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Abstract- In order to occupy a competitive position in Gas 

Turbine industry the most important challenges, a fabrication 

plant has to face are the reduction of manufacturing costs and 

the increase of production yield. Predictive maintenance is 

one possible way to address these challenges. In this project I 

present an implementation of a universally applicable 

methodology based on the theory of classification of good and 

faulty data and Support Vector Machine (SVM) to predict tool 

maintenance operations. To fit the problem adequately and to 

allow a descriptive interpretation we introduce the remaining 

time until next maintenance as a response variable. By using 

Python and adequately analyzing data acquired SVM model is 

constructed. Later will show that under typical production 

conditions the model is able to predict a recurring 

maintenance operation sufficiently accurate. This project 

shows that better planning of maintenance operations allows 

for an increase in productivity and a reduction of downtime 

costs. 
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I. INTRODUCTION 

 

 Predictive Maintenance aims at detecting faults to 

minimize production costs and optimize maintenance. Such 

process is often cumbersome since the detectability of faults 

depends on the geometry of the components under analysis, 

the type and severity of the fault, the speed regime, location of 

the sensors and signal processing applied. Gears are an 

important component of rotating machines, and often the 

faults in these components are the cause of catastrophic 

breakdown of industrial applications. For this reason, a great 

effort has been put into research of this subject. Every 

machine including rotating components has a specific sound 

and vibration signature related to its construction and 

structural health state. Thus, changes in the vibration signature 

can be used to detect incipient defects before they become 

critical. Accordingly, gearbox faults can be diagnosed through 

the changes that occur at particular frequencies. The time 

domain analysis consists of many descriptive statistics such as 

sample skewness, kurtosis and so on. 

 

Feature extraction methods play an important role in 

machine condition monitoring and fault diagnosis, from which 

the diagnostic information can be obtained. Through gear 

vibration analysis, a lot of features are acquired, and the next 

step is optimization and classification. In the present work the 

authors present a review of a classification techniques for 

gearbox fault identification with particular regard to vibration 

analysis. Nowadays the demand for condition monitoring and 

vibration analysis is driven not only by the need to minimize 

the consequences of machine failure, but also to utilize the 

existing resources more effectively. A gas turbine is typically 

composed of the following key components: generator system, 

blades/pitch system, yaw system, convert system, gearbox 

system, and other systems. Generator faults account for the 

greatest down time among all faults. Develop fault prediction 

and diagnos is methods with good service accuracy and low 

deployment costs for turbine generators. 

 

Section I represents the introduction and motivation 

behind this research. Section II gives general information 

about the dataset we have used for this project. Section III 

illustrates the entire methodology of the project that we had 

used. It gives the entire flow of the research work. The first 

part is focused on the baseline algorithm tuning of the 

classifier. The second part gives a brief introduction about 

cross validation technique. The next part is about SVM 

regression model. The next part depicts about algorithm 

tuning. Last part states the performance measure for result we 

have got. Section IV is the result part. Section V illustrates the 

conclusion and future scope of this research. Last part states 

all the references we have used. 

 

II. DATASET 

 

Radial vibration measurements taken on 3MW wind 

turbine pinion gear with nominal speed of 1800 rpm. For the 

fault case (case 1) initial vibration readings showed high 

vibration levels, the machine was stopped after one week and 

fault on pinion gear found as shown in image below. Two 

other vibration readings (case 2 and 3) are given from pinion 

gears of different wind turbines of the same model with no 

known faults. Measurements are made radially on gear shaft 

having sampling rate of 97656 Hz, recording length of 6 

seconds with accelerometer.  
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III. METHODOLOGY 

 

In this paper, we attempt three levels of classification: 

fault detection, fault diagnosis and fault prediction. The 

general methodology for all three types of classification is 

shown in Figure 1. As can be seen, there are four main steps 

following a general machine learning process, described in 

detail in this section. 

 

3.1. Data Labelling: The processes for labelling the data for 

each classification level are given below. 

 

 
Fig 1: Methodology for a typical machine learning approach 

 

3.1.1. Fault Detection 

 

The first level of classification is distinguishing 

between two classes: “fault” and “healthy”. The fault data 

corresponds to times of operation under a set of specific faults 

in case 1 of dataset provided. For these faults, status messages 

with codes corresponding to the faults were selected. The 

healthy data corresponds to operations recorded in gas turbine 

case 2 and 3. 

 

3.1.2. Fault Prediction 

 

Fault prediction represents an advanced level of 

classification than fault diagnosis. The aim of this level of 

classification was to see if it was possible to identify that a 

specific fault was imminent from the full set of operational 

data. For fault prediction, the times during which the turbine 

was in faulty operation were not labelled as such. Instead, 

operational data points leading up to each fault were labelled 

as “pre-fault”, for each specific fault. When a specific fault 

started at time t, then all operational data points between time 

t−T and t−W were labelled as that fault’s “pre-fault” data. 

This means that by looking at a window of time between T 

and W before a fault occurs, useful warning could be given of 

an imminent fault at least W minutes/hours before it occurs. 

Once again, if different faults occurred concurrently, the data 

points were duplicated and given different labels. 

 

3.2. Feature Selection 

 

The FFT of the data from the channel 1 was further 

converted into time domain signal for further analysis. Time 

domain analysis consists of calculating various statistical 

values of the given signal such as the mean, root mean square 

(RMS), standard deviation, kurtosis and variance. A separate 

dataset of these values was created with corresponding healthy 

or faulty class data which were further analyzed using Python. 

This feature was further split into 75-25% for testing and 

training using train- test split library in Python.  

 

3.3. Model Selection 

 

Support Vector Machines are a widely used and 

successfulmachinelearningalgorithmforthetypeofclassification

problem seen in this study, where the relationship between a 

high number of parameter scan be complex and nonlinear 

(Cortes &Vapnik, 1995; Boser, Guyon, &Vapnik, 1992). The 

basic premise behind the SVM is that a decision boundary is 

made between two opposing classes, based on labelled 

training data. A certain number of points are allowed to be 

misclassified to avoid the problem of overfitting. They have 

been used in other industries for condition monitoring and 

fault diagnosis with great success. A Support Vector Machine 

(SVM) is a discriminative classifier formally defined by a 

separating hyperplane. In other words, given labelled training 

data (supervised learning), the algorithm outputs an optimal 

hyperplane which categorizes new examples. In two 

dimensional space this hyperplane is a line dividing a plane in 

two parts where in each class lay in other side. SVM 

constructs a hyperplane in multidimensional space to separate 

different classes. SVM generates optimal hyperplane in an 

iterative manner, which is used to minimize an error. The core 

idea of SVM is to find a maximum marginal hyperplane 

(MMH) that best divides dataset into two classes. 

 

3.3.1. General Approaches Base Case(Base) 

   

In the base case, i.e. “vanilla” SVM, a randomized 

grid search was performed over a number of hyper parameters 

to find the ones which yielded the best results on the full set of 

training data. These were then verified using 5-fold cross 

validation. The scoring metric used for cross validation was 

the accuracy score (see Eq. 4). The hyper parameters searched 

over were C, which controls the number of samples allowed to 

be misclassified, γ which defines how much influence an 

individual training sample has, and the kernel used. The three 
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kernels which were tried were the simple linear kernel, the 

radial-basis (Gaussian) kernel and the polynomial kernel. The 

training data from all under sampling and oversampling 

methods were fed into an SVM following this approach. 

Additionally, the meta-learners using the ensemble methods 

also followed this approach. 

 

3.4. Model Evaluation 

 

A number of scoring metrics were used to evaluate 

final performance on the test sets for fault detection and fault 

diagnosis. A high number of false positives can lead to 

unnecessary checks or corrections carried out on the turbine 

and this was captured with the precision score(where a higher 

score represents a lower false positive rate). A high number of 

false negatives, on the other hand, can lead to failure of the 

component with no detection having taken place (Saxena et 

al., 2008). This is captured by the recall score, where a higher 

number indicates a low ratio of false negatives. The F1-Score 

was also used, which is the harmonic mean of precision and 

recall. Confusion matrices were used where appropriate to 

give a visual overview of performance and show absolute 

numbers. The formulae for calculating accuracy, precision, 

recall, the F1-score and specificity can be seen below: 

 

Accuracy = (tn+tp) (tn+tp+fn+fp)   (1) 

 

Recall = tp/(tp + fn) (2) 

 

Precision = tp/(tp + fp) (3) 

 

F1 = 2tp/(2tp + fp + fn) (4) 

 

Specificity = tn/ (fp + tn)(5) 

 

where tp is the number of true positives, i.e., 

correctly predicted fault samples, fp is false positives, fn is 

false negatives, i.e., fault samples incorrectly labelled as no-

fault, and tn is true negatives. The overall accuracy of the 

classifier on each test set was not used as a metric due to the 

massive imbalance seen in the data. For example, if 4990 

samples were correctly labelled as fault-free, and the only 20 

fault samples were also incorrectly labelled as such, the 

overall accuracy of the classifier would still stand at 99.6%. 

Specificity was not used as a metric for a similar reason, 

though was used in one specific case for benchmarking against 

specificity scores in a previous study 

 

IV. RESULTS 

 

4.1. Fault Detection 

 The results are obtained using confusion matrix in 

which 15 tn was obtained. There was 16 tp and 5 overall 

misclassifications in the matrix. Therefore, out of 36 test cases 

31 are correctly classified using SVM. SVM on a scaled data 

and tuned parameters gives a cross-validation accuracy of 0.86 

with tolerance of +/- 0.37%A precision score of 0.89 was 

overall obtained with the help of above equation (1) and 

confusion matrix. The true positive rate or Recall was 0.86. 

The F1 score was at 0.86 and a support of 36 was obtained 

 

4.2. Fault Prediction 

 

For the regression model, a mean square error of 0.13 

was obtained, which can be further minimised using tuning. 

R2 score was low at 0.49 which   

 

V. CONCLUSION AND FUTURE SCOPE 

 

Various classification techniques based on the use of 

SVMs to classify and predict faults in gas turbines based on 

data were investigated. Two levels of fault classification were 

looked at: fault detection, i.e. distinguishing between faulty 

and healthy operation and, fault prediction, where a specific 

fault was identified as being likely to occur in advance of the 

fault using probability theory. 

 

 The classification techniques employed involved 

various different ways of training SVMs, including hyper 

parameter tuning. The results were very promising and show 

that distinguishing between fault and healthy operation is 

possible with very good precision and recall and F1 score. In 

general, this was also the case for classifying afault. More 

importantly, predicting certain types of faults for a 6 second 

data was quite difficult by observing the low R2 score. 

Improving the R2 scores would represent a very important 

step forward in being able to rely on data for accurate fault 

prediction. This represents a limitation in what can be 

achieved; with additional data, i.e., from 

moreturbinesoveralongerperiod,betterfaultpredictionwillbepos

sible due to more positive examples being available for 

training. As well as this, advanced feature extraction and 

selection would enable even higher scores.  
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