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Abstract- In this paper we give an overview results abut the
boundary conformal volume of k_ dimensional Riemannian

manifold with nonempty boundary 0% . We give an estimates
for the first eigenvalue of the Dirichlet-to-Neumann map. we

prove that the n

boundary - conformal  volume
Vol (En,¢) <2m ,pq Vol (En, @) <L?/24

were ¥ is a conformal map from the surfaces Z to the unit

g® . R" ;
ball in we also showing
€= 0Vol,.(E,n) = Vol (E.n+€)

that for

I. INTRODUCTION

In this paper develop a theory which we call
boundary and relative conformal volume because it issimilar
to the conformal volumetheory of Li and Yau [4]
exceptingthat the boundarybe an essential role in this theory.
Using the Gauss-Bonnet Theorem with boundary weshow

(Theorem 2.2) that when k= 2, a free boundary solution
has boundary length whichis a maximum over the boundary
lengths of its conformal images in the ball. We use this toshow
(Theorem 2.3) that any free boundary solution has area at least

T We understandthat thisinequality is equivalent to the sharp
isoperimetric inequality for free boundary surfaces. Wedefine
the boundary conformal volume to be the Li-Yau conformal
volume of the boundarysubmanifold.

We then proceed to define a relative conformal

volume for manifolds = whichacceptproper conformal
immersions into the unit ball. We take the maximum volume
of the conformal images of a given immersion, and then
minimize over conformal immersions. We show that the
relative conformal volume gives a general upper bound on the
first nonzero Steklov eigenvalue over all conformal metrics on

z Specifically we show for any k the general upper bound on
(2-k)/2
o, Vol(dZ)(Vel (Z))* ! in terms of the relative

conformal volume. For K =
g,.L(dZ) = 2Vol (E,n)

2 this reduces to the bound
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Il. BOUNDARY CONFORMAL VOLUME

Let (Z%,9) be a k-dimensional compact
Riemaniann manifold with boundary 9L # E', and let B™ be

m" z ;
. supposethat < admits a conformal map

the unit ball in

@:Z = B" . Let O be the group of

wit
conformal diffeomorphisms of B" We define the boundary
conformal volume to be the Li-Yau [4] conformal volume of
the boundary submanifold BE.

1
Definition 2.1. Given a map ¥ € C*(9z,a8™) that admits
a conformal extension @i Z = B” efine the boundary -

conformal volume of % by.

Vol, (En, @) = itégVﬂl(ffqn(ﬂﬂj))-

The boundary ™-conformal volume of Zis then defined to be.

Vol, (£ n) = infVol, (Z,n, @).
@

1
where the infimum is over all ¢ € C (SE,SE:‘”] that admit
conformal extensions %- I En.lt can be shown that
Vol, (En) = Vol (Zn +1)  The  boundary

conformal volume of z is defined to be.

Vol, () = lim Vol, (Z,n).

k

Note that:For any ™-dimensional manifold Z with boundary,

the boundary ™-conformalvolume of Z is bounded below by

the volume of the (k—1) -dimensional sphere:

Vol, _(E,n) = Vol(8*1).
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The proof is as in [4]; given a point IE3'on s" , let

fa(t) be the one parameter subgroup of the group of
conformal diffeomorphisms of the sphere generated by the

gradient of the linear functions of R" in the direction E". For
all t, fo () fixes  the points IE;'and _'5',
andlime .. fo(£)(x) =8 o o x € 8"70\ {—0}

-1
@: 9% — 5" is a map whose differential has rank k=1

at*, then.
lim Unl(f_m,:x} (£) [:;:(SE])) = mVol(5*1)

+
MEL" (here the integer ™ is the

d oz atthe point _'5').

for some

multiplicity of the immersed submanifol

k=2

For and for a minimal surface z that is a

!
solution to the free boundary problem inthe unit ball B%in

Rn, the boundary ™-conformal volume of Z s the length of

the boundaryof E; that is, its boundary length is maximal in its
conformal orbit.

B

Theorem 2.2. Let = a minimal surface in n, with nonempty

boundary dI c dB” dB”™

BE’ given by the isometric immersion ¥*
Vol, . (E,n, @) = L(9E),

, and meeting orthogonally along

L Bn. Then.

The length of the boundary of z

Proof. The trace-free second fundamental form

1 2
||A_E[Trgﬂ)g” dvﬁ' is conformally invariant for

surfaces. Using the Gauss equation we have
1 z 7

2 ”H e [TTE’A}‘E u =H 4K. Therefore, given any

fEG

f(H2 — 4K)da = f (% — 4K)da,
> F(z)

Where da denotes the induced area element on
f (Ej and K andH denote the Gauss and mean curvatures of

f(EJ in Rn. Since X is minimal, H= ':', and so we have.
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—4JKda=f H”Ed&—a}J. K dd.(1)
z FE) Flz)
By the Gauss-Bonnet Theorem,
J.Kda=2?rx[2:]— k ds
z 8z
J K da= Eﬂ;{j[f[Ej)— k ds,
izl 8zl

and using this in (1), since 2(Z) = x(F(Z)) we obtain

=4 f k ds
aFiz)

1 T is the oriented unit tangent vector of I‘E’Eand Vis

the inward unit conormal vectoralong BE, then.
dT d1 dp
k={—,v)=—(T,—)=({T,—)=(T,T)=1,
( T v) ( ds} ( ds} (T,T)

where in the third to last equality we have used the
fact that ¥ = ~% since = meets aBnorthogonaIIy along
9z Since f is conformal, f(Z) also meets dB™ orthogonally

along af(z),and so we also have that K = 1. Using this in
(2) we obtain.

L(35) = L(3f (%)).
This shows that
L(9Z) = Vol, _(Z,n, @)
as claimed.

The proof of Theorem2.2meanthat any minimal
surface that is a solution to the free boundary problem in the

]
unit ball in B has area greater than or equal to that of a flat
equatorial disk solution.
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Theorem 2.3 Let )Y be a minimal surface in En, with

9L c 9B™ 98"

(nonempty) boundary and meeting

orthogonally along SE_ Then.

24(%) = L(3%) = 27

Proof.Given fe G, as in the proof Theorem 2.2, we have.

L(9z) = L(af (). (3)

z

Since is minimal, the coordinate functions are

harmonic z%" = 0 and Az x[* =4 Therefore,

-
&

. dlx
4A(%) = J Ac|x|* da =J
T . az OV

Using this in (3) gives.

¢=Iz¢=nwm
az

24(%) = L(af (D).
1f? € 9Z then as in Remark 5.2. of [1],

lim L(f,p (rj(azj] = mL(8Y) = 2mm

+
For some M & L , and so, we have the desired conclusion.
EA(E] = L(HE] = 2m.

Corollary 2.4. The sharp isoperimetric inequality holds for
free boundary minimal surfacesin the ball:

s

A= —

4T

Proof. For free boundary minimal surfaces in the ball we
have 2A(E)= L[SEI as shown inthe proof of
A< L /4n

Theorem2.3. It follows that the inequality

equivalent to the sharp isoperimetric inequality
Corollary 2.5. Show that

0Q) Vol,.(En,9) <2
(“) Ulec (E,']‘T., fpj = LE;’E;‘-I
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Proof .(i) Theorem 2.2 and Theorem 2.3 shows that
Vol, _(En, @) < 27

=
o =—
(ii) Since 4 then

-
r

L
Vol (E,n, < 2w = —
bc( ‘p] 411

Definition 2.6. LetZ be a k-dimensional compact
Riemannian manifold with boundary that admits a conformal

map ¥: & — B"yith ®(9Z) = dB™ Deine the relative -

conformal volume of ¥ by.

Vol,.(En, @) = igg‘-’ﬂl((f(fpiﬂj))-

The relative ™-conformal volume of Z is then defined to be

VDI?"G (E’ﬂj = infvﬂlr‘c (Erﬂu ':pj
@

Where the infimum is over all non-degenerate conformal maps

@: T = B" i @(8Z) c 8B*

wit
Lemma 2.7. If ™ = 70 then Vol (Z,n) = Vol (Z,m)

Proof. To see this, suppose i BT BT j

conformal,  with ~ @(8Z) € dB" ¢ 8B Let
A=9(Z) cB" 4y suppose that f is a conformal
transformation of & " Then f(4) lies in the spherical cap
f(B™) in B™ agm. Let

T € 0(m) be an orthogonal transformation that rotates this

whose boundary lies in

spherical cap so that its boundary lies in an ™-plane parallel to

the ™-plane containing the boundary of the original equatorial
[y
Bn. Let P be the conformal projection of T[fEB j)onto
A'=P(T(f(A
Bn, and let ( [f[ j)}

increasing, and so.

P

Clearly is volume

Vol(A") = Vol(£(4))
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!
But 4 s the image of A Under some conformal

!
transformation of B , therefore.

sup UDI[F(J—I:]) = sup Vcrl[f(f-l:])
Fei feE'

Where & denotes the group of conformal transformations of

ik !
B , and G denotes the group of conformal transformations of
B?ﬂ.

The relative conformal volume of Z is defined to be.

Vol..(E) = lim Vol _(Z,n)

Note that : For any k—dimensional manifold Z with boundary,
the relative ™-conformal volume of < is bounded below by the

volume of the k-dimensional ball:

Vol __(Z,n) = Vol(B¥).

To see this, suppose ¥+ I B" is a conformal map with
@(0z) © agn, whose differential has rank % at X € 9Z,
The conformal diffeomorphisms fotx) (tjof the sphere (see
Remark5.2 of [1]), extend to conformal diffeomorphismsof
B n, and,

lim Vol (£_ 40 (9(0(2)) ) = mVol(5)

+
For some ™ € £ the multiplicity of @(9%) 4 @ (),
I1l. FIRST EIGENVALUE

Now we prove estimates for the first eigenvalue of
the Dirichlet-to-Neumann map which are analogs of the
estimates of [4] and [3] for the first Neumann eigenvalue of
the Laplacian, we also give Relationship between it and
conformal volume (see [2]).

Corollary 3.1We
Vol,.(E.n) = Vol _(E,n+€)

Show that

. n nte
Proof. For €+ 0 suppose ¢:I = By CB; is
n nt+e
conformal, with ¢(31) Bj - 55}- . Let
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—_ T
A=¢(Z) c B and suppose that f is a conformal

nte Tl
transformation of B}' . Then Z}'=1 f [H}':] lies in the
spherical cap

AW
55'-1 +E

i . Let TE o(m) be an orthogonal transformation

. whose boundary lies in

that rotates this spherical cap so that its boundary lies in an -

plane parallel to the ™-plane containing the boundary of the

n
original equatorial B}' . Let £ be the conformal projection of

T[:E;ﬂ J"r[‘&‘41;"!))onto B.F and let

7= 4y =P (T(Z5=11(4))))

increasing, and so.

Clearly P is volume

r

vol| ) 4 )= vol ) f(4)
=1

=1

!
But A}' is the image of ‘41' under some conformal

. EBE"
transformation of =7 , Hence.

sup Vol

Fei :
i=1

T
Where O is the group of conformal transformations of EJ' ,

¢
and C denotes the group of conformal transformations of
B:.*H'E
i

The relative conformal volume of Z is defined to be.

Vol..(Z) = lim Vol .(Z,n)

Lemma 3.2. Let (M, g) be a compact Riemanian manifold,

-1

and let @ be an immersion of Minto ¥ ©R" Tnere
_ _ ol

exists F € G suchthat ¥ = Fo@ = (W7, ™) gatisties,

J:,af dv, =0
M

Fori =L ..m
Proof . See [5], [3]
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Theorem 3.3. Let (Z.9) be a compact k—dimensional

Riemannian manifold with nonempty boundary. Let 1 =0
be the first non-zero eigenvalue of the Dirichlet-to-Neumann

map on(Z:9) Then.

2k 2
g, Vol(dZ)Vol(E) ¥ <k Vol,_(Z,n)x

For all ™ for which V0lre (2.1 i defined (i.e. such
that there exists a conformal mapping #- - anith

@(dz) © dB™)  Equality

implies that there exists a
conformal harmonic map ¥* Z—B" which (after rescaling
the metric &) is an isometry on 0% \ith ®(9Z) © IB™ 5pq
such that @(Z) meets dB™ orthogonally along cp[ﬂE)_ For

k=2 this map is an isometric minimal immersion of Ztoits
image. Moreover, the immersion is given by a subspace of the
first eigenspace.

The following is an immediate consequence of the theorem.

Corollary 3.4. Let Zhea compact surface with nonempty
boundary and metric 9. Let%t = 0 pe the first non-zero

eigenvalue of the Dirichlet-to-Neumann map on (Z.9). Then
o, L(9%) =< 2 Vol,_(Z,n)

for all ™ for which Volrc(Z:7) is defined. Equality
implies that there exists a conformal minimal immersion

@: L — B" by first eigenfunctions which (after rescaling the
metric) is anisometry on HE, with @(9L) c dB" and such
that ®(Z) meets 95" orthogonally along® (9Z),

@:E—)Bnbe a

Proof. Let conformal map with
@(9%) CBBH. By Lemma3.2 we can assume that
— 1
@ = (@, ®") satisfies
J- @ ds=0
8z

. f i
for t= Lieess T | ot®" be a harmonic extension of ¥ laz.
Then,
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..rz|?¢‘ii Ldt’z .Jrg|v¢:|E ‘d”z
o, = — = — .

By Holder’s inequality, and since ¥ is conformal

(4)

k g2 %

=Vl * {k%Vol[@(T))}

i}

) k2
J Z‘?gﬁrdvz <Vol(E) %
)

=1

X
‘W‘z 2d”z
(i
2 2
< kVol(Z) * Vol (Z,m ).
On the other hand, since® (9%) dB™

>

i=1 " 9%

dv s, = Vol(9Z).

[q:i):dﬂaz = f

a8z

Then by (4) we have.

I-k

g, Vol(dZ)Vol(Z)

= kVol, _(Zn, @)k.

VDI?"G (E’ﬂ) - inf‘-P VDlr‘c [E,ﬂ,, '?:":]

Since we get.
6, Vol(3S)Vol(S) % < k Vol__ (5, n)%.

Now assume that we have equality,
0, Vol(8%) = kV, (Em)**V (D)% 2 roose a
sequence of  conformal maps ¢: L= B nwith
gJ}.[ﬁE] - ag?ﬂ’ such that.

lim Vol,.(E,n, ¢;) = Vol,.(,n)

j—mm

and by composing with a conformal transformation of the ball
we may assume

J- g:lj-ris=l]
ax

for all LJ. By changing the order of coordinates, we may
assume that

| 2 (>0 i=1,..,N
hmﬁ“”}) d"'{:n i=N+1,..n
i

j—om

We have
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.7
,Vol(85) = alz LE((p;):dvﬁz sZL\w}quz < v::l(z)kk;zlfz (Z\v%ﬂ:)‘ dvz]

2 k=2
< kvol, (%, @, )¥vol(z) &

Letting jo oo and using

lenl(az:] — -ICVDI?..E (E,ﬂjzﬁkvﬂl(Ej k-2 we get

£ E
2 2 k=2 2\2
a,Vol(82) = g, lim Zf (03) drgz = lim Z j [Vl dvy = Vol() % lim lJ‘ (Z‘Vgx}“) dvzl
SR . JE=YAN R e |\ L
=1 =1 =1

= g, Vol(8E)(5)

Pl
Therefore, for any fixed L {‘Pi} us a bounded

sequence in WLk(ErR), and since the inclusion
k 2
w (LR) € L*(Z.R) is compact, by passing to a

i
subsequence we can assume that {‘PJ'} converges weakly in
k i
wt (E,]Hi'.], strongly in L [Erﬂj, and point wise a.e., to

map 'l'IEJ'E: F = ]R. Clear|y E;!:i[:wi) =1 a.e. on

E,E?:l[%{’i)‘ =1 46 on 9T and Y=0 gy
[=N+ 1.7 sjnce forall .

crlJ. [q:j-):dvaz < J.|‘F»:pj-|2dvz.
ar x

And
(g} )
g, lim Z [q::i-)z dvgz = lim Z |'~T-"qp::"-|2 dvy,
_;l'—}n:u: as 7 _;|'—:n:u: T ]
i=1 i=1
We have

lim J
JI'W: E

i i
On the other hand, P; v weakly in Wt (E, R], and so

[
z

There fore, we must have equality in (6), and so

(@’j‘):dvaz = ”1J

it =
P d”z‘”1}ﬂja a
)

() éjwfdvz- (6
z

)3

“dvp = }ETC L|%§-|‘ dvy

lim J-l‘i-"g:j-|z dvy = J-|‘F1,{J"|2 dvg
T £

j—oo
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£ 1,2
which means {cp} }converges to 11£’strongly in W (Z, R].
Moreover,

g1 [l&i):di“az = j |?11'5’i |2 dvg
az z

H J"'I- - - -
and it follows that {Widi= are first eigenfunctions. In
i .
particular,l‘fI is harmonic for ¢ = Lr--» NV Also, since s

12
conformal and converges strongly in W™ w, the map

Y: T— BY
x = (P, ()

. N
defines a conformal map. Therefore, w: T B
J.'ll-

conformal and harmonic, with 11{’[52] c dB . Since
P(0%) © 9BY g

dy

— = a 7

5, = o ™)

0% since wzare eigenfunctions, it follows that w(x) meets

on
J"!I-
dB orthogonally along Y(9L),

By scaling the metric we can assume that 91 =
Then by (7), on 0z we have

i
dv

=l =1

and hence Wis an isometry on 0z . Finally, for k =2 we
have from (5)

k
([ ?’I

of 3]

=t =

a

T b, =l T f (Z\ijf)‘ drg
_;-}o: T =

By lower semicontinuity of the norm under weak convergence

this implies
‘) dvs
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Now the Holder inequality implies the opposite
inequality and thus we have equality in the Holder inequality,

z

which implies [Vapl® is constant on <, and this constant must

be kby the boundary normalization. Since Wis conformal this

implies that Yis an isometry as claimed.
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