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Abstract- Electric vehicles are becoming an alternative to 

Vehicles powered by an internal combustion engine. This 

leads to environmental benefits, but these PEVs represent new  

challenges  facing the  power grid.  Therefore, the power grid  

must  be prepared  for these  challenges. 

 

This paper present 24-hour charging load profile of 

plug-in Electric vehicle (PEV) using Queuing analysis. PEV 

has varying arrival rates over the day. PEV charging depend 

on customer convenience during peak hour and unlike 

charging prices. Main contribution of paper is to model PEV 

service time by considering Vehicle size, battery, 
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NOMENCLATURE 

 

Sets and Indices 

 

i, j    Index for buses 

k      Index for time 

l       Set of SOC intervals l . {1, 2, 3,4} 

N     Total number of buses in the system 

n      Set of all possible options of simultaneous 

charging of PEVs, for a given N0 

n    {0, 1, 2, 3, …, N0} 

s       Index for stochastic scenario 

y      Index for PEV class 

 

Parameters 

 

CBat      Total PEV battery capacity, kWh 

DD       Daily driven miles by PEV, mile  

DDMax Maximum driving distance until PEV battery is  

fully discharged, mile  

EC       Daily recharge energy, kWh  

EM      Energy consumption of PEV battery per mile  

driven, kWh/mile 

  I        Charging current, A  

Imax   Charging current level, A 

 

 

M1/M2/N0    Queuing model, M1 denotes PEV arrival rate  

                       (Minute) / M2 denotes PEV charging time  

                       (Minute) / N0 is the number of PEVs being  

charged simultaneously at a given hour  

 

 

NCap Maximum number of PEVs that can be charged  

simultaneously at the station  

 

P(n)       Probability of n 

µ          Mean service time, minute  

   Mean of inter-arrival time, minute  

  Occupation rate of PEV at charging station 

 

I. INTRODUCTION 

 

   Because of environmental concerns associated  with 

vehicles driven by Internal Combustion Engine, there is rapid 

growth of EVs in the market. EVs play a significant role in 

reducing of air  pollution and  emission  of  greenhouse gases. 

Demand for Energy has been rapidly increasing which 

imposes a large burden on existing energy resources. 

 

Electrical vehicle technology is growing rapidly this 

will cause burden on  system peak demand and thus over 

loading distribution feeders. 

 

Coordinated charging should be implemented to 

avoid peak load, losses, voltage drop, Transformer ageing. 

While uncoordinated charging of 10% penetration can cause 

unacceptable variation. 

 

Charging demand of PEV is affected by different 

factors such as the number of PEV being charged 

simultaneously, their charging level, battery capacity and 

charging duration. 

 

Monte Carlo simulation (MCS) is used to generate 

virtual trip distance of different vehicles and formulate annual 

energy consumption model 

The Model Predictive Control (MPC) has applied to 

various operation and control problem of smart grid to 
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consider effect of uncertainties. In a prediction based real time 

charging method has been proposed that consider effect of 

future penetrating vehicle into the grid. 

 

Most of the work on PEV charging demand modeling 

that use queuing analysis, consider the arrival rates as a poison 

process, which have a constant arrival rate. Only a few have 

arrival as a non-homogeneous process. 

 

It should be noted during process of Fast charging, 

the charging power typically starts at high rate and drops as 

per the  battery  State of Charge (SOC)  approaches  full 

capacity, 

 

As per the battery charging behavior (BCB) of PEV 

this affect charging time and need to be considered in load 

model, the main objective of this paper are: 

 

 Estimate number of vehicle on the road and construct 

PEV arrival rate profile at charging station and also 

considering the charging price. 

 Using the arrival rate profile, the service time of PEV 

using BCB’s develop to determine 24 hour charging 

demand profile at charging station. 

 The arrival of customer has been modeled as 

continuous and random process considering two 

different arrival patterns ,customer convenience and 

charging price  

 The queuing model proposed in this paper consider 

for the first time, a detailed representation of BCB of 

PEVs. 

 

II. MATHEMATICAL MODEL 

 

A. PEV Queuing Model 

 

 Estimation of  total charging power of PEVs. The 

PEV customers are considered to be served using M1/M2/N0 

at a PEV charging station, where M1 denotes the arrival rate 

which varies from hour to hour of the day and is modeled 

as,M2 denote  the service time includes the waiting time and 

the charging time. The service time is modeled considering the 

PEV BCB. Poisson process is a continuous process that counts 

the number of arrivals in a given time interval where the time 

between each pair of consecutive arrivals has an exponential 

distribution with (mean of inter-arrival time) λ and each of 

these inter-arrival times are assumed to be independent of 

other inter-arrival times. It is useful for modeling arrival 

thatoccur  independently from each other. Since the arrival of 

PEVs at the charging station is a continuous-time 

stochasticprocess. In accordance to M1/M2/N0 queuing 

analysis  the probability of the number of PEVs charging 

simultaneously at an hour is modeled as a discrete distribution, 

as follows 

 

          n=1, 2, 3….N0         (1) 

 

Where 

 

(0) = (2) 

 

is occupation rate of  PEV charging station 

 

       (3) 

 

B. PEV Battery Charging Behavior (BCB) Model           

 

The charging service time is affected by different 

factors, such as the charging level, battery capacity, battery 

SOC, and PEV BCB. One of the main objectives of PEV 

customers is to have fast charging at a charging station i.e., 

minimum service time. In order to achieve this, the BCB of 

each class of PEVs are considered; for example, the battery of 

a typical Compact PEV during fast charging attains an SOC of 

50% in 10 minutes, 75% in 15 minutes, beyond which there is 

a drop in charging rate, as shown in Fig.1. Considering a 

maximum required SOC for the PEVs to be 85%, it can be 

noted from Fig.1 that this is attained in 22 minutes, for 

Compact PEVs, and therefore, the service time depends on the 

BCB of the PEV class. 

 

 
Fig.1: Typical BCB of a Compact PEV during fast charging 

 

The SOC of battery can be obtained as follows: 
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SOC y   =   1 -     ……..y                (4) 

 

and Following condition are imposed, from above BCB of 

PEV in fig 1 

 

0.2    if   soc ≤ 0.2 

SOC y =   SOC y   if   0.2 <soc ≤ 0.85 

0.85   if   soc> 0.85               (5) 

 

Once the SOC of a PEV is known, the required 

charging time of PEV, given by T, is obtained from BCB 

using following relation  

 

T= (Max time to set SOC)-(SOC-lowest SOC)*slope(6) 

 

 (7) 

 

Where Imax and V are dependent on the charging level 

and hence fixed    

 

Ecy is daily recharge energy of PEV  

 

= (8) 

 

EMy is the energy consumption by a PEV class Y, per mile 

DDMax Maximum driving distance is calculated as  

 

 (9) 

 

Therefore, the total charging power for N0 number of PEVs 

being charged simultaneously at time k is given as follows: 

 

(10) 

 

The total expected PEV charging demand at time k for all 

possible values N0  

 

E (11) 

 

III. CASE STUDY 

 

A. Distribution System and Mobility Data 

 

The analysis reported in this paper  is carried out 

considering the IEEE 69-bus radial distribution system, whose 

single line- diagram is given in Fig 2. The distribution system 

is supplied through the substation at bus-1. It is assumed that   

PEV charging station is located at bus-59. In this paper, Level-

3 charging is considered since high power level charging is 

preferred at PEV charging stations, and thus IMax= 63 amps 

and V = 400 volts. 

 

Distribution systems are generally balanced by using 

various load balancing schemes, and hence can be represented 

by single phase equivalents. The unbalanced nature of 

distribution system  is more  prevalent at  the  end-user level 

(residential customer level)  but  since  this  work considers  a  

PEV charging  station  load  model, it is assumed to be 

connected at 12.66 kV  feeder level and at  this voltage level, 

the loads are assumed to be balanced  three-phase. 

 

With these assumptions, a single line-to-neutral 

equivalent circuit for the feeder has  been  used, and  a three 

phase distribution system is represented by a single-phase 

equivalent. 

 

 
Fig 2: 69-Bus radial distribution system 

 

Waterloo Region TTS data and  Ontario, Canada, 

TOU winter tariff  rates are used  in order to obtain  realistic 

results. Survey conducted  every five years  in the region. In  

this work the 2011  TTS for Waterloo Region is used  which 

considers of 43,165  unique trips. Fig. 3 presents the winter 

TOU rates of Ontario over a day. The distribution of vehicles 

on the road over a 24 hour period is calculated using the same 

TTS data and shown in Fig. 3. 
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Fig.3: Distribution of vehicles on the road and Ontario winter 

TOU 

 

B. Modeling Daily Driven Miles and PEV Arrival Rate,M1 

 

Fig 4 shows the distribution of daily miles driven on  

all vehicle driving days  based on the TTS data. So, the daily 

driven miles by the PEVs DDy, is modeled as a lognormal 

distribution in this work, and  is  given by:  

 

(12) 

 

where  μMand  σMare the mean and the variance of the 

lognormal distribution, respectively. 
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Fig.4: Distribution of daily driven distance per vehicle as per 

TTS 

 

In this paper, four classes of PEVs are considered- 

 

Compact, Economy, Mid-Size, and Light Truck/SUV, 

to present a realistic picture of the PEV charging station load. 

The queuing algorithm is initiated by randomly generating N0. 

The PEV arrival rate M1 depends on the hour ofday and 

customer  behavior   pattern. Under a rational behavior 

assumption, two  M1profiles  are modeled  as follows:  

 

 Scenario-1: considers that the PEV arrival rate depends on 

customer convenience,  i.e., the number of vehicles on the 

road.  When the number  of vehicles on the road  is high 

the arrival rate is  high, irrespective of the price or Local 

distribution company  operational  constraints. In this 

paper, using TTS data, a relationship between vehicles on 

the road and PEV arrival rate at the charging station is 

assumed. As shown in Fig.5, if the percent of vehicles on 

the road is up to 4%, at any hour, a uniformly distributed 

PEV arrival in the range of 1 to 4 PEVs/hour is assumed, 

and similarly 5 to 11 PEVs are assumed  to  arrive if  4-

7% of  vehicles are on the road, and so on. For example, 

at  hour 7, about  7% of the vehicles  are on the road (see 

Fig.3) and consequently, 5 to 11 PEVs may arrive for 

charging (as per Fig.5), on the other hand, at hour 17 , 

9.3% of the vehicles are on the road, and it is assumed  

that  12 to 17  PEVs may  arrive for charging. 

 Scenario-2: considers that the PEV arrival rate depends on 

the charging price, i.e., more PEVs will charge when the 

price is low, and vice versa. In this scenario a relationship 

between Ontario’s winter TOU price and PEV arrival rate 

at the charging station is assumed. As shown in Fig.7, if 

the charging price ranges between 7.5 and 11.2 cents, at 

any hour, a uniformly distributed PEV arrival in the range 

of 5 to 11 PEVs/hour is assumed, and similarly 12 to 17 

PEVs are assumed to arrive if the charging price is in the 

range of 11.2 to 13.5 cents. For example, at hour 6, the 

charging price is 13.5 cents (see Fig.3) and consequently, 

only 1 to 4 PEVs may arrive for charging (as per Fig.6). 

 
Fig.5: Relationship between vehicles on road and arrival rate 

of PEVs 

 
Fig.6: Relationship between TOU tariff and arrival rate of 

PEVs 
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Arrival rates modeled in this paper are based on 

assumption of number of vehicle on the road, charging price, 

and how PEV’s arrive for charging at charging station. Such 

assumptions are necessary in order to understand the impact of 

PEV charging on the distribution grid but, need be validated 

with realistic data from ground level surveys. 

 

As per Scenario-2, the arrival rate would be high at 

night since the PEV charging price is low at these hours. 

However, considering charging during night is low, because of 

customer inconvenience, the arrival rate is modified 

appropriately, as shown in Fig. 7, where the removed arrival 

data of early hours are indicated. Also to be noted that since 

home charging has been ignored in this work, there will be no 

effect on the early morning arrival rates. The two arrival rate 

profiles, as discussed above, are modeled as non-

homogeneous Poisson processes with mean λkwhich is the 

time dependent number of expected car arrivals at a charging 

station throughout the day. 

 

 
Fig.7: Number of PEVs arriving per hour at the charging 

station (Arrival rate) 

 

C. Simulation of the Queuing Process 

 

Arrival rate scenario is selected, for every value of  

N0, the following steps are repeated:  

 

 Assume PEV class are commonly distributed over the 

sample set N0 , PEV class are randomly selected from 

among four different classes 

 The battery capacity for each PEV class is uniformly 

distributed  between  their upper and  lower  limits.  

 Calculate battery SOC for each PEV from its daily 

recharge energy, which depends on different factors such 

as the daily driven miles, and battery capacity.  

 Determine the time required for charging for each PEV, 

using the BCB. 

 Determine the total charging power arising at the charging 

station, for the total  N0PEVs using . 

 

Following are the parameters used in this paper to simulate the 

queuing process of PEVs charging at a charging station: 

 

 PARAMETERS FOR SIMULATION OF 

QUEUING MODEL 

 

 
 

IV. RESULTS AND DISCUSSIONS 

 

A. PEV Charging Load Using Queuing Analysis  

 

      In this section the effect of PEV charging on the 

distribution system performance is examined. Queuing 

analysis is used to model the 24-hour PEV charging demand at 

the charging station. The objective is to determine the optimal 

distribution system operation considering PEV charging 

demand while minimizing the system losses. The probability 

distribution of N0 is obtained from (1) and shown in Fig.9 

which is used as an input to the M1/M2/N0queuing model. 

Different NCapvalues are examined within the proposed 

queuing model and it is noted that when NCapis high, the 

probability of simultaneously charging of NCapnumber of 

PEVs, i.e., P (NCap) is very low, as seen from Fig.9. Because 

of this low probability, there is insignificant impact on the 

total expected charging demand for high values of NCap. By 

various trial runs it is noted that beyond NCap=17, the effect 

on expected charging demand does not change significantly 

and hence, NCap=17 was chosen for the paper. 
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Fig.8 : Probability distribution of N0 as input to M1/M2/N0 

queuing model 

 

    It is noted from Fig.10 that the expected PEV 

charging demand is low for low arrival rates (M1 = 40, i.e., a 

PEV arriving every 40 minutes) and. As the arrival rate 

increases, i.e., M1 = 25 (a PEV arriving every 25 minutes), 

and then for M1 = 10, the expected PEV charging demand 

increases and the distribution pattern becomes a standard 

normal distribution with a high mean value of N0. 

   

The expected charging demand of PEVs at a specific 

hour can be obtained, as shown. It is seen that when the arrival 

rate is high, the expected load is high, and the discrete 

distribution pattern of the PEV charging demand as a function 

of N0 is normally distributed. 
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Fig.9: Expected PEV charging demand for some typical 

arrival rates 

 

  For example, at hour-8 the PEV arrival rate is high 

for Scenario-1 (Fig.10) while at hour-22 it is high for 

Scenario-2 (Fig.11), and the discrete distribution patterns are 

accordingly normally distributed at these hours, for the 

respective scenarios. When PEV charging takes place at hour 

10 (Fig.12), which is not the most convenient hour and neither 

the cheapest hour for customers to charge their vehicles, both 

scenarios have almost similar distributions. 
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Fig.10: Expected PEV charging demand at hour-08 for 

different N0 

 

  The overall expected PEV charging demand obtained 

for both Scenarios, presented in Fig.13, shows that the PEV 

charging demand increases in both scenarios as compared to 

the Base Case. In Scenario-1 the charging demand appears 

during the peak price hours since these hours are more 

convenient for customers, while in Scenario-2 the increase is 

significant during off-peak price hours. It is also noted that as 

N0 increases, the expected charging demand will gradually 

merge with the Base Case load profile as the probability of a 

large N0 is low. 
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Fig.11: Expected PEV charging demand at hour-22 for 

different N0 

 

 

0

0.01

0.02

0.03

0.04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 
Fig.12: Expected PEV charging demand at hour-10 for 

different N0 
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Fig.13: Total PEV expected charging demand for all queuing 

model 

 

B. Impact of BCB on Service Time and chargingdemand 

     

Since minimizing the charging time and wait time for 

PEVs at the charging station is one of the main objectives, the 

PEV charging time (i.e., the service time) is modeled 

considering the BCB. In queuing analysis based approaches, 

charging time is typically modeled using exponential 

distributions with upper and lower limits randomly assigned to 

each PEV. It is seen that from Fig.14 that when BCB is 

considered, all the PEVs are served within the hour they arrive 

at the station, there is no overflow across the hour, and there is 

no waiting time. 

 

 
Fig.14: PEVs charging overflow, waiting: considering BCB 

 

when BCB is not considered, all the EVs will be 

allotted with full charging time i.e 60 minutes which results in 

overflow. These service overflows will be transferred to the 

next hour, which may lead to waiting times if the total number 

of PEVs to be served, exceeds NCap. The effect of 

considering the BCB on the PEV demand profile is quite 

noticeable, when the BCB model is not considered the 

charging demand is higher at certain hours because of the 

waiting.  

 

In order to introduce a service overflow and waiting 

time for PEVs when considering BCB of the PEVs, it is now 

assumed that the arrival rate is greater than the station 

capacity, i.e., λ >NCap. The service overflow and PEVs 

waiting are significantly increased when BCB is not 

considered. It is also noted that the average waiting time is 

significantly reduced when BCB is considered as compared to 

the case without BCB (Fig. 15) which is in line with the 

preferences of customers for fast charging. Finally, Fig.16 

shows the effect of BCB on total charging demand when the 

arrival rate is more than e station capacity. Comparing this 

profile with Fig.18, it is noted that the charging demand is 

significantly affected by the BCB, and also when λ >NCap. 

 

 
Fig.15: PEVs charging overflow: waiting not considering 

BCB 

 

 
Fig.16: Effect of BCB on total charging demand 

 

 
Fig.17: PEVs charging, overflow, waiting: considering BCB, 

λ >NCap 
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Fig.18: PEVs charging, overflow, waiting: not considering 

BCB, λ >NCap 

 

C. Impact of PEV Charging on Distribution System   

 

The Base Case is the case when no PEVs are present in the 

system. Analyses are then carried out to examine the impact of 

PEV charging loads considering:  

 

Uncontrolled operation of distribution system- in this case 

power flow analysis is carried out to examine the impact of 

PEV charging loads appearing on the distribution feeder while 

the LDC takes no operational and control actions to manage 

the system voltages.  

 

V. CONCLUSIONS 

 

In this paper, a queuing analysis based methodology 

for modeling the 24-hour charging demand of PEVs at a 

charging station was presented. Four different PEV classes 

with their appropriate parameters that determined the charging 

behavior were taken into consideration. The proposed queuing 

model considered the arrival of PEVs as a non-homogeneous 

Poisson process with different arrival rates at different times 

of the day and the PEV BCB was also considered. Different 

arrival rate patterns were considered for different groups of 

customers- one based on customer convenience and the other 

based on PEV charging price which were estimated from 

Waterloo Region TTS data and Ontario TOU rates 

respectively. A novel feature of the proposed PEV charging 

load model was that a piece-wise linear function of the SOC 

was used to represent the BCB of PEVs, and hence determine 

the charging time which then integrated with the M1/M2/N0 

queuing model. PEV SOC and BCB were found to be a 

sufficient method in order to determine appropriate PEV 

charging time. The developed load model of PEVs was then 

incorporated in deterministic and stochastic analysis 

frameworks of the distribution system, to study their impact 

on the distribution system, and examine how the LDC can 

accommodate PEV charging loads while maintaining the 

system constraints. 
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