
IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 806 www.ijsart.com

Split-Radix FFT Processors Using Radix-4 Butterfly
Units

Sonali D. Patil 1, Manish Sharma 2

1, 2Electronics and Telecommunication
1, 2D.Y. Patil College of Engineering, Akurdi, Pune, India

Abstract- For the implementation of low-power FFT
processor, Split-radix fast Fourier transform (SRFFT) is
widely used. SRFFT uses the lowest number of arithmetic
operations amongst all the FFT algorithms. Split-radix FFT
has the same signal flow graph that of conventional radix-2
and radix-4 FFT. Therefore, the address generation method
could also be applied to the SRFFT. In this, a shared-memory
low-power SRFFT processor architecture is presented. Here,
it is shown that the SRFFT is computed using radix-4 butterfly
unit. Dynamic power is saved at the cost of using more
hardware resources. In this paper, we have increased the
architecture size, from radix-2 to radix-4 and 2048 point
complex valued transform, and shown the performance of
area, power and delay.

Keywords- Butterfly unit, low power, radix-4, split-radix fast
Fourier transform (SRFFT), twiddle factors

I. INTRODUCTION

In digital signal processing (DSP) area, fast fourier
transform (FFT) algorithm plays very essential and
fundamental role. Since the invention of FFT, various types of
FFT have been developed, such as radix-2, radix-4 and radix-8
FFT. In the year 1984, Duhamel and Hollmann [1] invented a
new variant of FFT algorithm called as split-radix FFT
(SRFFT). SRFFT requires least number of multiplications and
additions amongst all the known FFT algorithm. Arithmetic
operations significantly contribute to overall system power
consumption, SRFFT is a good candidate for the
implementation of a low-power FFT processor.

 FFT processors are of two types: pipelined
processors and shared-memory [2] and [3] processors.
Pipelines architectures produce high throughputs, but needs
more hardware resources. Opposite to this, shared-memory
architecture requires very less hardware resources, but,
produces slow throughputs. FFT data in radix-2 shared-
memory architecture are arranged into two memory banks. On
every clock cycle, two FFT data are given by memory banks
and one butterfly unit is used to process the data. At the next
clock cycle, the results are written back to the memory banks

and the old data is replaced. This process is limited to the
shared-memory only.

An efficient address generation scheme for FFT data
as well as twiddle factors is required in shared-memory
architecture. Split-radix FFT involves an L-shaped butterfly
data-path. In this, we show that the SRFFT can be computed
by using a modified radix-4 butterfly structure.

The remaining paper is organized as follows. Section

II provides the background of complex multiplications
between the radix-2 FFT and the SRFFT. Section III discusses
the architecture of the proposed system. Section IV provides
the implementation and comparison results and Section V
concludes this paper.

II. BACKGROUND

A. Conventional Radix-2 FFT processor

The basic idea behind SRFFT is the radix-2 index

map to the even-index terms and a radix-4 map to the odd-
index terms. For the even index terms it can be obtained as
(2). For the odd one’s, it can be obtained as

IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 807 www.ijsart.com

−

 Where k = 0,1,…….N/4. The above formulas produce L-
shaped split-radix butterfly structure. If we have N = 2S point
FFT, both SRFFT and radix-2 requires S passes to finish the
computation, as seen in Figs. 1 and 2. The total number of L
butterflies for SRFFT NSR is given by [2]

Fig. 1. Signal flow graph for radix-2 FFT.

Fig. 2. Signal flow graph for SRFFT.

Each L butterfly contains two nontrivial complex

multiplications, and therefore, the total number of nontrivial
complex multiplications MSR in SRFFT is

MSR = [(3S − 2)2S−1 + (−1)S]2/9. (7)

In the (S − 1)th pass, the number of SR butterfly NS−1 is

NS−1 = [2 + (−1/2)S−2]N/12 . (8)

 However, in the (S 1)th pass, each L butterfly
does not contain any nontrivial twiddle factors and hence, the
total number of nontrivial multiplications M’SR in SRFFT is

M’SR = MSR
 – 2NS-1

 (9)

For the conventional radix-2 FFT, the total number of
complex multiplications MR2 is

MR2 = 2S−1(S − 1). (10)

B. Shared-Memory Architecture

Fig. 3 shows the architecture of shared-memory
processor. The RAM and ROM banks, respectively stores the
FFT data and twiddle factors. It is seen that the flow graph of
split- radix algorithm is the same as radix-2 FFT therefore, the
conventional radix-2 FFT data address generation methods
could also be applied to SRFFT.

Fig. 3. Shared-memory architecture

Fig. 4. Modified butterfly structure.

C. Modified Radix-4 butterfly Unit

 We have proposed a modified butterfly unit which is
shown in Fig. 4. The SRFFT has multiplications of both the
upper and lower legs. For the unnecessary switching activity,
we have put the clock gating registers in the multiplier path
and a few registers are placed at the address port of memory
banks to synchronize the whole design. The idea to use this
architecture is to know about which butterflies need no
multiplications, trivial multiplications those are swapped
one’s, and non-trivial multiplications.

IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 808 www.ijsart.com

E. Address Generation of Twiddle Factors

Fig. 2 shows the flow graph for 16-point SRFFT.
There are two types of twiddle factor j and Wn. Operations
involving j are called trivial multiplications and those
involving Wn are said to nontrivial. Each area surrounded by
dashed line represents one L block [8]. And there are total five
L blocks for a 16-point SRFFT.

III. PROPOSED SYSTEM

In this paper, we have increased the size of radix-2 to
radix-4, and also increased the point 1024 to 2048, with
complex valued transform, and show the performance of area,
power and delay. The FFT uses Radix-4 burst I/O engine to
process butterfly unit [6]. Data is separately loaded and
unloaded from calculating the transform.

Data I/O and processing are not simultaneous. The
data gets loaded after FFT is started. After the loading of a full
frame, the core computes the transform. When the
computation has finished, the data can be unloaded, but cannot
be loaded or unloaded during the calculation process. The data
loading/unloading processes gets overlapped if the data is
unloaded in digit reversed order. This architecture uses lowest
resource than the Pipelined, Streaming I/O architecture, but a
longer transform time. Data and phase factors can be stored in
RAM.

Fig. 5 Proposed radix-4 FFT system

A. Block Diagram of Proposed System

Fig 6. Block Diagram of Proposed System

In this system the input is given from the NCO to FFT Block
of Xn. NCO generates the sine signal.

C. Numerical Control Oscillator

Fig. 7 Basic Numerical Control Oscillator

 A basic NCO consists of a lookup table containing
waveform data (usually a sinusoid) for exactly one period and
a counter for indexing into the table. The rate of change of the
counter determines the frequency of the output wave, in
normalized units, because the output wave still exists in the
discrete time domain. The counter is referred to as a ‘phase
accumulator,’ or simply an accumulator, because it stores the
current value of the sine’s phase. In this, one of the simplest
explanations of how an NCO operates is that it tracks the
argument to sin(2πfn) in a counter and uses a look up table to
calculate the value of sin(2πfn).

D. Radix-4 Butterfly Calculation

IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 809 www.ijsart.com

Fig. 8. Butterfly Calculation

To save computations the radix-4 decimation-in-

frequency FFT arranges every fourth output sample into
shorter-length DFTs. The radix-4 FFTs require only 75% as
many complex multiplies as the radix-2 FFTs. The DFT sums
over all groups of the every fourth discrete-time-index
n=[0,4,8,…,N−4],n=[1,5,9,…,N−3],n=[2,6,10,…,N−2].

Mathematical manipulation shows that the length-N
DFT can be computed as the sum of the outputs of four
length-N4 DFTs, of the even-indexed and odd-indexed
discrete-time samples, respectively, The figure shows that 16-
point FFT needs two operations and a full sequence operation
in all, while 256- points FFT needs four operations and a full
sequence operation in all.

E. Optimization of Complex Multiple

From Fig.2 it is observed that complex multiplier
plays an important role in butterfly calculation unit.
Traditional complex multiplier has been obtained as follows.

(a+jb)(c+ jd)=ac-bd+j(ad+bc) (11)

Where a, b, c and d are four independent real
numbers, four multipliers and two adders are used. After doing
some optimization deformation, (11) can be moved to (12) as
follows,

(a+jb)(c+jd) = ac-bd + j(ad+bc) = ac+bc - (bc+bd) + j(bc+ac-

ac+ad) = c(a+b) - b(c+d) + j[(a+b)c-a(c-d)]
(12)

IV. IMPLEMENTATION AND RESULTS

The proposed design is compared with the previous

work. The FFT’s are synthesized in Xilinx 14.7 targeting for
Spartan-6 XC6SLX4 device. The simulation is done using
Modelsim software. Power is measured by Xilinx Xpower
analyzer. For a 2048 the proposed algorithm could achieve
lower power than existing system. The reduction in dynamic
power consumption is due to the fact that the ROM banks and
multipliers are enabled only when necessary. The SRFFT has

the irregular signal flow graph. A software solution is given in
[9] for the indexing problem. The proposed architecture
provides more efficiency, less delay and burst mode data
transfer.

 V.CONCLUSION

 In this topic, a shared-memory-based SRFFT
processor is presented. The proposed methodology reduces the
dynamic power consumption at the cost of more hardware
resources. SRFFT has the least number of multiplications
compared to other types. Compared to radix-2, radix-4 is more
suitable to use.

REFERENCES

[1] P. Duhamel and H. Hollmann, “‘Split radix’ FFT

algorithm,” Electron. Lett., vol. 20, no. 1, pp. 14–16, Jan.
1984.

[2] M. A. Richards, “On hardware implementation of the
split-radix FFT,” IEEE Trans. Acoust., Speech Signal
Process., vol. 36, no. 10, pp. 1575–1581, Oct. 1988

[3] J. Chen, J. Hu, S. Lee, and G. E. Sobelman, “Hardware
efficient mixed radix-25/16/9 FFT for LTE systems,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no.
2, pp. 221–229, Feb. 2015.

[4] L. G. Johnson, “Conflict free memory addressing for
dedicated FFT hardware,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 39, no. 5, pp. 312–316,
May 1992.

[5] D. Cohen, “Simplified control of FFT hardware,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 24, no. 6, pp.
577–579, Dec. 1976.

[6] N. Amarnath Reddy, D. Srinivasa Rao and J. Venkata
Suman “Design and Simulation of FFT Processor Using
Radix-4 Algorithm Using FPGA,”International Journal of
Advanced Science and Technology, vol. 61, pp.53-62,
2013.

[7] Z. Qian, N. Nasiri, O. Segal, and M. Margala, “FPGA
implementation of low-power split-radix FFT processors,”
in Proc. 24th Int. Conf. Field Program. Logic Appl.,
Munich, Germany, Sep. 2014, pp. 1–2.

IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 810 www.ijsart.com

[8] A. N. Skodras and A. G. Constantinides, “Efficient
computation of the split-radix FFT,” IEE Proc. F-Radar
Signal Process., vol. 139, no. 1, pp. 56–60, Feb. 1992.

[9] H. V. Sorensen, M. T. Heideman, and C. S. Burrus, “On
computing the split-radix FFT,” IEEE Trans. Acoust.,
Speech Signal Process., vol. 34, no. 1, pp. 152–156, Feb.
1986.

[10] J. Kwong and M. Goel, “A high performance split-
radix FFT with constant geometry architecture,” in Proc.
Design, Autom. Test Eur. Conf. Exhibit. (DATE),
Dresden, Germany, Mar. 2012, pp. 1537–1542.

[11] W.-C. Yeh and C.-W. Jen, “High-speed and low-
power split-radix FFT,” IEEE Trans. Signal Process.,
vol. 51, no. 3, pp. 864–874, Mar. 2003.

