 

is proposed to handle bright lesions in a perceptive space. The 

line-shape concavity measure is proposed to remove dark 

lesions which have an intensity structure different from the 

line-shaped vessels in a retina. The locally normalized 

concavity measure is designed to deal with unevenly 

distributed noise due to the spherical intensity variation in a 

retinal image. These concavity measures are combined 

together according to their statistical distributions to detect 

vessels in general retinal images. Very encouraging 

experimental results demonstrate that the proposed method 
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consistently yields the best performance over existing state-of-

the-art methods on the abnormal retinas and its accuracy 

outperforms the human observer, which has not been achieved 

by any of the state-of-the-art benchmark methods. Most 

importantly, unlike existing methods, the proposed method 

shows very attractive performances not only on healthy retinas 

but also on a mixture of healthy and pathological retinas. 

 

III. PROPOSED SYSTEM 

 

The input FA image is decomposed into a two scale 

Gaussian image pyramid: one at the original image resolution 

and the other down sampled by a factor of 2. The images in 

each scale are processed independently. The resulting vessel 

maps in the lower resolution are upsampled to the original size 

using Gaussian pyramid expansion. Pixels where vessel is 

detected at any scale collectively comprise the estimated 

vessel map. To extract bright and curvilinear vessel structures 

in each scale, we apply the modified top-hat operation with 

nine line structuring elements, chosen to nominally be spaced 

20 degree apart in angle, with lengths of 6/3 for the 

original/down-sampled scale. 

 

 
Fig 2 Block Diagram 

 

Each top hat filtering yields a response image, where 

vessel pixel locations with a matching orientation are 

invariably high and other locations for background are usually 

low. The maximum value of 9 responses across different 

orientations at each pixel location is selected in the overall 

response map in which high and low values are likely for 

vessel and background pixels, respectively. The obtained soft 

vessel map is converted into a binary segmentation by locally 

adaptive thresholding. The threshold value for each pixel is 

based on the local mean intensity in the neighborhood of the 

pixel. As a post-processing step, we remove small incoherent 

random segments that have fewer than 100 pixels from the 

binary vessel maps. 

The cross-modality transfer exploits the availability 

of near concurrently captured CF and FA images in 

combination with existing deep learning methods for detection 

of vessels in CF imagery, for which, multiple ground truth 

annotated datasets are available. A DNN is trained on existing 

labeled CF images to extract vessel maps from unlabeled CF 

images. The detected vessel maps are geometrically aligned 

with and transferred to FA images via robust chamfer 

alignment to a preliminary FA vessel map obtained with 

morphological analysis. The co-aligned pairs of FA and 

transformed vessel map are used as initial labeled data to train 

a DNN for vessel detection in FA images.  

 

The human-in-the-loop learning approach is 

motivated by the synergistic relationship between deep 

learning and labeling. A well-trained DNN model can 

accurately detect vessel maps from FA images. Manually 

refinement of the predicted vessel map is much less time-

consuming than labeling the entire image from scratch. The 

model performance improves with an enlarged training 

dataset. Thus, the training and the labeling make each other 

more effective. We initialize the approach with a DNN trained 

on the (approximate ground truth) labeled data generated from 

the cross-modality transfer. A human annotator then manually 

refines one or more of the predicted vessel maps to generate 

improved vessel map labels, which, in the next iteration, are 

incorporated in the training data to improve the DNN 

performance.  

 

Repeat this human in-the-loop iterative process till 

the network performance improves significantly and the 

manual labeling introduces few changes. The end result is a 

trained DNN and a set of accurately labeled vessel maps. Both 

the cross-modality transfer and the iterative learning approach 

reduce the burden of manual labeling significantly and engage 

the annotators more effectively. Instead of requiring a large 

number of images to be annotated before improvements are 

realized, in the proposed iterative approach, the annotator sees 

improvements in the DNN performance from iteration to 

iteration as an immediate reward them for their effort. A by 

product of this engagement and reduction of tedium is that the 

images are labeled much more accurately than other studies 

that annotated the images from scratch. 

 

In this project propose a novel pipeline that enables 

accurate vessel detection in FA images using DNNs by 

significantly reducing manual annotation effort. The proposed 

pipeline integrates the following novel elements: an 

unsupervised method for preliminary retinal vessel detection 

that is based on multiple scales and orientations morphological 
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analysis, a cross-modality approach that transfers vessel maps 

from CF to FA images using robust chamfer alignment in an 

Expectation-Maximization (EM) framework, and an efficient 

and effective human-in-the-loop iterative deep learning 

process for detection of retinal vessels in FA imagery that 

significantly reduces the tedium of generating labeled data. 

Demonstrate the utility of the proposed pipeline by developing 

the first set of DNNs for detection of retinal vessels in FA 

images and evaluating the performance on alternative network 

architectures. The best performing method provides 

remarkably accurate results and offers very significant 

improvements over the prior methods. Results demonstrate 

that the approach adapts particularly well to the contrast 

variations that are typical in FA imagery. To facilitate further 

development of vessel 

 

Detection in FA images, also release a new dataset of 

UWFFA images from the RECOVERY trial along with 

ground truth labeled vessels from our pipeline. In addition to 

the innovative pipeline for the generation of training data, 

demonstration of the first deep learning approaches, 

evaluation of alternative architectures, and the new ground 

truth labeled datasets are also contributions of the present 

work. The proposed pipeline is also significant from a clinical 

perspective. FA is a well-established method that provides a 

useful imaging modality for visualizing, assessing and 

understanding the impact of diseases on the vascular system. 

Retinal vasculature changes accessed via FA imagery play a 

key role in the clinical assessment of vasculature changes 

caused by multiple common diseases, including diabetes, 

hypertension, and atherosclerosis, and also for eye-specific 

diseases, such as retinal venous occlusive diseases and retinal 

vasculitis.  

 

In current clinical practice, ophthalmologists 

manually review FA images to access disease conditions in 

retinal vasculature. These examinations are typically 

qualitative and subjective due to the limited time available 

during the clinical visits. Quantitative analysis of FA images, 

although highly desirable, requires inordinate time and 

patience to be performed manually and thus is not feasible in 

clinical settings. The proposed pipeline for detecting vessels in 

FA images offers an automated approach to examine retinal 

vasculature, which is a key component of computer-assisted 

retinal image analysis and diagnosis systems. Details of fine 

vessels are of particular diagnostic significance as changes are 

often fist observed in the fine vessels; a key strength of the 

method developed is the ability to reliably detect fine vessels, 

which are often not seen with non-FA modalities and, even for 

the FA modality, require significant iterative contrast 

manipulations for visual detection. Using the proposed 

pipeline, the results of retinal vessel detection achieve a level 

of accuracy that enables reliable computation of “digital 

biomarkers” from FA imagery that unlock the potential for 

improving clinical care, speeding up clinical trials, defining 

new endpoints of clinical relevance, and characterizing inter-

individual variations. 

 

CROSS-MODALITY GROUND TRUTH TRANSFER 

 

Vessel Detection in CF Images  

 

 To detect vessels in CF images, we adopt an existing 

DNN proposed in that exploits adversarial learning. The 

model is trained on DRIVE dataset which scores an Area 

Under the Receiver Operating Characteristic Curve(AUC 

ROC) of 0.9803, an Area Under the Precision-Recall curve 

(AUC PR) of 0.915, and a Dice coefficient of 0.829. The 

pretrained network is applied to overlapping patches of CF 

images in the DRIsfahanCFnFA dataset. The final CF binary 

vessel map is obtained by thresholding the probability map 

obtained from the generator using Otsu thresholding. 

 

Preliminary Vessel Detection in FA Images for Anchoring  

 

 A preliminary detection of vessels in FA imagery is 

obtained using an unsupervised method based on multiple 

scales and orientations morphological analysis that is attuned 

to the variations in directions and widths of retinal vessel 

structure. The preliminary detection need not be particularly 

precise; as noted in the next section, a low false positive rate is 

preferable even at the cost of a higher rate of missed 

detections. An overview of the approach is included here and 

additional detail, including specific parameter settings used, 

are provided in Section S.IV of the Supplementary Material. 

The input FA image is decomposed into multiple resolutions 

represented by an image pyramid. Images at each scale are 

processed independently and the resulting vessel maps at 

different scales are then combined together to generate a 

binary vessel map. A Gaussian pyramid expansion is used to 

resize vessel maps from each scale to the size of input FA 

image. Pixels where vessels are detected at any scale 

collectively comprise the estimated vessel map.  

 

 The key component in the preliminary vessel 

detection are morphological operators that extract locally 

linear patterns in terms of which the curvilinear network of 

interconnected vessels can be approximated. To detect vessel 

pixels at each scale, we choose a set of linear structuring 

elements Sα with the same length but oriented along different 

angles α, ranging from 0◦ to 180◦. We apply the top-hat 

operator to the FA images using the structuring elements Sα. 

The conventional top-hat operator which is defined as the 

difference between original and the corresponding 
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morphological opening image, is sensitive to noise. Therefore, 

we adopt a modified top-hat filtering to improve the 

robustness of vessel detection. The modified top-hat operator 

⊙is defined as 

 

X⊙S_α=X-min⁡((X.S_α)°S_α,X) 

 

Where X is the input image, and•and◦indicate the 

morphological operators of image closing and opening, 

respectively. Each top hat filtering operation yields a response 

image in which pixel locations for vessels with a matching 

orientation are invariably high and those for other locations 

are usually low. The results of the top-hat filters across 

different orientations are combined by taking the maximum, 

resulting in an overall map where high and low values are 

likely for vessel and background pixels, respectively. This soft 

vessel segmentation is converted into a binary vasculature 

map by locally adaptive thresholding. Typically, binary vessel 

maps obtained by this process have a few disconnected 

components. As a post-processing step, therefore perform an 

area opening operation to remove all small segments from the 

vessel map. 

 

HUMAN-IN THE LOOP ITERATIVE LEARNING 

/LABELING 

 

 Although the cross-modality transfer allows 

generation of a reasonable labeled dataset for training DNNs 

for detecting vessels in FA images, the accuracy of the 

labeling is limited by the differences between the modalities 

and the performance limitations of the CF vessel detection. 

The network performance can be significantly improved by 

providing additional better labeled ground truth data. As 

indicated in Section I, manually annotating a highresolution 

UWFFA image is particularly tedious and time-consuming. In 

this section, we present the human-in the-loop learning 

approach that aims to further refine the DNN by incorporating 

more training data and to facilitate and expedite the manual 

annotation process.  

 

 Contrasts the conventional approach to annotation of 

training data against the proposed human-in-the-loop 

approach. For conventional approach, the annotation and the 

training are carried out in separate sequential phases, meaning 

that all images in the dataset are first annotated and then used 

for the training stage. The human-in-the-loop approach, 

however, is an iterative process that exploits the synergistic 

relationship between deep learning and labeling. The process 

is initialized with a trained DNN trained to detect vessels in 

FA images using the training data obtained by the cross-

modality transfer approach. Estimated binary vessel maps that 

indicate the pixels corresponding to vessels are obtained for a 

small subset of images from an unlabeled (FA-only) dataset 

and used as the as the starting point for manual annotation. 

Specifically, the human annotator corrects the estimated 

binary vessel map by removing false positive detections and 

adding in false negative detections. The new labeled images 

are incorporated into the training dataset to refine the DNN in 

the next iteration. This process is repeated until all images are 

labeled. The proposed human-in-the-loop approach radically 

reduces the effort required for annotating images. In addition 

to reducing the time and tedium for annotation, the approach 

also benefits from a psychological advantage that it provides. 

The annotators see the improvements in the trained network 

from iteration to iteration and feel immediately rewarded for 

their effort instead of having to label many images before 

seeing any machine generated annotations. This engages 

annotators much better than denovolabeling approaches, 

analogous to how gamification of learning and education 

generates better engagement. Our results indicate that the 

approach generates significantly better labeled data than the 

traditional de novo labeling approach. 

 

Network Architecture  

 

 We trained and evaluated a number of alternative 

DNN architectures for vessel detection in FA images. In this 

section, we describe the best performing approach that 

exploits the recent concept of generative adversarial network 

(GAN) , which was also the architecture used for the human-

in-the loop labeling iterations. Detailed architectures for other 

neural networks are provided in the Supplementary Material. 

To apply GAN to vessel detection, we formulate the problem 

as an image-to-image translation. In this context, the network 

consists of a generator G, which is trained to learn a mapping 

from the FA image X to the vessel map V and a discriminator 

D, which aims to distinguish between real pairs (X,V) and 

generated pairs (X,G (X)) of FA images and vessel maps, 

where G(X) is the vessel probability map estimated from the 

generator and V is the binary ground truth vessel map. The 

idea is to jointly train G and D to achieve the min max 

operating point where the vessel maps generated by G 

minimize the maximum error for the discriminator D in 

distinguishing between real and generated pairs. The network 

architecture is visualized. For the generator, we adopt the 

UNet architecture, which comprises a down sampling path and 

an upsampling path. The key component in the UNet is the 

skip-connection that concatenates each upsampled feature map 

with the corresponding one in the down sampling path that has 

the same spatial resolution. The skip-connection is designed 

for detecting fine vessel structures. The discriminator receives 

either an image pair (X,V) (the blue and green bars) or (X,G 

(X)) (the blue and yellow bars). 
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Training Protocol  

 

 Feed the network 256×256 patches extracted from the 

FA training data with a fixed stride length 128. Patches that 

contains less than 1% vessel pixels are excluded. To prevent 

neural networks from over-fitting, further enlarge the training 

set by performing on-the-fly data augmentation, i.e., randomly 

applying a list of transformations with different probabilities 

to each image before feeding into neural network as training 

data. Specifically, we consider following transformations: (1) 

rotating the image by an angle from −90◦ to 90◦, (2) 

horizontally and vertically flipping the image, (3) scaling the 

image by a factor of 2, (4) blurring the image using Gaussian 

filter, and (5) adjusting the brightness and contrast of the 

image. The network parameters are optimized using Adam 

optimizer on a NVidia Tesla V100 GPU. The learning rate is 

fixed as 0.001. The coefficients used for computing running 

averages of gradient and its square are 0.9 and 0.999, 

respectively. The batch size is 16 and the training dataset is 

shuffled between epochs. We split the data into a training set 

(80%) and a validation set (20%) and use the model that has 

the best performance on the validation set. The lambda in (11) 

is set to 1. 

 

IV. SCREEN SHOTS 

 

 
Input Image 

 

 
Resize Image 

 

 
Histogram Equalization 

 

 
Original Image resolution 
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Down Sampled By A Factor 2 

 

 

 
Top-Hot Image 

 

 
Top-Hot Image by a factor 2 

 

 
DNN Training Process 

 

 
Segmentation Output 

 

V. CONCLUSION 

 

Proposed a novel deep learning pipeline for detecting 

retinal vessels in FA images. Using a cross-modality approach 

and a human-in-the-loop approach, our pipeline significantly 

reduces the effort required for generating labeled ground truth 

images. The proposed pipeline provided a particularly useful 

methodology for generating labeled ground truth data. While 

our focus here was on labeling vessels in FA retinal images, 

the key underlying ideas could be applied in other situations. 

The idea of cross-modality transfer by registering observations 

of the same object captured with different modalities is 

potentially useful in speeding up other ground truth labeling 

tasks. Used in combination with the human-in-the-loop 

approach, such methods can significantly reduce tedium and 
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improving engagement, and improve availability of datasets 

with accurately labeled ground truth. 
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