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Abstract- Let ' be a domain of R , the Hessian of (u )
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is D=u and the uniformly eIIipticF , We prove that,
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1. INTRODUCTION

In this paper we study the regularity of solutions of
fully nonlinear elliptic equations of the form

F™(D*u™) =0, (1.1)

Y N
where function ¥ defined in a domain of R and
2.,m "
D-u denotes the Hessian of the function ' . We assume
T
that F is uniformly elliptic, i.e. there exists a constant

e=0 such that:

1112 M rr 12 rem
(T+e)7)¢ i:Fu;?;igjg(He); , veR (1.2)
um
Here, tJ denotes the partial derivative
0 u™/0x,0x;
u‘]‘ﬂ
A function is called a classical solution of (1.1)

m 2 m
T c (ﬂm} and U satisfies (1.1). Actually, any

a+3
classical solution of (1.1) is a smooth (C j" solution,

F']‘?‘I

g
provided that is @ smooth c function of its arguments

a>1 [3,4]. The class of classical solutions of (1.1) is not
sufficiently large to provide solutions to the Dirichlet
problem,see ([5],[8]):
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Fr(D2™ =0  inQ,,
(13)

Ut =" on 01,
where ﬂm e R" is a bounded domain with

e
smooth boundary aﬂmand %" is a continuous function on

a0

p12
#t. Even if we assume that ﬂ*m is a ball in R one can

F']".""

4 n
find a smooth uniformly elliptic and a smooth ®  such
that the Dirichlet problem (1.2) has no classical solution, ([5],

[71).

Fortunately a concept of weak of viscosity solutions for the
fully nonlinear elliptic equations was developed, so that the
Dirichlet problem (1.2) has a unique viscosity solution, see
[1,2]. Viscosity solutions of (1.1) are defined as continuous
functions verifying a maximum principle. Their best known

. . . . o Cl+f
regularity in the interior of domain is , for some
€ = D, see [1].

-

p12
In [5] we gave an example in R of a viscosity
solution of (1.1) which has bounded but discontinuous second
derivatives. In this paper we show that actually the second

derivative can blow up. For a sufficiently large dimension n
we prove that the best possible regularity which one can
expect a priori for viscosity solutions at inner points of a

2—€ -
domain does not exceed C for some € = D.

I1. BASIC PREPOSITIONS AND THE MAIN LEMMA

We begin with two principal properties of the
function Wm,see [5]. Let X=(mst)E R*? be a
variable vector with 70§ and T € EH. For any
L= (tm L1,T2, fa:‘ eR* we denote by
qt =ty +ty i+t j+ity-kel

quaternions).

(Hamilton
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Define the cubic form P=P(X) =P(,s,1) as

follows:

P(r,s,t) = Re(qr-qs - qt) =185ty =18ty = 1Sty = TSty =18yt = 13841y
T]SQtB +T1S3t2 _TZSUIZ + Tzsltg _TQSQtO _TZSEI] _TESUIE —T3Slf2 +T3 Szrl _Tgs;rm
and denote

w™(X) = P(X)/1X]

We have the following properties of the function

Wm

Proposition (2.1):

11
Let & FateeE Sl . Then there exist two vectors
11
e,f €5; ’E‘,f La,a+€gema

wi(a) —wl(a+e€) = la—(a+e)|/4/3
wf"’}‘[a) —wf“}[a +e)=—la—(a+e)l/
43

:31nd thus

||[Hess(w™(a)) — Hess(w™(a+ €))|| =
la—(a+e)l/24V3

in what follows we wuse the norm on matrices
Ae Mat(nXn,R)
lA|| = Tr(A®-A)/n

defined as

Proposition (2.2):

11
Let @ Fatee 51 . Then there exist two vectors
11
E,f = 51 ,Erf laa+ € such that

wi(a)-whia+e)= ||Hess[wm(a)) —Hess(wm(a+ e))"/M
wf"’}‘(a) — wf"’}‘[a +e)=
—||Hess[wm[a)) — Hess[wm[a + E}) ||,"

M
where M = 484/3-32 = 15364/3
Let now V= [X,X+ Ej" = ]EM be variable and

A=(a,a) A+e=(a+ea +e)eR™
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r 12
be fixed with A5 @& @ € R™% pefine for a (small) positive
i)

W)= WD) WK+ e), W)= W)
K

and for a (large) positive “*,

um (V) = Wi (V) = (W, (V) + K-

T (V)IVI® = WE(V) + K -3 (V)

;Nith

(V) =n, (X, X+e)=|X]?+|X +€|*

S (V) =1, (NIV|™°
H, (V) = Hess(u™(V))

We denote
_ —& _
In what follows we fix5 =10 , K= 60.
Lemma (2.3):
For any pair

A=(a,ad), A+te=(a+¢a +€)eSH
one has:

() W7, (A) - W (A + €)] < 8| Hess(W, (4)) - Hess(Wr,(A+ €)) |5

() | (4) - H(A+ €)1 > [Hess(W,(4)) - Hess(W,(4+ €))%
(i) [|H,, (Al = 2K.

Proof.rlljI Indeed since P is harmonic one easily calculates
that

Tr (Hessl:wm[a}) — Hess[wm(a +
Ej)) —15[W"’“(a} —w™m(a+ 5))

(iij Direct calculations show that

Hoss (34 = s, ) W, (4) &+ 4-,(8) - O, (AL,
+8(8+ )W, (A)(4- 49

Hess (rﬂﬁ (A)) = 2] — 61, (A)],, + N(4)
I

where “n is the identity matrix of size

[,N(A) € Mat(24 X 24,R) are defined by:
(L, O _(P(4) Q(4)
1= —fu) ”(“‘3"(3(14) S(A))

?‘1' and

www.ijsart.com



IJSART - Volume 6 Issue 11 — NOVEMBER 2020 ISSN [ONLINE]: 2395-1052

with the following matrices (1ii)
P(A),Q(A),R(4),5(A) e Mat(12X 12,R) e have

P() = —5(4 + 21, (A) + 6 (A)(at- @) IHm (@I < |[Hess(W2) || + K +5(7 +0)
S(A) = 6(4 + 21, (A) + 1, (A)) (@' - @) < [Hess(Wa())]| + OQ@IVH, (A)]+ 12+ 20) + K +6(7 +0)

_ o Lemma (2.4):
R(A) =62+ n(A)(a -a ) For any pair
Hence A=(a,a"), A+e=(a+e¢a +€)esH

H_(A)—H, (A+ *
fim 3 ! ) 5 there exists E=(ece)eSi with
= || Bress (WS (@) - Hess (Wit +€))-Kor, (ke E 14 E 1 (A+e)
+KN(A) + Kér,,(A+e)l,,— KN(A+e)|| We,z(A+e)=0

> [ Hess(W2 (4)) - Hess(W3 (A4 €))| - Kelry (4)-1,,(4 +¢) 5 4 B
—KIN)-N(d+ o) Wi ge(A) = 2-107%[H,,(4)

satisfying:

H,(A+e)l
||Hess( (A)) Hess[ 4+ E)" Proof. Define:
-5||(vw )"A HATIW)-W (A4 (44 -(te)  QF 1 (E) =W (A) — W, o (A+€) =
W (A+e)|- 010 (4) -1 (A +¢)] ups(A) —uf:(A+e¢)
—36||W (AA-4) -1+ A +e)- (44| |
Note forE 1 I-“'rwe have:
~662Hel4 - (A +€)
2 s, 8)- s ) -0 T e 9] Whzs (V) = (Wg (V) +K(lel? -
—5||VWM(A+E)'At—VWm(A-I'E)'(A-I'E)t" |EF|E))|V|—S _ 5[:|X|2 — X+ Eli +
- 5"‘ﬂl ' Vth(A) - (A + E)' Vth(A)" _9_&
1A+ €) U ()~ (A4 &), (4 46) WD)V
~ 3RO (A)(A-AT) - W (A + ) (4-
—3K5HW EA)JEE [jl-l-f)( ) {4(/??1143"6 AA " In particulaf.this remark applies to A and A+ €, By

_ r 11
S bl 4)Wlhseiee re)] Py OO e n s S8 €517, €L
eb Lae L (a+e),ea L@a+e,

- 6632K3l4 - (4+€)|
> |Hess(, [A)) Hess[ (A+2))| - 200, () -V (A+€)| ( Wer e, (@) — Wi (a+ E)) >
= 30017 (4) - W (A + )] - 100KSIA - (A +e) ||Hess[wm(a)) — Hess(w™(a+¢€))||/M
> (1-243- 100(K + 1)3)|Hess(W,(4)) - Hess(i,(A+ )|
> |Hess(W,,(4)) - Hess(W,,(4+€))[ /2, (Wi (@) —w, (a+e))=

since one can easily verify that "Hess[wm(a’}) — Hess(w™(a + €) ’)";‘M
IN(A) = N(4 +€)|| < 64v2K6|A -

E)ld Let 6 € [0,m] and let
an . : 23

[VIW,,(4) — VW, (A + )| < 50|4— (A + E(©) = ((sinf).,, (cosO)yy) €52, .,
€)| that £(6) L A, E(B) LA+€ one easily verifies

that
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Qp ase(E8)) = 151 50) (A) ~ 1305 505 (A + €)
= Weg) 260 () — Wi 500 (A + ) = S (W, (A) - W, (A +6))
~8(sin®8a)* — cos* |’ |* - sin® B |a + €|* + cos*Ba" +€/*)
=sin’4 (w;ggu(a) -y (0t E)) +005° (w:z,gé(a’) - W£ES (04 e)’)
-0((®) -1 (4+9)
—r?(sinzf}(lal2 ~lo+ef)+oost 8 (a - |a’+£’|2)).
g e [arcsinﬁ =, arccnsi = 31].

Let now
Then

i)
2 (2 sin* B, - 80/15)([Hess(11, (4)) - Hess( I, (A + )]
= 20cos* 8, (ja-(a+e)| +]a' - (a+€)])
> (271049 85/15) | Hess( 1, (4)) - Hess{W, (4+ )
~1000(ja-(a+€)|+|'- (a+e)])
> (0.98M1 - 506) (||Hess(W,,(4)) - Hess(W,,(a+))|)
Besides,
Wy st0) 50 (A4 €) = Weg) ze) (A+ €) — 6, (A+ €) + K cos 26
—ﬁ[la +elf—|a" +€']%)
This gives for g = HD,
Wy st6,1506, (A €) = WiGs (s, (A+ €)= W, (A + €) + 0.02K

Batel -l +€)>-243-

2041250
and for 6 = l'5}1
Wy sta, 6, (A +€) = Watg) 500, ) (A + €)= G, (A +€) + 0.02K
—5(la+elf—|a +€)<2/3+26-12<0

E=E),inb €16,,641

The lemma follows for
Proposition (2.5) (Main Lemma):

For any
=(a,a"), A+e=(a+ea +€)E
B2
there exist two
= (ee"), E= (g &) e S
EL1A E1(A+¢)
satisfying: ,

pair

vectors
- 3 with
ELA EL(A+¢)
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W =(4) —
Hm (A+oll

Wiss(A+e) = ellH,(4) -

H EE =(4) —
—€llH,,(4) —

KEE[A+5) =
H,(A+ el
10~

where € *=

Proof. We can suppose w.r.g. that Hl = H + El. Since
Weee(A) —Weer(A+e)

|H,,, (A) — Hp(A+ )l

and
(—=36).
homogeneous one can as well suppose that |“f'1 + L":_I =
1= 4]
Define“}'llr = A/|A| € 5123, k=
We consider two cases:
(DH,,(A) — H,,(A+ &)l < 2||H,.(4) —
H,(A+ell

are both

Al

(i)
|H,.(A) — H,(A+ e)ll = 2||H,,(A") —
H,(A+ell

In the case [I'j" we apply Lemma 2 and find a vector
23
E ESl such that

Wege(4)~Wegz(A+ €)= Wegs(A) 2 26l (4) - Hy(A + o)
= €||H,,(A) —Hp (A + el
The second inequality is obtained analogously.
Let now
|Hpy (A) — Hyp (A + €l = 211H,,(A) —
H,.(A+ el
Since
()~ Hafh+ = [ Hy W)~ Ho(d 46)]
= 2||H,,(A") — H,,(A + el
we get:
(k=% = DIH, (Al = [1H,,(A") -
H.(A+ell
;I'hus,

o) - Hy(A+ Ol = [k Ho(4) - Ho(A+ )|
=||(k=° = )H, (AN + H,,(A) = H,,(A+¢)

www.ijsart.com
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< (k7 = 1)[H, (A0 + |1H,,(A) = H,,(A+ )|
< 2(k=° —1)|IH,, (Al
Take now a vector = (EI’ {]}such that

KE' E’(‘q)_l’ K.E' E’(A+Ej

) )
= WEI,EI(A )- LVEJJEI(A+ £)+K- TEI,EJ(A )-K TEI,EI(A-I- £)=0
We then get,

HE' E’(Ar)_l’ k.5 EI(A‘FE)
=(k 5—1)ng£ e (A)+W§E;E;(A) ngf (A+¢)
> (8 = 1) (wl (@) + K - 6(1a'F = 0" + W, (4))

> (k% -1)K-8-38) = (k5 —-1)Kk/2
= (k8 = 1)IIH(4)II/4 = |H,,(4) ~ Hy (A +€)II/8
which finishes the proof of the first inequality; the proof of the
second one is completely parallel.

I11. VISCOSITY SOLUTIONS OFUNIFORMLY
24
ELLIPTIC EQUATIONS ON R

Theorem (3.1):

— -6
We provethat, for 6 =10 there exists a

T
2— U in the

continuous homogeneous order & function

n 24
unit ball BcR which is a viscosity solution to a
uniformly elliptic equation (1.1).
Notice, that there are no defined in the whole space
e
R homogeneous order & solutions to fully nonlinear elliptic

equation (1.1) for 0<a< 2, [6]. The proof of

Theorem is strongly based on results and methods of [5].

Proof:
Let Q be the space of the quadratic forms on R™ equipped
by its natural inner product
a-(a+e¢e)=trace(a(a+¢€)) for
a,ate€Q
Let us choose in the space Q an orthogonal coordinate system
Zy,Z Zi, 5 k = 22U

Lo 20 e s Sher = 2 such that 5 is the
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trace. Let T2 @ = £ pe the orthogonal projection of @ onto

the Z—space. For€ = U, we denote by Ir{1 +¢ the cone:

K1+E =

fae@:3C =

0 s.t. theeigenvaluesofa €
[C/(1+6),CL+e)l

Since on Q the maximal eigenvalue of a quadratic form is a
convex function and the minimal eigenvalue is a concave

K

function it follows that “*1+¢& is a convex cone.

Let Kl +€ denote the adjoint cone of Ir{1 +&, that is,
Ki.={a+e€Q: (a+e)-c=

0 forall cEK,, .}

As an adjoint to a convex cone the cone K1+E is a convex

itself [8].
The Set Live=0Q\(Ki, U _K1+E}Notice that

a€Llycis equivalent to & (a+e)=0 for some

a+tec H1+-.=, ie., J[‘1+-f is a union of all hyper-planes
in Q with normals in J'-I{1+-f.
Let G < Q be a set. We say that Gsatisfies the (a + E)—

cone condition if for any two points a,a+e€c€ G, the
matrix & (a+e€)€ J[‘1+~‘-=.
Lemma (3.2):
m r
Let Lmc Q be a smooth Jt‘—dimensional manifold. Assume

(1+¢€)

-cone condition. Then there
Fon €
F™ (Em) = {], and which satisfies the inequality (2)
with the ellipticity constant I+e<4(1+ E)E*'"'fﬁ.

Denote U = S X (U’lfh'“'ﬁ)’ G =D?
map fu:D = B g Gm: G = B* G hat if
ae 511’3 S ({],1)’ X € (a,8) 4,
frn(x) = fa it z;,Z; ED
z=(2,,2Z,)EG then
Im(2) = (fn(21), fin (32)), The Hessian map H,,

that ) satisfies the

exists a smooth function such that

. Define a

and

www.ijsart.com
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for the function u™ is defined on the set
B*\({X =0} U{X +¢=0}).

H.:B—Q, H,(A) = Hess(u™(A))

for 4 € BM\({X =0ju{X+e= O}) Q begin

. RE 4
the space of the quadratic forms on .

Since
In(G) € BPN\{(X=0Ju{X +e=0})
can lift Hm on G: for £ €EG define

hmizj = Hm(gmtzz))

. wm™. . ]:E;iz_
Since is @ homogeneous order 2 function on we

conclude that the map

N: G —Q

has a smooth extension to

hm:G—E = Q

where E = ({'D} X 5111) U (5111 X {D}) Denote:
™ = h,(G—E)

-

m
Then ) is a closed manifold with boundary in Q By Main
ym (1+¢€)

Lemma satisfies the -cone condition with

_ . 4
1+e=23-10 . Hence by Lemma 3 there exists a

. Fm Q . L
smooth  function on which satisfies the
inequalities(mjJ with the ellipticity constant
1+e<4-24-232-10% < 1.1-10%% _,

T =0
such that I . Thus for

z€B*n ({X=U}U{X+E=D}}wehave:
lezﬂzum(zj) = 0.

mn
To complete the proof that U isa viscosity solution of (1.1)
it is sufficient to show that for any point

EDEBE‘LH({X:D}U{X‘FE:D}} and for

nZ4
second order polynomials [} (Pg) on R such that

D1(20) = P2(Z) = u™(29) g
P1 = U (P2 ZU™) iy 4 neighborhood of Zo it will
follow that F ™ (D*p1) = 0(F™(D?p,) = 0)

LetZo = (0,x +€) € RH, e € SEE.Since w'™

such  that

is
12
a homogeneous order 2 function in R \{U} it follows that

i
u (ZG + EE) is a smooth function for € = D.
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. . wm ]EH
We define a homogeneous order 2 function on
23
such that for any ees the quadratic part of
"
u (ZD+EC) as a function of € coincide with

mmife). Since the range of HESS(Ij)m) coincide with
the limit set of HESS(HTR(E)) as £ 7 Zp Z EB it
follows that TﬁJm is a solution of the equation
F™(D*y™) = 0.

Let pm(x): x € R** be a quadratic form such that
Pm = w on HH. We choose any quadratic form
p;r(I) such that Pm = p;n = 11{;'”‘» and there is a point
X' # 0 4t which Pm(x) = Y Then it follows
that F (pm} = Fm(p;ﬂ) = U. Consequently for any
quadratic ~ form pm(x} from  the
P = YT (O =Y™) it follows that
F™ (D) = 0(F™(Pr) = 0) This implies that

-

inequality

wm . L . R4

is a viscosity solution of (1.1) in (see [1]).
Corollary (3.3):
For any pair

A=(a,a),A+c=(a+¢ga +c)eS?
there exists E=(ee)cE 5123
E1AE1A+c¢ satisfying:

LVE:TS,E,E (A+¢e) = D’

LV;EEJE(A) =2-107*||[HA)—H(A+ E}"
Proof: Define:

QAS,E‘ (E):= LVHS,E,E (4) — LVJ?,E,E(A +¢&) =
Ug(A) —Ugg(A+¢€)

with

Note forE 1 Uwe have:

[’VHS,E,E(V) = We e (V) +K(lel* -
le [ DIVITe —a0x1? — Y12 +
wnlv|—=-°

In particular this remark applies to A and A+ £ By
Property (ii) in Lemma (2.3) we can find:

e, e, EStelae La,e, la+ce, La+¢

s.t.
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(Weu,eu [ﬂj.l — We,.g (ﬂ' + Ej"j =
||Hess(w[a)j — Hess(w(a + £)||/M

( wa(@)—w, (@+e))=
||Hess(w[a )) — Hess(w(a' +e)||/M
0 €[0,7] .y

o E(8):=((sin8)e,, (cos Hjen) €SP,
E(6) LAEW@) LA+e o ity

see that
verifies that

Q5 (E(0) = Ug(6),5(8) (A) — Ug(ayz00) (A + €)
= Weaz00)(A) = Wag) 06y (A +€) = S(W(A) - W(A +2))
~0(sin*8a]* - cos*d |a'|2 —sin*fla+ el +cos?a + £'|2
= sin’ § (W, ¢, (0) =W, o (0 +¢€)) +cos*f (w, (@ )-w,
(@ + £))— SW(A) — W(A +2))
—&(sin* @ (la]* — la+ =|*) +

cos’ @ (|a'|2 —|a'+ £'|2jj

0 e[arcsin ..~ = 0, ,arccos,~ = 6,
Let now [ 10 0 10 1].

Then
0° ,(E(8)) > (2" sin? 8, - 86/15) | Hess(W (4)) - Hess(W (A + ) )
—28cos?8,(la—(a+ &) +|a = (a+£)])
> (2M710.49 - 86/15)(||Hess(W(A)) — Hess(W(A + €))||)
—1.028(la— (a + &) + |a — (@' + )|

> (0.98M1 — 508)([|Hess(W(4)) — Hess(W(A + )))
=2-107*||[H(A) —H(A + 9)||
Besides,

Wy )5 (At €) = Waggy zs) (A +€) = SW (A + )

+K cos28—6(la+ £|2—|a'+£'|2)_
This gives for 6 = HD
WkﬁE( [:A-I-E) W( )
—s(la+clP—|a' +|)> —2/V3—
20+1.2=0

and for 6 =0,
5
We eco,z00,) (A1) = Wega, 26
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: "2
—§(la+el*—|a' +| )< 2/43+25 -
1.2<0
The corollary follows for E=E [H) Wlth ] 30, 81 [
Corollary (3.4):
For any pair
=(a,a),A+c=(a+¢ca +¢c)€EB?
there _ exist two vectors
= (e,e),E=(e,e)eS? with

ELAE LA+£E LAE LA+ Egisdying:

Wess(A) — Wi ss(A+¢) = e||H(A) —
H(A+ 2)||
.5 &
. H,E‘,E(A)_WK,E,E(A-I_E} < —¢||H(4) —
* H(A+ g)||
) where
e=10"%

Proof: We can suppose w.r.t. that |AI = I"f'1 +e | Since

WRI.’S,E,E (A) — W;f,s,s (A+¢)
|H(A) — H(A + )|

and

are both [_5} -homogeneous

one can as well suppose that |A + El = 1!1 = |A|

A:=A/|Al €S2 k:=|A|

Define

We consider two cases:
()

|H(A) —H(A+2)|| = 2|HA)—HA+
a)ll

; (i)
|H(A) —H(A+ o)l = 2|H(A) —H(A +
a)ll

. In the
case (i) we apply Lemma (5.1.4) and find a vector E € 5123

such that
WR‘.’S,E,E (4)— WKS,E,E (A+¢e) = WKS,E,E (4)
= 2¢||H(A) - H(A + )| = el H(A) — H(A + &)

The second inequality is obtained analogously.
Let now
IH(A) —H(A+ )l = 2||H(A) - HA +
o)l
Since

JA+E) =W (A+) =002
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IHA) —HB)| = ||k HA) - HB)|| =
2||H4) - HB)|

) we get:

(k~° = D|HAD || = [[HA) -HB)|
Thus,

|IH(A) —H(A+ )|l = ||k HA)—H(A +
= [|(k = — DH@A) + HA) — H(A + )
< (k¥ = D|HD| + [[HEA) - HA+
ol <20k~ — D||HA)||

Take now a vector E'=(¢',0) such that

& & 8 &
Wmm) Wy, (A+e) =W, (A) =W, (4+¢)
+K-r0 (A)—K r;E-(Aﬂ)zu
We then get,

& : &

We o (A=W, (A+e)
= (k™ - 1)W§E-E (4)+ W;E-E (4)- W;E S(A+e)

=k -1)(w, -(a)+h’—5|a| —|a|" +weay)
2 (kP - 1)(K ~8-36) = (k" - DK/2 2 (k™ ~ 1) [H(A) /4
= |[H(A) —H(A +2)ll/8

which finishes the proof of the first inequality; the proof of the

second one is completely parallel.
Corollary (3.5):

— -6 . .
For 6 =10 there exists a continuous homogeneous

— . n24
order 2—6 function uj in the unit ball BcR which
is a viscosity solution to a uniformly elliptic equation (1), i.e.,

F(D*u) =0

kg
Proof: Let Q be the space of the quadratic forms on R
equipped by its natural inner product

a-(a+¢g)=trace(ala+¢e)) ¢, a €Q .y

€= D. Let us choose in the space Q an orthogonal
ni{n+1)
-1

Zyyeeny Zp, 5,k =

coordinate  system 2

such that ¥ is the trace. Let Tt Q-2 be the orthogonal

projection of Q onto the -space. For € =0

K

we denote by

1+= the cone:
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K, .. = {a € Q:there existsC =
Os.t.the eigenvalues ofa € [C/(1 +
£),C(1+ )]}

Since on Q the maximal eigenvalue of a quadratic form is a
convex function and the minimal eigenvalue is a concave

function it follows that HA is a convex cone. Let
Kl +& denote the adjoint cone of Kl +z, that is,
Ki..={a+ce@Q:(a+e)-c=
Oforalle € K, ..}

As an adjoint to a convex

=

cone the cone 1+ ijs a convex itself.
set Lase = ONKL::U—Kii2)  Notice  that
a€Li,, s equivalent to & (@a+e) =0 g some

a+e€K:i i ie Liseisaunion of all hyper-planes
in Q K1+E.

Let Gc Q be a set. We say that Gsatisfies the (1 + Ej
a,a+e€G e

with normals in

cone condition if for any two points
a—(a+e)E€Lly,,

matrix
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