Wind Analysis And Comparative Study of High Rise Building Having Diagrid And Outrigger Structural System By Gust Factor Approach

Deepak P Hittalmani¹, Basavaraj M Gudadappanavar², Dr. Mahesh S Patil³

¹Dept of Civil Engineering ²Asst. Professor, Dept of Civil Engineering ³HOD, Dept of Civil Engineering ^{1, 2, 3} SDMCET, Dharwad

Abstract- Advances in construction technology, materials, structural systems and analytical methods for analysis and design facilitated the growth of high rise buildings. Structural design of high rise buildings is governed by lateral loads due to wind or earthquake. Recently diagrid structural system is adopted in tall buildings due to its structural efficiency and flexibility in architectural planning. Diagrid structures generally do not require core because lateral shear can be carried by the diagonals on the periphery of building. This paper presents Analysis and design of 30 storey diagrid steel building is presented. A regular floor plan of $18 \text{ m} \times 18 \text{ m}$ size is considered. ETABS software is used for modelling and analysis of structural members. All structural members are designed as per IS 800:2007 considering all load combinations. Dynamic along wind and across wind are considered for analysis and design of the structure. Load distribution in diagrid system is also studied for 30 storey building. Similarly, analysis and design of 30storey diagrid structures is carried out. Comparison of analysis results in terms of time period, top storey displacement and inter-storey drift is presented in this paper.

Keywords- Diagrid structural system, Outrigger structural system, ETABS, Storey drift, Storey displacement, Gust factor Approach.

I. INTRODUCTION

High rise structures are preferable these days, due to population explosion and availability of limited space. Thus influencing the residential development of city. High-rise buildings became possible with invention of the elevator (lift) and less expensive, more abundant building material.

Structural analysis and designing of high rise building becomes challenging due to lateral loads induced by earth quake or wind pressure. Recently, Diagrid structural system is widely adopted for tall steel buildings due to its structural efficiency and aesthetic potential of the system.

II. METHODOLOGY

The methodology adopted is as given below:

- 1. Literature study
- 2. Modeling of Diagrid and Outriggers Structures for different number of stories in ETABS SOFTWARE.
- 3. Optimizing angle of inclination for diagrid structure and position of outrigger.
- 4. Parametric Study of Different Parameters influencing the Stability of the structure.

1. Structural configuration:

- Count of stories : 30 Stories
- Storey height : 3.6 m
- Total structure height: 108 m
- Dimension of plan: 18 m x 18 m

2. Material Properties:

- Grade of Concrete: M30
- Grade of steel reinforcement: Fe500
- Grade of steel sections: Fe345

3. Structural Parameter:

- Floor level Column :1000 mm x 1000 mm (steel column) and :450 mm x 450 mm (concrete column)
- Ground level column:1000 mm x 1000 mm (concrete column)
- Floor level Beam :ISMB-600, ISWB-600 (for diagrid structure):ISMB-400, ISMB-500, ISWB-600 (For outrigger structure)
- Ground level Beam:230 mm x 600 mm, 230 mm x 450 mm
 - (For diagrid and outrigger structure)
- Slab thickness: 130 mm

- Diagrid section: 475 mm Pipe sections with 25 mm thickness
- Outrigger beam: 2-ISA 200 mm x 200 mm x 25 mm (Double angle section)
- Outrigger belt truss:2-ISA 200 mm x 200 mm x 25 mm

(Double angle section)

- Core wall thickness : 450 mm
- Wall thickness : 230 mm

III. MODELLING OF DIAGRID:

Diagrid is modelled in Etabs software as per the specifications of building mentioned above.

Fig: Plan of diagrid building

8888888	8888888	88888888	8888888
N A A A		K K K K K Star	
Biory29	- A A A A A A A A A A A A A A A A A A A		
A A 500y28	(XXX) 30073	Story	9 VVV anya
	N/N/N/ Bury2	A A Story	a suxy2r
	X X X Surva		n nay20
A A 900y25		Bioyi	15 910y25
Bory34	(XX) Binyo	A A Bury	N 5107/24
	8m/2	Bury	9 A A 909(2)
X X X Story22		A A A Broyd	2 Swy21
Boy21	Bioy2	///// Biory	H Biory21
5 mm/d	Bury3	Boy	0 A A Story20
X X X Sury19	AAA Sorys		9 ///// Skoy19
Story 18	Y Y Storyn	Story	a Soyta
Story17	- A A Boyt	X X X Smy	17 Biory17
X X X Story 16	Story's	Bory Bory	6 Soy10
Story 15	AAA some	Diay Diay	s Soyti
Story 14		A A Sorry	
X X X Bary13	AAA Boys		9 / / / / Smy13
800v12	Says	X X X Bury	2 9mv12
Boy11	AAA Sayt	///// Brory	a A A Boytt
X X X Servit	Boys	900	0
	A 500y5		
	Boyd	Storyd	
XXX	DALA Bury?	X X X Bury	
	8076		
	A A Stores	Diary Biory	
XXX	Story4		
	A A Sory3	Story.	
	V V Sory2	X X X Bory	A A A
Y Y Y	AAA Smith		
	VVVV ~		2/ V V V anay
TTTT	Base	Barris - Barris	
Base	A A A A	Y W Y Y	Base

Fig: 3-storey, 4-storey, 5-storey, 6-storey diagrid module.

Fig:1.Two outriggers @ 0.33 and 0.66 height of building, 2.Two outriggers @ Top and 0.5 height of building, 3.Two outriggers @ Top and 0.75 height of building.

1. Load Assigning on Structure

The loads considered for the following study as per IS codes are given below.

2. Dead Load

- Dead load on floor: 3.25 kN/m²
- Floor finish : 1.0 kN/m²
- Wall load: 0.23 x (3.6-0.6) x 20= 13.8 kN/m
- Parapet wall load : 0.23 x 1 x 20= 4.6 kN/m

3.Live Load

-	Live load on floor:	3.5 kN/m ²
---	---------------------	-----------------------

- Live load on roof : 1.5 kN/m²

4. Wind Load

The lateral loads to be applied on the buildings are based on the Indian standard IS-875-Part 3: 1987

5. Wind Data

- Wind zone: 4
- Basic wind speed (V_b) : 50 m/s
- Terrain category :
- Class of structure : A (since maximum dimension < 20 m)

3

- Life of structure : 50 years.

Aspect ratio =
$$\frac{108}{18} = 6 > 5$$

Time period (T) = $\frac{0.09 \times 108}{\sqrt{18}} = 2.29$ Sec

Frequency (f) =
$$\frac{1}{2.29}$$
 = 0.436 Hz < 1*Hz*

Hence Dynamic analysis is necessary.

Gust factor method is the only method of determining load along wind or drag load presented in IS: 875 (Part-3)-1987. In case of wind load under dynamic effects the use of Gust factor method is suggested by code.

IV. LOAD COMBINATION

The load combinations taken are as shown below:

- 1. 1.5(Dead Load + Live Load)
- 2. 1.2(Dead Load + Live Load + Wind Load)
- 3. 1.2(Dead Load + Live Load Wind Load)
- 4. 1.2(Dead Load + Live Load)
- 5. 1.5(Dead Load + Wind Load)
- 6. 1.5(Dead Load Wind Load)

V. ASSESSMENT AND COMPARISON OF BUILDING PERFORMANCE:

Performance of the building is compared in terms of displacement at top storey, Axial force and Steel consumption.

VI. RESULTS AND DISCUSSION

The following results were observed after the complete analysis of the modelled structure. The results of storey drift, storey displacement and storey forces are graphically represented.

Table Storey displacement at top of building having two outriggers at different locations.

66	
Structural systems	Top Storey displacement (mm)
Building with shear wall	152.251
Two outrigger @ Top and 0.75 Height of building	122.978
Two outrigger @ Top and 0.5 Height of building	114.646
Two outrigger @ 0.33 and 0.66 Height of building	103.968

Table	Sto	rey	displac	ement	at each	floor	level	for	building
	-					~			

having two outriggers at different locations.

	Building with	Building with two outrigger		
Storey	shear wall	@ Top and 0.75H	@ Top and 0.5H	@ 0.33H and 0.66H
	Mm	Mm	Mm	Mm
Storey30	152.251	122.978	114.646	103.968
Storey 29	147.699	122.437	113.995	100.807
Storey28	143.071	116.267	107.598	97.606
Storey27	138.353	113.449	104.547	94.364
Storey20	133.539	110.483	101.321	91.078
Storey25	128.617	107.399	97.951	87.749
Storey24	123.575	104.194	94.442	84.382
Storey23	118.407	103.924	90.804	80.987
Storey22	113.109	101.018	87.048	77.568
Storey21	107.681	94.192	83.191	76.936
Storey20	102.128	90.165	79.251	74.066
Storey19	96.455	85.887	75.251	67.586
Storey18	90.674	81.371	71.218	03.785
Storey17	84.798	76.639	67.173	59.862
Storey16	78.843	71.72	65.806	55.839
Storey15	72.829	00.044	62.517	51.754
Storey14	00.78	61.442	55.542	47.649
Storey13	60.723	56.149	51.112	43.569
Storey12	54.687	50.802	40.545	39.552
Storey11	48.708	45.441	41.88	37.868
Storey10	42.825	40.11	37.107	34.847
Storey9	37.075	34.850	32.458	28.68/
Storey8	31.511	29.729	27.81	24.78
Storey/	26.182	24.785	23.282	20.91
Storeyo	21.144	20.082	18.939	17.133
Storey5	16.461	15.685	14.847	13.523
Storey4	12.201	11.663	11.079	10.157
Storey3	8.445	8.091	7.713	7.117
Storey2	5.278	5.05	4.832	4.488
Storey1	2:769	2.623	2.521	2.359
GF	0.976	0.952	0.92	0.869
Base	0	0	0	0

Graph: Outriggers at 2 different locations having storey displacement at each floor Vs Number of storey.

Table: For two outriggers at different locations the Axial force (kN) developed in column of building.

0
column no. 5 Axial force (kN)
12637.33
11495.03
11512.66
11463.95

Graph: Building having two outriggers at different locations Axial force (kN) in column.

Table: Displacement at top storey (mm) of building having different storey diagrid modules.

Structural systems	Top Storey displacement				
	(mm)				
Shear wall building	152.251				
Building with 6-Storey diagrid module (74.47° inclination)	96.63				
Building with 5-Storey diagrid module (71.56° inclination)	93.812				
Building with 4-Storey diagrid module (67.38° inclination)	93.72				
Building with 3-Storey diagrid module (60.94° inclination)	97.355				

Table: Storey displacement at each floor level for building with different diagrid module.

	Building	Building with 6- Storey diagrid	Building with 5- Storey diagrid	Building with 4- Storey diagrid	Building with 3- Storey diagrid
Storey	WICH SHERT	module (74.47°	module (71.56°	module (67.38°	module (60.94°
	wali	inclination)	inclination)	inclination)	inclination)
	mm	203 200	Mm	10101	Mm
Storey30	152.251	96.63	93.812	93.72	97.355
Storey29	147.699	93.412	90.595	90.369	93.727
Storey28	143.071	90.161	87.348	86.99	90.069
Storey27	138.353	86.87	84.067	83.583	86.387
Storey26	133.539	83.54	80.744	80.145	82.681
Storey25	128.617	80.157	77.376	76.672	78.946
Storey24	123.575	76.72	73.975	73.167	75.186
Storey23	118.407	73.238	70.529	69.627	71.403
Storey22	113.109	69.703	67.043	66.06	67.6
Storey21	107.681	66.12	63.52	62.469	63.786
Storey20	102.128	62.51	59.964	58.864	59.959
Storey19	96.455	58.86	56.388	55.234	56.134
Storey18	90.674	55.177	52.792	51.605	52.323
Storey17	84.798	51.471	49.191	47.985	48.518
Storey16	78.843	47.751	45.594	44.387	44.748
Storey15	72.829	44.032	42.003	40.786	41.026
Storey14	66.78	40.349	38.429	37.232	37.335
Storey13	60.723	36.691	34.887	33.737	33.721
Storey12	54.687	33.065	31.403	30.319	30.207
Storey11	48.708	29.472	27.992	26.928	26.745
Storey10	42.823	25.948	24.656	23.647	23.416
Storey9	37.075	22.523	21.394	20.497	20.25
Storey8	31.511	19.251	18.249	17.525	17.161
Storey7	26.182	16.121	15.26	14.566	14.276
Storey6	21.144	13.149	12.452	11.831	11.625
Storey5	16.461	10.317	9.829	9.327	9.084
Storey4	12.201	7.713	7.368	7.195	6.829
Storey3	8.445	5.393	5.166	4.966	4.999
Storey2	5.278	3.414	3.28	3.199	3.1
Storey1	2.769	1.832	1.77	1.796	1.762
GF	0.976	1.978	1.931	1.883	1.785
Base	0	0	0	0	0

Graph: Displacement for storey at every floor level for building having different diagrid modules.

Table: Top storey displacement for Building with 4-Storey diagrid module (67.38°), Building with Two outriggers @

	diagrid module (67.38°	outrigger @ 0.33H and	Building with	
Storey	inclination)	0.66H	shear wall	
	Mm	mm	mm	
Storey30	93.72	103.968	152.251	
Storey29	90.369	100.807	147.699	
Storey28	86.99	97.606	143.071	
Storey27	83.583	94.364	138.353	
Storey26	80.145	91.078	133.539	
Storey25	76.672	87.749	128.617	
Storey24	73.167	84.382	123.575	
Storey23	69.627	80.987	118.407	
Storey22	66.06	77.568	113.109	
Storey21	62.469	76.936	107.681	
Storey20	58.864	74.066	102.128	
Storey19	55.234	67.586	96.455	
Storey18	51.605	63.785	90.674	
Storey17	47.985	59.862	84.798	
Storey16	44.387	55.839	78.843	
Storey15	40.786	51.754	72.829	
Storey14	37.232	47.649	66.78	
Storey13	33.737	43.569	60.723	
Storey12	30.319	39.552	54.687	
Storey11	26.928	37.868	48.708	
Storey10	23.647	34.847	42.823	
Storey9	20.497	28.687	37.075	
Storey8	17.525	24.78	31.511	
Storey7	14.566	20.91	26.182	
Storey6	11.831	17.133	21.144	
Storey5	9.327	13.523	16.461	
Storey4	7.195	10.157	12.201	
Storey3	4.966	7.117	8.445	
Storey2	3.199	4.488	5.278	
Storey1	1.796	2.359	2.769	
GF	1.883	0.869	0.976	
Base	0	0	0	

Graph: Top storey displacement for Building with 4-Storey diagrid module (67.38°), Building with two outriggers @ 0.33H and 0.66H, and building with shear wall.

Table: Steel material consumption for diagrid and outrigger structural system.

Material Consumption	Steel consumption in	Steel consumption in
	Diagrid (ton)	Outrigger (ton)
Column	763.47	2311.20
Beam	888.06	554.16
Braces	763.90	54.11
Total	2415.43	2919.47

Graph: steel material consumption for diagrid and outrigger building with variations.

Graph: Natural time period for diagrid, outrigger and shear wall structure.

VII. CONCLUSION

The present paper is an effort to investigate the behaviour of diagrid system and outrigger system in high rise building with 108m height subjected to trapezoidal distribution of wind loads. The conclusions depending on the analysis results are as follows:

- 1. Introduction of outrigger with belt truss system and perimeter diagrid system in multi storey high rise buildings highly improves the structural stiffness and makes the structural system effective and efficient under lateral load as well and also reduces the lateral displacement.
- The displacement at top storey of Building with 4-Storey diagrid module (inclined at 67.38°) decreases by 10 % compared to Building having 2 outriggers @ 0.33 height and 0.66 height. Thereafter, we get the conclusion that for perimeter diagrid system of normal system.

- 3. With provision of the outrigger the stresses in the columns are decreased when compared to building without an outrigger system. With provision of outriggers, the forces are uniformly distributed and therefore, there is reduction in column axial forces.
- 4. The percentage increase in steel material for outrigger structure is 17% more than diagrid structure. Therefore, we can conclude that for high rise buildings, provision of diagrid structural system will be economical.
- 5. The paper shows that the performance of diagrid and outrigger structural systems is considerably affected by the angle of inclination of diagonal members and optimum location of outrigger system respectively. Therefore, from analysis results, we can conclude that the angle of inclination for diagrid structure is optimum at 67.38° for 4-storey diagrid module and location of outrigger structure is optimum at 0.33 height and 0.66 height that is 1/3rd and 2/3rd of height to which corresponding top storey displacement is obtained to be less.
- 6. The time period of structures with diagrid is lesser when compared to outrigger structure due to perimetral diagonal member the stiffness of diagrid structure increases (2.1 Sec). Therefore, we can conclude that, the diagrid structural system is stiffer than the outrigger and shear wall structural system.
- 7. Multi storey high rise buildings with perimeter diagrid system can be provided for structural effectiveness and architectural feasibility for plan. When compared to conventional structure, diagrid structure consist of inclined column (i.e. diagonal) at the perimeter of building. Hence diagrid structure provides more feasible system for architectural plan and also higher structural efficiency for high-rise buildings can be achieved.

REFERENCES

- [1] Smith, B. S. and Alex Coull, "Tall building structures; Analysis and Design" (John Wiley and Sons Inc,1991)
- [2] Po Seng Kian, Frits TorangSiahaan," The Use Of Outrigger And Belt Truss System For High-Rise Concrete Buildings"Department of Civil Engineering, Petra Christian University, Dimensi Teknik Sipil, Vol. 3, No. 1, Maret 2001, 36-41
- [3] Z. Bayati, M. Mahdikhani and A. Rahaei, "Optimized use of Multi outrigger System to Stiffen Tall Buildings", the 14th World conference on Earthquake Engineering Oct 12-17, 2008, Beijing, china.

- [4] Kyoung Sun Moon, "Material Saving Design Strategies For Tall Building Structures", CTBUH 2008 8th World Congress, Dubai
- [5] K.Moon,"Design and Construction of Steel Diagrid Structures", School ofArchitecture, Yale University, New Haven, USA. 2009
- [6] Abbas Haghollahi, Mohsen Besharat Ferdous, Mehdi Kasiri, "Optimization of outrigger locations in steel tall buildings subjected to earthquake loads" the 15th World conference on Earthquake Engineering, 2012, Shahid Rajaee Teacher Training University, Tehran, Iran.
- [7] Khushbu Jani, Paresh V. Patel, "Analysis and Design of Diagrid Structural System for High Rise Steel Buildings", M. Tech. Dissertation, Nirma University, Ahmedabad, 2012.
- [8] T. M. Boake, "Diagrid Structures: Innovation and Detailing", School of Architecture, University of Waterloo, Canada
- [9] R. Shankar Nair, "Belt trusses and Basements as 'Virtual' Outriggers for Tall Buildings", Engineering Journal, Fourth Quarter, 1998, pp 140-146.
- [10] J. R. Wu and Q. S. Li, "Structural Performance of Multi Outrigger braced Tall Buildings", the structural Design of Tall and Special Buildings, Vol.12, 2003, pp155-176.
- [11] IS: 875(Part-3)-1987. Code of practice for design loads (other than earthquake) for buildings and structures, wind loads. Bureau of Indian Standard, New Delhi.
- [12] ETABS Nonlinear Ver. 9, Extended Three Dimensional Analysis of Building Systems, Computers and Structures Inc. Berkeley, CA USA, 2006
- [13] Giulia Milana, PierluigiOlmati, Konstantinos Gkoumas, Franco Bontempi," Ultimate Capacity of Diagrid Systems for Tall Buildings in Nominal Configuration and Damaged State" PeriodicaPolytechnica Civil Engineering 59(3), pp. 381–391, 2015