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Abstract- Despite a very strong synergy between Robotics and 
Artificial Intelligence at their starting phase, the two fields 
progressed apart in the following decades., We are witnessing 
interest in the fertile domain of embodied machine 
intelligence(Robotics using AI), which is due in particular to 
the dissemination of more mature techniques from both areas 
and more accessible robot platforms with advanced sensory 
motor capabilities, and to a better understanding of scientific 
challenges of the Robotics using AI intersections. The aim and 
vision of the paper is to contribute to this revitalization of the 
Robotics Process. It proposes overview of problems and 
approaches to autonomous deliberate action in robotics using 
AI. The paper supports for a wide understanding of 
considerable functions. It represents a synthetic planning 
prospective, acting, perceiving, monitoring, goal reasoning 
and their integrative architectures, which is shown and 
evaluated through several contributions that addressed 
deliberation from the Robotics using AI point of view. 
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I. INTRODUCTION 

 
 Robotics is an integrative field, at the confluence of 
several areas, ranging from mechanical and electrical 
engineering to control theory and computer science, with 
extensions toward material physics, bioengineering or 
cognitive sciences. The Robotics using AIcoming together is 
very strong techniques for perfection in robotics. It covers 
issues such as: 
 
 Action, planning, acting, monitoring and goal reasoning, 
 Perceiving, modeling and understanding environments,  
 Interacting with humans and other robots,  
 Learning models required by the above mentioned 

functions,  
 Integrating these functions. 
 

Robotics has always fertile inspiration for AI 
research, frequently referred to in its literature, in particular in 
the above topics. The early days of AI are rich in pioneering 
projects fostering AI research agenda on robotics platforms. 
Typical examples are Shakey at SRI  and the Stanford Cart in 
the sixties, or Hilare at LAAS and the CMU Rover  in the 
seventies. But, in the following decades the two fields 

developed in diverging directions; robotics expanded widely 
outside of AI laboratories. Hopefully, a revival of the synergy 
between the two fields is currently being witnessed. This 
revival is due to more mature techniques in robotics using AI, 
to the development of inexpensive robot platforms with more 
advanced sensing and control capabilities, to a number of 
popular competitions, and to a better understanding of the 
scientific challenges of machine intelligence, to which we 
would like to contribute here. This revival is strong in Europe 
where a large number of groups is actively contributing to the 
Robotics using AI. For example, out of the 260 members of 
the Euron network, 
1. About a third investigate robotics decision and 

cognitivefunctions. Many other European groups not 
within Euron and projects outside of EU programs are 
relevant to the Robotics using AI. This focused 
deliberative capabilities in robotics cannot pay a fair 
tribute to all European actors of this synergy.  

2. Its motive is not to cover a comprehensive survey of 
deliberation, and even less of the Robotics using AI 
intersection. In the limited scope of this special issue, we 
propose a synthetic view of deliberation functions. We 
discuss the main problems involved in their development 
and exemplify a few approaches that addressed these 
problems.  

 
This “tour d’horizon” allow us to advocate for a 

broad and integrative view of deliberation, where problems are 
beyond search in planning, and beyond the open-loop 
triggering of commands in acting. We hope through this 
perspective to strengthen the Robotics using AI synergies. The 
outline of the paper is the following: five deliberation 
functions are introduced in the next section; these are 
successively addressed through illustrative contributions; 
section 8 is devoted to architecture problems, followed by a 
conclusion. 
 

II. DELIBERATION FUNCTIONS IN ROBOTICS 
 
Deliberation refers to purposeful, chosen or planned actions, 
carried out in order to achieve some objectives.e.g. robots in 
manufacturing and other well-modeled systems; vacuum 
cleaning and other devices limited to a single task; surgical 
robots. Deliberation is a crucial and critical functionality for 
an autonomous robot facing a variety of environments and a 
variety of tasks. 
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Fig. 1. Schematic view of deliberation functions 

 
Several functions can be required for acting 

deliberately. The frontiers between these functions may 
depend on specific implementations and architectures, but it is 
clarifying to distinguish the following five deliberation 
functions, schematically depicted in figure 1:  
 
o Planning: It Joins prediction and search to synthesize a 

trajectory in an abstract action space, using calculated 
models of feasible actions and of environment.  

 
o Acting: It executes on-line close-loop feedback system 

that process streams of sensors to actuators commands in 
order to refine and control achievement of planned 
actions.  

 
o Perceiving: It extracts features to identify states, events, 

and situations relevant for the task. It collects and 
combines bottom-up sensing, from sensors to meaningful 
retrieved data, with top-down focus mechanisms to 
sensing actions and planning for information collecting.  

 
o Monitoring: compares and detects discrepancies between 

predictions and observations, performs diagnosis and 
triggers recovery actions.  

 
o Goal reasoning: keeps current commitments and goals 

into perspective, assessing their relevance given observed 
evolutions, opportunities, constraints or failures, deciding 
about commitments to be abandoned, and goals to be 
updated.  

 
 These deliberation functions communicate within a 
complex architecture (not depicted in Fig. 1) that will be 
discussed later. i.e., devices offering sensing and actuating 
capabilities, including signal processing and low-level 

function control. The frontier between the sensory-motor 
functions and deliberation functions depends on how variable 
environments and the tasks actually are.  

 
For example, motion control along a predefined path 

is usually a platform function, but navigation to some 
destination requires one or several deliberation skills, 
integrating path planning, localization, collision avoidance, 
etc. Learning capabilities change this frontier, e.g., in a 
familiar environment a navigation skill is compiled down into 
a low-level control with preached parameters. A met reasoning 
function is also needed for trading off deliberation time for 
action time: critical tasks require careful deliberation, while 
less important or more urgent ones may not need. 
 

III. PLANNING 
 
Over the past decades, the field of automated 

planning achieved tremendous progress such as a speed up of 
few orders of magnitude in the performance of Strips-like 
classical planning, as well as numerous extensions in 
representations and improvements in algorithms for 
probabilistic and other non-classical planning. Robotic 
mechanism stresses some issues in automated planning, eg, 
handling time, resources, or dealing with uncertainty, partial 
knowledge and open domains. Robots facing a variety of tasks 
need domain specific as well as domain independent task 
planners, whose correct integration remains a challenging 
problem. 
 
  The Asymov planner combines a state-space planner 
with a search in the motion configuration space. It defines 
places which are both states, as well as sets of free 
configurations. Places define bridges between the two search 
spaces. The state space search prunes a state whose 
corresponding set of free configurations does not meet current 
reachability conditions. Asymov has been extended to 
manipulation planning and to multirobot planning of 
collaborative tasks, such as two robots assembling a table. The 
integration of motion and task planning is also explored in 
with AHP Angelic Hierarchical Planning. AHP plans over sets 
of states with the notion of accessible set of states. These sets 
are not computed exactly, but bounded, e.g., by a subset and a 
superset, or by an upper and a lower bound cost function. A 
plan is acceptable if it has at least one feasible decomposition. 
The bounds used to characterize reachable sets of states are 
obtained by simulation of the primitives, including through 
motion and manipulation planning, for random values of the 
state variables. A different coupling of a hierarchical task 
planner to fast geometric suggester’s is developed. 
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These suggesters are triggered when the search in the 
decomposition tree requires geometric information. They do 
not solve completely the geometric problem, but they provide 
information that allows the search to continue down to leaves 
of the tree. The system alternates between planning and 
execution of primitives, including motion and manipulation 
actions. Online planning allows to run motion or manipulation 
planners (not suggesters) in fully known states. The approach 
considers that the geometric conditions of the actions can be 
computed quickly and efficiently by the songsters, and that the 
sub-goals resulting from actions decomposition are executed 
in sequence (no parallelism). The resulting system is not 
complete. Failed actions should be reversible at a reasonable 
cost. For problems where these assumptions are met, the 
system is able to quickly produce correct plans. 
 

IV. ACTING 
 

In contrast to planning that can easily be specified as 
an offline predictive function, decoupled from the intricacies 
of the executing platform, acting is more difficult to define as 
a deliberation function. The frequent reference to execution 
control is often reductive: there is more to it than just 
triggering actions prescribed by a plan. Acting components 
has to handle noisy sensors and imperfect models over the 
time. It requires non-deterministic, partially observable and 
dynamic environment models, dealt with through closed-loop 
commands. To integrate these requirements with predictive 
planning models, different forms of hierarchization are 
explored: 
 
 • Planning deals with abstract preconditions-effects actions; 
 
 • Acting refines opportunistically each action into skills and a 
skill further down into commands. This refinement 
mechanism may also use some planning techniques but with 
distinct state space and action space than those of the planner. 
 

V. MONITORING 
 

The monitoring function is in charge of (i) detecting 
discrepancies between predictions and observations, (ii) 
classifying these discrepancies, and (iii) recovering from them. 
Monitoring has at least to monitor the planner’s predictions 
supporting the current plan. It may have also to monitor 
predictions made when refining plan steps into skills and 
commands, as well as to monitor conditions relevant for the 
current mission that are left implicit in planning and 
refinement steps. Although monitoring functions are clearly 
distinct from action refinement and control functions, in many 
cases the two are implemented by the same process with a 
single representation. For example, the early Planex performs 

a very simple monitoring through the iterated computation of 
the current active kernel of a triangle table. In most procedure-
based systems there are PRS, RAP, ACT or TCA constructs 
that handle some monitoring functions.  
 

However, diagnosis and recovery functions in such 
systems are usually limited and ad hoc. The spacecraft is 
modeled as a fine grained collection of components, e.g., a 
thrust valve. Each component is described by a graph where 
nodes are the normal functioning states or failure states of that 
component. Edges are either commands or exogenous 
transition failures. The dynamics of each component is 
constrained such that at any time exactly one nominal 
transition is enabled but zero or more failure transitions are 
possible. Models of all components are compositionally 
assembled into a system allowing for concurrent transitions 
compatible with constraints and preconditions. Two query 
modes are used: (i) diagnosis, i.e., find most likely transitions 
consistent with the observations, and (ii) recovery, i.e., find 
minimal cost commands that restore the system into a nominal 
state.. This classification of almost 90 different contributions 
to Monitoring in robotics is inspired from the field of 
industrial control, where Monitoring is a well-studied issue. 
 
  Several authors have synthesized state-reachability 
conditions, called invariants, from the usual planning domain 
specifications. Going further, proposes extended planning 
problems, where the specifications of planning operators are 
augmented by logical formula stating invariant conditions that 
have to hold during the execution of a plan. Indeed, planning 
operators and extended invariants are two distinct knowledge 
sources that have to be modeled and specified distinctly. 
These extended invariants are used to monitor the execution of 
a plan. Furthermore, extended invariants allow to monitor 
effects of exogenous events and other conditions not 
influenced by the robot. This approach assumes complete 
sensing and perfect observation function. 
 

VI. PERCEIVING 
 

Situated deliberation relies on data reflecting the 
current state of the world. It may involve deliberation and can 
be quite effective. But of the above areas, methods for 
designing perceiving functions remain today a limiting factor 
in autonomous robotics, a hard and challenging issue to which 
surprisingly not enough efforts have been devoted. The 
building blocks for such a function can to be taken from the 
fields of signal processing, pattern recognition and image 
analysis, which offer a long history of rich developments. 
However, the integration of these techniques within the 
requirements of autonomy and deliberation remains a 
bottleneck.  



IJSART - Volume 5 Issue 9 –SEPTEMBER 2019                                                                            ISSN [ONLINE]: 2395-1052 
 

Page | 276                                                                                                                                                                     www.ijsart.com 
 

 
As defined in, anchoring is the problem of creating 

and maintaining over time a correspondence between symbols 
and sensor data that refer to the same physical object. 
Anchoring concerns specific physical objects. It can be seen as 
a particular case of the symbol grounding problem, which 
deals with broad categories, e.g., any “chair”, as opposed to 
that particular chair-2. Anchoring an object of interest can be 
achieved by establishing and keeping an internal link, called 
an anchor, between the perceptual system and the symbol 
system, together with a signature that gives estimate of some 
of the attributes of the object it refers to. The anchor is based 
on a model that relates relations and attributes to perceptual 
features and their possible values. Establishing an anchor 
corresponds to a pattern recognition problem, with the 
challenges of handling uncertainty in sensor data and 
ambiguity in models, dealt with for example through 
maintaining multiple hypotheses. There is also the issue of 
which anchors to establish, when and how, in a bottom-up or a 
top-down process. These objects can only be defined by 
intension (not extensively), in a context-dependent way. There 
is also the issue of tracking anchors, i.e., taking into account 
objects properties that persist across time or evolve in a 
predictable way. Predictions are used to check that new 
observations are consistent with the anchor and that the 
updated anchor still satisfies the object properties. Finally, 
reacquiring ananchor when an object is re-observed after some 
time is a mixture of finding and tracking; if the object moves it 
can be quite complex to account consistently of its behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
VI. GOAL REASONING 

 

 
Fig. 2 Goal Reasoning Model 

 
Goal reasoning is mostly concerned with the 

management of high-level goals and the global mission. Its 
main role is to manage the set of objectives the system wants 
to achieve, maintain or supervise. It may react to new goals 
given by the user or to goal failure reported acting and 
monitoring. It clearly shares similarities with the monitoring 
function. Still, Goal Reasoning is not akin to planning as it 
does not really produce plan, but merely establish new goals 
and manage existing one which are then passed to the planner. 
Similarly to monitoring, it continuously checks unexpected 
events or situations. These are analyzed to assess current goals 
and possibly establish new goals. As shown on figure 5, their 
system includes a classical planner; when it executes a plan, it 
detects discrepancy (Discrepancy Detector), generates an 
explanation, may produce a new goal (Goal Formulator) and 
finally manages the goals currently under consideration by the 
system.  
 

The Goal Manager can use different approaches to 
decide which goal to keep (e.g., using decision theory to 
balance conflicting goals). Similarly, in the authors point out 
that planning should be considered from a broader point of 
view and not limited to the sole activity of generating an 
abstract The resulting PMA system heavily relies on temporal 
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and causal reasoning, and is able to plan with partial 
commitments, allowing to further refine a plan when needed. 
It is nevertheless needed for complex and large systems 
managing various long term objectives while aking 
dynamically into account new events which may trigger new 
goals. 
 

VII. INTEGERATION AND ARCHITECTURE 
 

Beyond the integration of various devices 
(mechanical, electrical, electronical, etc), robots are complex 
systems including multiple sensors, actuators and information 
processing modules. Various system architectures have been 
proposed to tackle this task, among which the following:  
 
• Reactive architectures, e.g. the subsumption architecture, 

are composed of modules which close the loop between 
inputs (e.g. sensors) and outputs (e.g. effectors) with an 
internal automata. They do not rely on any particular 
model of the world or plans to achieve and do not support 
any explicit deliberative activities. Nevertheless, there are 
a number of work. 

 
• Teleo-reactive architectures are more recent. They 

propose an integrated planning– acting paradigm which is 
implemented at different levels, from deliberation down 
to reactive functions, using different planning–acting 
horizons and time quantum. Each planner–actor is 
responsible for ensuring the consistency of a constraint 
network (temporal and atemporal) whose state variables 
can be shared with other planners–actors to provide a 
communication mechanism. 

 
VIII. CONCLUSION 

 
Autonomous robots facing a variety of open 

environments and a diversity of tasks cannot rely on the 
decision making capabilities of a human designer or tele 
operator. To achieve their missions, they have to exhibit 
complex reasoning capabilities required to understand their 
environment and current context, and to act deliberately, in a 
purposeful, intentional manner. We have referred to the 
reasoning capabilities as deliberation functions, interconnected 
closely within a complex architecture. We have presented an 
overview of the state of the art for some of them.  
 

For the purpose of this overview, we found it 
clarifying to distinguish these functions with respect to their 
main role and computational requirements: the perceiving, 
goal reasoning, planning, acting and monitoring functions. But 
let us insist again: the border line between them is not crisp; 
the rational for their implementation within an operational 

architecture has to take into account numerous requirements, 
in particular a hierarchy of closed loops, from the most 
dynamic inner loop, closest to the sensory-motor signals and 
commands, to the most “offline” outer loop. 
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