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Abstract- For the implementation of low-power FFT 
processor, Split-radix fast Fourier transform (SRFFT) is 
widely used. SRFFT uses the lowest number of arithmetic 
operations amongst all the FFT algorithms. Split-radix FFT 
has the same signal flow graph that of conventional radix-2 
and radix-4 FFT. Therefore, the address generation method 
could also be applied to the SRFFT. In this, a shared-memory 
low-power SRFFT processor architecture is presented. Here, 
it is shown that the SRFFT is computed using radix-4 butterfly 
unit. Dynamic power is saved at the cost of using more 
hardware resources. In this paper, we have increased the 
architecture size, from radix-2 to radix-4 and 2048 point 
complex valued transform, and shown the performance of 
area, power and delay. 
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I. INTRODUCTION 
 

In digital signal processing (DSP) area, fast fourier 
transform (FFT) algorithm plays very essential and 
fundamental role. Since the invention of FFT, various types of 
FFT have been developed, such as radix-2, radix-4 and radix-8 
FFT. In the year 1984, Duhamel and Hollmann [1] invented a 
new variant of FFT algorithm called as split-radix FFT 
(SRFFT). SRFFT requires least number of multiplications and 
additions amongst all the known FFT algorithm. Arithmetic 
operations significantly contribute to overall system power 
consumption, SRFFT is a good candidate for the 
implementation of a low-power FFT processor. 
 
      FFT processors are of two types: pipelined 
processors and shared-memory [2] and [3] processors. 
Pipelines architectures produce high throughputs, but needs 
more hardware resources. Opposite to this, shared-memory 
architecture requires very less hardware resources, but, 
produces slow throughputs. FFT data in radix-2 shared- 
memory architecture are arranged into two memory banks. On 
every clock cycle, two FFT data are given by memory banks 
and one butterfly unit is used to process the data. At the next 
clock cycle, the results are written back to the memory banks 

and  the old data is replaced. This process is limited to the 
shared-memory only. 
 

An efficient address generation scheme for FFT data 
as well as twiddle factors is required in shared-memory 
architecture. Split-radix FFT involves an L-shaped butterfly 
data-path. In this, we show that the SRFFT can be computed 
by using a modified radix-4 butterfly structure.  

 
The remaining paper is organized as follows.  Section  

II  provides the background of complex multiplications 
between the radix-2 FFT and the SRFFT. Section III discusses 
the architecture of the proposed system. Section IV provides 
the implementation and comparison results and Section V 
concludes this  paper. 
 

II. BACKGROUND 
 
A. Conventional Radix-2 FFT processor 
 

 
 
The basic idea behind SRFFT is the radix-2 index 

map to the even-index terms and a radix-4  map to the odd-
index terms. For the even index terms it can be obtained as 
(2). For the odd one’s, it can be obtained as  
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−

  Where k = 0,1,…….N/4. The above formulas produce L-
shaped split-radix butterfly structure. If we have N = 2S point 
FFT, both SRFFT and radix-2 requires S passes to finish the 
computation, as seen in Figs. 1 and 2. The total number of  L 
butterflies for SRFFT  NSR is given by [2] 
 

 
 

 
Fig. 1. Signal flow graph for radix-2 FFT. 

 

 
Fig. 2. Signal flow graph for SRFFT. 

 
Each L butterfly contains two nontrivial complex 

multiplications, and therefore, the total number of nontrivial 
complex multiplications MSR in SRFFT is 

 
MSR = [(3S − 2)2S−1 + (−1)S ]2/9.                  (7) 

   
In the (S − 1)th pass, the number of SR butterfly NS−1 is 
 

NS−1 = [2 + (−1/2)S−2]N/12 .                         (8) 
 
  However, in the (S  1)th  pass,  each  L  butterfly  
does  not contain  any nontrivial twiddle factors and hence, the 
total number of nontrivial multiplications M’SR in SRFFT is  
               

M’SR  = MSR
 – 2NS-1

                                                   (9) 

For the conventional radix-2 FFT, the total number of 
complex multiplications MR2  is   
 

MR2 = 2S−1(S − 1).                                          (10) 
 
B. Shared-Memory Architecture 
 

Fig. 3 shows the architecture of shared-memory 
processor. The RAM and ROM banks, respectively stores the 
FFT data and twiddle factors. It is seen that the flow graph of 
split- radix algorithm is the same as radix-2 FFT therefore, the 
conventional radix-2 FFT data address generation methods 
could also be applied to SRFFT.  
 

 
Fig. 3.    Shared-memory architecture 

 

 
Fig. 4.    Modified butterfly structure. 

 
C. Modified Radix-4 butterfly Unit 
 

 We have proposed a modified butterfly unit which is 
shown in Fig. 4. The SRFFT has multiplications of both the 
upper and lower legs. For the unnecessary switching activity, 
we have put the clock gating registers in the multiplier path 
and a few registers are placed at the address port of memory 
banks to synchronize the whole design. The idea to use this 
architecture is to know about which butterflies need no 
multiplications, trivial multiplications those are swapped 
one’s, and non-trivial multiplications. 
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E. Address Generation of Twiddle Factors 
            

Fig. 2 shows the flow graph for 16-point SRFFT. 
There are two types of twiddle factor j and Wn. Operations 
involving j are called trivial multiplications and those 
involving Wn are said to nontrivial. Each area surrounded by 
dashed line represents one L block [8]. And there are total five 
L blocks for a 16-point SRFFT. 
 

III. PROPOSED SYSTEM 
 

In this paper, we have increased the size of radix-2 to 
radix-4, and also increased the point 1024 to 2048, with 
complex valued transform, and show the performance of area, 
power and delay. The FFT uses Radix-4 burst I/O engine to 
process butterfly unit [6]. Data is separately loaded and 
unloaded from calculating the transform.  
 

Data I/O and processing are not simultaneous. The 
data gets loaded after FFT is started. After the loading of a full 
frame, the core computes the transform. When the 
computation has finished, the data can be unloaded, but cannot 
be loaded or unloaded during the calculation process. The data 
loading/unloading processes gets overlapped if the data is 
unloaded in digit reversed order. This architecture uses lowest 
resource than the Pipelined, Streaming I/O architecture, but a 
longer transform time. Data and phase factors can be stored in 
RAM. 
 

 
Fig. 5 Proposed radix-4 FFT system 

  
A. Block Diagram of Proposed System 
 

 
Fig 6. Block Diagram of Proposed System 

 
In this system the input is given from the NCO to FFT Block 
of Xn.  NCO generates the sine signal. 
 
C. Numerical Control Oscillator 
 

 
Fig. 7 Basic Numerical Control Oscillator 

 
   A basic NCO consists of a lookup table containing 
waveform data (usually a sinusoid) for exactly one period and 
a counter for indexing into the table. The rate of change of the 
counter determines the frequency of the output wave, in 
normalized units, because the output wave still exists in the 
discrete time domain. The counter is referred to as a ‘phase 
accumulator,’ or simply an accumulator, because it stores the 
current value of the sine’s phase. In this, one of the simplest 
explanations of how an NCO operates is that it tracks the 
argument to sin(2πfn) in a counter and uses a look up table to 
calculate the value of sin(2πfn).  
 
D. Radix-4 Butterfly Calculation 
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Fig. 8. Butterfly Calculation 

 
To save computations the radix-4 decimation-in-

frequency FFT arranges every fourth output sample into 
shorter-length DFTs. The radix-4 FFTs require only 75% as 
many complex multiplies as the radix-2 FFTs. The DFT  sums 
over all groups of the every fourth discrete-time-index 
n=[0,4,8,…,N−4],n=[1,5,9,…,N−3],n=[2,6,10,…,N−2]. 
 

Mathematical manipulation shows that the length-N    
DFT can be computed as the sum of the outputs of four 
length-N4 DFTs, of the even-indexed and odd-indexed       
discrete-time samples, respectively, The figure shows that 16-
point FFT needs two operations and a full sequence operation 
in all, while 256- points FFT needs four operations and a full 
sequence operation in all. 
 
E. Optimization of Complex Multiple 
 

From Fig.2 it is observed that complex multiplier 
plays an important role in butterfly calculation unit. 
Traditional complex multiplier has been obtained as follows.  
 
( a+jb)(c+ jd)=ac-bd+j(ad+bc)                        (11) 
 

Where a, b, c and d are four independent real 
numbers, four multipliers and two adders are used. After doing 
some optimization deformation, (11) can be moved to (12) as 
follows, 

 
(a+jb)(c+jd) = ac-bd + j(ad+bc)  = ac+bc - (bc+bd) + j(bc+ac-

ac+ad) = c(a+b) - b(c+d) + j[(a+b)c-a(c-d)]                          
(12) 

 
IV. IMPLEMENTATION AND RESULTS 

 
The proposed design is compared with the previous 

work. The FFT’s are synthesized in Xilinx 14.7 targeting for 
Spartan-6 XC6SLX4 device. The simulation is done using 
Modelsim software. Power is measured by Xilinx Xpower 
analyzer. For a 2048 the proposed algorithm could achieve 
lower power than existing system. The reduction in dynamic 
power consumption is due to the fact that the ROM banks and 
multipliers are enabled only when necessary. The SRFFT has 

the irregular signal flow graph. A software solution is given in 
[9] for the indexing problem. The proposed architecture 
provides more efficiency, less delay and burst mode data 
transfer. 
 

 
 
                                  V.CONCLUSION 
 

 In this topic, a shared-memory-based SRFFT 
processor is presented. The proposed methodology reduces the 
dynamic power consumption at the cost of more hardware 
resources. SRFFT has the least number of multiplications 
compared to other types. Compared to radix-2, radix-4 is more 
suitable to use. 
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