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Abstract- Objective: The main objective of our project is to 

compare the accuracy within the subject comparison between 

auditory streaming beep stimuli and one that used word 

stimuli. We aimed to see whether this system is used for the 

people in the locked in state.Approach: We performed a 

counter balanced within the subject-comparison using 

auditory stimuli using beep sounds and the other using word 

stimuli. we took samples for two healthy subjects 25 trails 

each event resulting 100 trails on each subject.Main results. 

The EP1, EP2, EP3 and EP4 are 4 event-related potentials 

elicited by words varied more between subjects than those 

elicited by beeps. However, the difference between responses 

to attended and unattended stimuli was more consistent with 

words than beeps.Significance: Since performance using word 

stimuli was at least as good as performance using beeps, we 

recommend that auditory streaming BCI systems be built with 

word stimuli to make the system more pleasant and intuitive. 

Our preliminary data show that word-based streaming BCI is 

a promising tool for communication by people who are locked 

in. 

 

Keywords- brain–computer interface, EEG, event-related 

potential, auditory attention, natural stimuli 

 

I. INTRODUCTION 

 

 People may become locked in—i.e. ‘prevented from 

communicating by word or body movement—due to a variety 

of causes. For example, the locked-in state (LIS) may result 

from degenerative motor-neuron diseases such as amyotrophic 

lateral sclerosis (ALS), from acute polyneuropathies such as 

Guillan–Barre´ syndrome, or from stroke, tumours or trauma 

that affect the brainstem. 

 

Various definitions and sub-categories of LIS allow 

for some residual voluntary movement. Many people in LIS 

communicate using eye movements or small muscle 

movements to give a yes-or-no answer in response to a verbal 

cue provided by a conversation partner. However, these 

movements may be very tiring, may weaken or disappear 

sporadically during the course of a day, and may decline over 

the course of months or years due to progressive motor-neuron 

degeneration. Conversation partners may find it difficult, and 

may vary widely in their ability, to recognize these 

movements unambiguously. 

The current article is the latest in a series in which we 

aim to optimize, and then translate into everyday use, a simple 

brain–computer interface (BCI) to address this  problem. We 

aim to develop a communication device that can be cured by a 

conversation partner to elicit a single reliable yes-or-no 

answer at a time. We decode the user’s intended answer from 

non-invasive EEG signals. 

 

We have chosen to develop a BCI driven by non-

visual stimuli, due to the many problems that paralyzed people 

may experience regarding eye movement and eye health. Our 

previous works have shown that effective binary BCI systems 

can be driven purely by attention to auditory stimuli. Our 

design was inspired by the observation of Hillyard et al that 

selective attention modulates the early negative (80–100 msec) 

as well as later positive (300– 400 msec) event-related 

potential components in a dichotic listening task. 

 

We have adopted an approach based on event-related 

potentials (ERPs) rather than steady-state evoked potentials 

(SSEPs), because we found ERPs to be more efficient. 

Auditory SSEPs seem to require longer trials to yield 

comparable accuracy. 

 

We have adopted a streaming approach in which two 

simultaneous or interleaved trains of stimuli are presented, and 

the BCI is driven by the difference in responses between all 

attended and all unattended stimuli. For interfaces with two 

target classes, we find this to be more efficient than a 

sequential approach that relies on the difference in responses 

between standard stimuli and relatively rare targets. For more 

than two target classes, sequential approaches may allow a 

potentially larger rate of information transfer due to the fact 

that the non-target stimuli may be differentiated into multiple 

classes. This allows the efficient construction of speller 

systems, such as the so-called ‘P300 speller’ based on grids of 

visual stimuli or other spatial arrangements. It is possible to 

construct such speller systems using a purely auditory BCI 

approach but so far, such systems impose a high working-

memory load, as the subject must memorize, and mentally 

navigate through, multiple mappings between spatial locations 

and letters (or groups of letters). 

 

Maximizing intuitiveness, and minimizing cognitive 

load, is one of the primary motivating factors behind the 
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current study. In our previous studies, our auditory BCIs were 

driven by abrupt beep stimuli typical of those used to elicit 

ERPs in psychophysiology research. Since these are devoid of 

intrinsic meaning, their association with the options ‘yes’ and 

‘no’ is arbitrary, and is complicated by the fact that two types 

of stimuli (standard and target) are associated with each 

option. We found that experimental subjects and potential 

users consequently find the system difficult to understand. 

Many people also reported finding the beeps harsh and mildly 

unpleasant. 

 

Hohne¨ et al found that natural stimuli (albeit still 

standardized, semantically empty syllables) can drive an 

auditory BCI better than artificial stimuli. Encouraged by this, 

we wished to know whether it was possible, without loss of 

performance, to adapt our auditory streaming BCI system to 

use spoken words instead of harsh, meaningless beeps. The 

potential advantages of word stimuli are three-fold. First, 

words can be selected that naturally reflect theoptions the user 

can choose (for example, ‘yes’ and ‘no’) making the system 

much easier to explain to beginning users. Second, the natural 

stimuli may be more pleasant, as Hohne¨ et al also reported. 

Third, voice stimuli are very well segregated by the auditory 

system into separate perceptual streams, whereas the 

streaming percept of isolated beeps may more easily break 

down. If we can improve the streaming quality of the stimuli, 

it may in future be possible to deliver both streams from the 

same audio speaker, and thereby remove the reliance on good 

directional hearing. 

 

Spoken words have variable length and differing 

temporal distributions of stimulus energy. As a result, we 

expect that the resulting ERPs may look somewhat different 

from the textbook waveforms elicited by abrupt unnatural 

stimuli. And as we shall see, the responses to words also 

exhibit considerably more variability across subjects. 

Therefore, before we go any further, it is necessary to test 

whether we can change from beeps to words without loss of 

performance. The main laboratory study reported in this paper 

was a within-subject comparison of our previous stimulus 

configuration (Beeps) against a new stimulus condition 

involving the words ‘yes’ and ‘no’ (Words). 

 

Our study also incorporated various additional 

aspects that aimed to further the progression of our system 

towards practical usability. This included a reduction in the 

number of EEG channels relative to previous studies: here, we 

use eight channels to minimize setup time and also so that we 

could use the eight-channel amplifiers that are part of our 

standard home BCI system. Furthermore, since EEG signals 

are highly non-stationary, particularly between sessions, we 

wished to evaluate the performance of our subjects using fixed 

classifier weights obtained on a previous session. Therefore, 

our laboratory design included two sessions for every subject. 

Finally, having established that the Words condition was at 

least as effective as the old Beeps condition, we took the first 

steps towards testing the system (Words condition only) with 

two potential users who are locked in. 

 

II. MATERIALS AND METHODS 

 

2.1. Subjects 

 

Two healthy subjects, whom we will denote by the 

letters A&B, took part in the experiment Each subject attended 

for two sessions on separate days. None of them had any 

history of significant hearing problems or neurological 

defects. All subjects gave informed consent. Figure 1. 

Explains the electrodes placing on the scalp.  

 

 
Fig.1 Electrode placement 

 

2.2. Hardware and software 

 

EEG recordings were made using a custom eight-

channel version of the g.USBamp amplifier (g.tec medical 

engineering GmbH, Austria) in conjunction with an eight-

channel EEG cap (Electrocap Inc.). The cap used gelled 9 mm 

tin electrodes at positions F3, F4, T7, C3, Cz, C4, T8, and Pz 

of the extended international 10–20 system of Sharbrough et 

al , with the reference at TP10 (the right mastoid) and the 

ground electrode at TP9 (the left mastoid). The amplifier 

performed appropriate anti-alias filtering before digitizing at 

24 bits and down sampling to 256 Hz. Data acquisition was 

performed using the BCI2000 software platform v.3.0; signal-

processing, classifier optimization and stimulus presentation 

were implemented in Python using the ‘BCPy2000’ add-on to 

BCI2000. Stimuli were delivered via the laptop’s built-in 

soundcard to a pair of Sony MDR-V600 headphones worn by 

the subject. The software ran on a Lenovo ThinkPad T61p 

laptop with a 2.2 Ghz dual-core processor. Figure 2. Depicts 

the placing of EEG-cap on a person’s scalp. 
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Fig.2 EEG cap placing on scalp 

 

2.3. Stimuli and task design 

 

A subject’s first session began with a five-minute 

pre-recorded audio introduction explaining the experiment. It 

then consisted of 12 runs: 3 of one condition, 3 of the other 

condition, 3 more of the first condition, and 3 more of the 

second. In our case subjects are asked to hear the sounds and 

to imagine the same as per the instructions. The pre-recorded 

instructions were not played in the second session unless the 

subject asked to hear them. 

 

Each run consisted of 25 trials. Each trial lasted 

around 5 s in total (including a few seconds’ rest) and 

consisted of an attempt to listen to only the stimuli in the left 

earphone (toselect ‘no’) or only the stimuli in the right 

earphone (to select ‘yes’). 

 

In the Words condition, the left stream consisted of a 

synthesized male voice saying ‘no’ twenty five times. 

Randomly on each trial, 1, 2 or 3 out of the last 5 ‘no’ stimuli 

were instead target stimuli in which the voice said ‘no’. Here 

all the conditions are given to the subjects randomly i.e., In 

our context we were running 4 different runs and each run of 

25 times so that overall 100 trails were given to the subjects 

randomly each of 25 times and the samples were collected, As 

we are comparing the best out of word stimuli and beep 

stimuli we collect the samples regarding to it.In the process of 

giving it to the subjects a synthesized male voice saying 'yes' 

heard 25times in the trails only in the right stream and the 

same voice saying 'no' heard 25 times in the trails only in the 

left stream. 

 

The Beeps condition was conceptually identical to 

the Words condition, but the standard stimuli were 150 msec 

beeps at 512 Hz (left) or 768 Hz (right), and the target stimuli 

were amplitude-modulated versions of the standard beeps. The 

synthesized vocal cue on each trial was, for example, ‘listento 

<LATERALIZED BEEP> to say ‘yes’.’ 

 

There was no need for subjects to look at a screen. 

We asked them to keep their eyes still during stimulus 

presentation by fixating a spot marked on the wall. 

 

Power spectral density- PSD is calculated by Fourier 

transforming the estimated autocorrelation sequence which is 

found by nonparametric methods. One of these methods is 

Welch's method. The data sequence is applied to data 

windowing, producing modified period grams. The 

information sequence xi (n) is expressed as 

 

 
 

Take iD to be the point of start of the ith sequence. 

Then L of length 2M represents data segments that are formed. 

The resulting output periodgrams give 

 

 
 

Here, in the window function, U gives normalization factor of 

the power and is chosen such that 

 

 
 

Where w (n) is the window function. The average of 

these modified periodgrams gives Welch’s power spectrum as 

follows 

 

 
 

2.4. Signal processing and classification 

 

The signal-processing methods were categorized into 

different stages.First the signal was filtered using equi-ripple 

band pass filter. Features were computed by taking the right–

left difference of the within-trial averages of 600msec epochs. 

We applied wavelet packet decomposition. For n levels of 

decomposition, the WPD produces 2
n
 different sets of 

coefficients (or nodes) as opposed to (3n + 1) sets for the 

DWT. However, due to the down sampling process the overall 

number of coefficients is still the same and there is no 

redundancy. 

 

From the point of view of compression, the standard 

wavelet transform may not produce the best result, since it is 

https://en.wikipedia.org/wiki/Downsampling
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limited to wavelet bases that increase by a power of two 

towards the low frequencies. It could be that another 

combination of bases produce a more desirable representation 

for a particular signal. The best basis algorithm by Coifman 

and Wickerhause finds a set of bases that provide the most 

desirable representation of the data relative to a particular cost 

function (e.g. entropy). 

 

Separate subject-specific classifiers were maintained 

for the two conditions: one for each subject’s Beeps data and 

one for each subject’s Words data. In the first session, 

classifiers were re-trained after every new run of 25 trials. In 

the second session, the final classifier weights from the first 

session were used and kept fixed. 

 

III. RESULTS 

 

3.1. Performance 

 

The main question of our laboratory study was 

whether there was any significant difference in performance 

between the Words and the Beeps stimulus conditions. 

Addresses this question by showing the results of the within-

subject comparison of the two conditions. Each data-point 

represents the data from one subject: points that lie above the 

diagonal indicate better performance in the Words condition 

than in the Beeps, and points below the diagonal indicate 

better performance on Beeps than on Words. 

 

On average, Words narrowly beat Beeps. The mean 

and standard deviation of % correct scores across subjects was 

76.9% ± 11.1 for Words, and 73.0% ± 10.6 for Beeps. 

Neither of these gains was significant at the 5% level in a 

Wilcoxon signed rank test. 

 

Whether a subject performs better in Words or Beeps 

depends very much on the individual. We performed 100 trials 

on each subject collecting the samples, and on each condition 

we performed 25 trials i.e  randomly performing 4 conditions 

of listening to left beep, right beep, a synthesized male voice 

of 'yes' to right ear and the final condition of listening to  

synthesized male voice of 'no' to the left ear. 

 

We also wished to know whether, having trained a 

classifier on one session, we could expect good performance 

on future sessions without the necessity to perform additional 

supervised trials for re-calibration.Finally, we got the accuracy 

of 60% for beep sounds and 70% for word stimuli for 

subject1.For the subject2we got an accuracy of 65%for beep 

sounds and 80% for word stimuli. By this we can directly say 

that for the people who are in locked-in syndrome feel very 

easy for communicating using word stimuli rather than word 

stimuli.  

 

Having established that we can adopt a design based 

on Words stimuli without loss of performance relative to our 

older Beeps design, we then wished to verify that the Words 

approach could work for potential users who were locked in 

shown in figure 3.  
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Fig.3 waveforms of response based on auditory stimuli 

 

Figure3. above shows the wave forms, first waveform 

represents the beep sound on the left ear, second wave form 

represents the beep sound on the right ear, third wave form 

represents the word Yes and the last waveform represents the 

word No.  

 

 

3.2. Features 

 

Figure 4shows the patterns that we can see in the 

responses to Beeps stimuli. Each panel is an eight-channel × 

600 msec image of the epoch following stimulus onset. 

Column(i) is simply the averaged response to all stimuli: left 

stimulus onset is at time 0 and right stimulus onset is at 250 

msec. The colour scale from −4 to +4μV is common to all 

plots in column (i). The primary sensory response, the N1 at a 

latency of 100 msec, appears as a dark stripe at 100 msec 

(elicited by left stimuli) and at 350 msec (elicited by right 

stimuli). This feature is very consistent across subjects—even 

subject M, who was not consistently awake throughout the 

experiment. For some subjects (F and G) it is possible that the 

response in the two ears is different due to an difference 

between the two ears’ sensitivity to sound. 

 

Columns (ii)–(iv) are all contrast plots showing d-

prime measures of signal-to-noise ratio, i.e. the mean 

voltagedifferences divided by standard-deviations of the 

differences, across stimulus epochs. They share a common 

https://en.wikipedia.org/wiki/Entropy
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colour scale of −0.6 to +0.6σ. Column (ii) shows the 

difference between standards and targets in the unattended 

stream, and column(iii) shows the same for the attended 

stream. In both, the N2a component (known as the mismatch 

negativity, or MMN) is visible as a dark stripe at around 200–

250 msec. To some extent in both, although to a greater extent 

in the attended stream (column iii) the P3 response is visible 

as a light feature immediately following the MMN. 

 

Column (iv) contrasts all attended versus all 

unattended stimuli (onset at time 0) and is therefore most 

closely related to BCI performance. Note that this set of 

features is very variable from subject to subject. Although 

some subjects show similar patterns to each other (for 

example, subjects B and D), there are some subjects whose 

patterns appear to have opposite polarity to each other (for 

example, D and G). Such individual differences underscore 

the need for subject-specific classifier training. 

 

The picture looks very different for the Words 

condition. The format and colour scaling are identical. The 

subjects inare now reordered according to their performance in 

the Words condition on day1.Note that the average response in 

column(i) is now much more variable from subject to subject, 

as we mentioned in the introduction. The MMN-P3 pattern is 

no longer consistently visible in the unattended stream 

(column ii) and, although it is visible in the attended stream 

results. (column iii), it is also more variable from subject to 

subject. Note, however, that despite the increased variability 

of the primary sensory responses, the attended-versus-

unattended contrast shows less inter-individual variation than 

it did for Beeps. Many of the subjects, particularly the better-

performing ones, show the same negative feature 300 msec 

after stimulus onset (most visible in subjects B, J, K, G and C) 

although there are still subjects (e.g. D and I) who appear to 

show the opposite polarity while still performing above 

chance. The negative feature at 300 msec is visible during 

H3’s free-selection trials (although not during the cued-

selection trials, during which performance was lower). 

 

IV. DISCUSSION 

 

Our results show that an online binary auditory 

streaming BCI can be built with as few as eight EEG channels, 

and use single trials in which the critical EEG segment is less 

than 4.5 s long, and still achieve 77% correct on average (93% 

for the best subject). We also find that there is no significant 

disadvantage, but rather some non-significant tendency 

towards improved performance, in switching to more-intuitive 

natural stimuli (voices saying ‘yes’ and ‘no’) instead of the 

abstract, unpleasant beeps used in previous studies. 

 

The finding that natural, intuitive stimuli are at least 

as effective as abstract stimuli spurred us to conduct a 

preliminary assessment of the effectiveness of this system 

when used by people in the locked-in state. We presented 

simple yes-or-no questions to two people who could only 

make small, limited muscle movements because of advanced 

amyotrophic lateral sclerosis (ALS). Both subjects were able 

to use the system to answer questions correctly at roughly the 

same level of accuracy that we observed among healthy 

volunteer subjects. This is an encouraging sign that the system 

will translate well to the target user group. 

 

The paradigm was suitable for eliciting and 

examining a number of well-known ERP components in a 

relatively short time, and may therefore be valuable for 

developing a profile of a new user. Such a profile will yield 

useful information about the user’s ability to hear the stimuli, 

hear equally well with both ears, discriminate differences 

between stimuli, and follow instructions for attending to one 

side or another. It may therefore allow preliminary inferences 

to be made about the subject’s state of consciousness and 

perceptual and cognitive state. 

 

While abrupt beep stimuli produced N1, MMN and 

P3 event-related potential (ERP) components that were very 

consistent across subjects, the difference between responses to 

attended and unattended beeps was very variable, even among 

subjects who performed well. Since this difference drives the 

BCI, it is clearly very important to tailor classifier weights 

individually to each subject. By contrast, word stimuli 

produced less-consistent N1, MMN and P3 responses, but the 

difference between attended and unattended stimuli was 

actually more consistent across subjects. The most consistent 

feature of the difference wave was a negative peak around 300 

msec after stimulus onset. The energy of each word stimulus 

was spread out over about 350 msec with a relatively slow 

attack, rather than concentrated within the first 150 msec with 

a very sudden attack, as with the beep stimuli. As a result, the 

effective latency of the crucial negative component should 

perhaps be considered to be smaller than 300 msec—but, for 

the same reason, it is difficult to be certain which of the well-

known ERP components, if any, most closely corresponds to 

it. 

 

Finally, we show that there is a significant loss of 

performance when classifier weights are transferred from 

session to session, which remains as a challenge for the 

development of signal-processing algorithms. We had hoped 

to be able to use these data to develop and examine adaptive 

semi-supervised methods that might help us to transition from 

session to session with minimal loss of performance. 

However, it seems that the current data were unsuitable for an 
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offline examination of this issue. The steady decline in 

performance over the course of the second session can be 

eliminated by updating the classifier after each run, but even 

with supervised re-training, average performance on day 2 

does not increase. So, it seems that our day 2 data are 

inherently noisier than the day 1 data. This is not purely a 

result of using fixed classifier weights, since neither the 6–7 

percentage-point drop in performance, nor the decline as a 

function of time, occurs when evaluating day 1 data using 

fixed weights transferred from day 2 instead of incrementally 

re-trained weights. We examined trends in classifier bias over 

time in the incrementally re-trained data, and also the 

variability of the classifier weights over time, but found no 

obvious difference between day 1 classifier solutions and day 

2 classifier solutions that might explain the differing character 

of the two days’ results. Rather, we suspect that the drop in 

performance from day to day, and the decline as a function of 

time, must result from an online interaction between the use of 

fixed weights and other factors intrinsic to the subject’s state 

(for example, motivation). It seems that even an early 

feasibility test of an adaptive semi-supervised algorithm 

designed to overcome this session-to-session transfer problem 

may require collection of BCI data performed with the 

candidate algorithm running online. 

 

While the current results are in the appropriate 

performance range for comparing accuracy across conditions 

and avoiding ceiling effects, for future practical use we will 

want to increase the absolute level of accuracy above 90% for 

the majority of users. This may potentially be accomplished 

by lengthening the trials, or ideally by using trials whose 

length is determined by a dynamic stopping mechanism. 

Further performance improvements might be expected if 

future studies investigate the effect of changing the speed of 

stimulus delivery, and the effect of user training—the results 

of Hill and Scholkopf¨suggest that the latter in particular may 

be possible because BCI performance is predicted by subjects’ 

accuracy in giving an overt behavioural response to the target-

counting task. 

 

We conclude that our paradigm is a promising 

candidate for a simple, practical BCI system that could be 

used by a locked-in person to communicate ‘yes’ or ‘no’ via 

an intuitive non-visual interface during a conversation with a 

human partner. The value of such non-visual approaches may 

go beyond application to people who cannot see. One of our 

subjects with ALS, who can see a computer screen well and is 

able to use an on-screen keyboard via eyebrow movement, 

welcomed this novel non-visual access method, telling us, ‘my 

eyes get tired, but never my ears.’ This suggests that the 

approach may provide an attractive ergonomic alternative for 

some tasks, even for users who can see well. 
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