
IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 216 www.ijsart.com

Dynamic Web Development

 Pratik Ghule1, Vrushabh Doshi2, Kishor Binwade3, Siraj Bagwan4
 Department of Computer Engineering

 1,2,3,4 Student, Dr. D. Y. Patil School of Engineering, Pune Savitribai Phule Pune University, Pune.

Abstract- The absence of benchmarks for websites with

dynamic content has been a significant impediment to analysis

during this space. we have a tendency to describe 3 benchmarks

for evaluating the performance of websites with dynamic

content. Then benchmarks model 3 common kinds of dynamic

content websites with wide varied application characteristics:

an internet bookshop, Associate in Nursing auction web site,

and a bulletin hoard. For the net bookshop, we have a tendency

to use the TPCW specification. For the auction web site and

therefore the bulletin hoard, we offer OUT own specification,

sculptural once ebay.com and slahdot.org, severally. for every

benchmark we have a tendency to describe the look of the

information and therefore the interactions provided by the net

server.

 We have enforced these 3 benchmarks with a spread

of ways for building dynamic-content applications, as well as

java, Java servlets . all told cases, we have a tendency to use

ordinarily used ASCII text file code. we have a tendency to

additionally give a consumer ape that permits a dynamic

content internet server to he driven with varied workloads. Our

implementations square measure on the market freely from our

computing device for different researchers to use

Keywords- ID, GUI. graphical Web pages

I. INTRODUCTION

 There square measure variety of committal to writing

languages out there so as to create websites. thus there's have to

be compelled to understand anyone committal to writing

language to create an internet page. This innovative code

application permits users to create websites while not knowing

any committal to writing language. it's specifically designed for

the interior use for firms. This code helps to build/design

graphical websites. This code is embedded in an exceedingly

web site for skilled use, and can be out there for patrons to tailor

websites as per their want. this method helps the user to create

web content with effective graphical interface. User doesn’t

ought to work specifically for graphical user interface. System

can show varied webpage templet user will choose any templet

consistent with his preference. this method can save time of the

user and can facilitate the user to target main practicality needed

in their webpage. this method can offer user with skilled

webpage templates they will choose the templates supported the

need and practicality. Here during this system user will build

whole web site by simply choosing the content and pictures

needed in their webpage. User will style every and each web

content in their websites consistent with their preference by

choosing the content and pictures. User will even specify

position of the content to be placed. once user logins to the

system, system can show varied templates to the user. User

must choose the templet. System can show varied pages of that

templet. By clicking on explicit page he should specify the

content and pictures that must be placed within the webpage.

User will place the content and might read the templet at the

same time. Once the user clicks onto the submit button system

can generate the web site. System can send code and .rar file to

the user’s email ID. User will build custom websites simply

exploitation this application. User doesn’t ought to understand

any committal to writing languages to create websites. With the

assistance of this method user will work on main practicality

needed in their web content.

II. METHODS

 We have implemented these three benchmarks with a

variety of methods for building dynamic-content applications,

including , Java servlets . In all cases, we use commonly used

open-source software. We also provide a client emulator that

allows a dynamic content Web server to be driven with various

workloads. Our implementations are available freely from our

Web site for other researchers to use.

1) Translation engine - translating your templates along with

prescribed properties and values into actual html page,

2} Rule engine - applying validations, evaluating expressions,

executing actions etc.. specified against html components.

3) UX engine - applying specified cosmetics on HTML

components

4) JSF, SPRING - data handling, action executor framework

5) XML - data storage and conversion.

S = { U , K,}

Input:

LT, P

1] Set of users

U = {U1, U2, U3, U4 Un}

IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 217 www.ijsart.com

2] LT = log file for each user contains user profile attributes on

our site .

3] Set the attribute which is defined in web site that key word

related tweets to extracted .

A ={a1,a2,a3,a4,. an}

4] set of web templates web pages

W = {w1 , w2, w3, w4, wn }

Process

UA = user Attributes .

UA=(UA 1, UA 2, UA 3…… UA n)

UR= User requirements .

UR =(UR 1, UR 2, UR 3….. UR n)

K=Web Translation engine

K=(K1,K2,K3……Kn)

UX= UX engine

UX =(UX 1, UX 2, UX 3….. UX n)

Output:

P= {PD, PT, Pv, PL}

Pp = {PR}

III. LITERATURE SERVE

[1] An subject area analysis of Java TPC-W, the use of the Java

programing language for implementing server-side

application logic is increasing in quality, nevertheless

there's little legendary concerning the subject area needs of

this rising industrial work. we have a tendency to gift a

close characterization of the dealings process Council’s

TPC-W net benchmark, enforced in Java. The TPC-W

benchmark is meant to exercise the online server and

dealings process system of a typical e-commerce computer.

we've enforced TPC-W as a set of Java servlets, ANd gift

an subject area study particularization the memory system

and branch predictor behavior of the work. we have a

tendency to additionally measure the effectiveness of a

coarse-grained multithreaded processor at increasing

system output victimization TPC-W and different

industrial workloads. we have a tendency to live system

output enhancements from 8 May 1945 to forty first for a

2 context processor, and twelve-tone music to hour for a

four context uniprocessor over a single-threaded

uniprocessor, despite weakened branch prediction

accuracy and cache hit rates.

[2] Exploring Processor style choices for Java-Based

Middleware Java-based middleware may be a speedily

growing work for high-end server processors, significantly

Chip Multiprocessors (CMP). to assist architects style

future microprocessors to run this vital new work, we offer

a close characterization of 2 standard Java server

benchmarks, ECperf and SPECjbb2000. we have a

tendency to initial estimate the number of instruction-level

correspondence in these workloads by simulating a really

wide issue processor with good caches and ideal branch

predictors. we have a tendency to then determine

performance bottlenecks for these workloads on a a lot of

realistic processor by by selection idealizing individual

processor structures. Finally, we have a tendency to mix

our findings on accessible ILP in Java middleware with

results from previous papers that characterize the

availability of TLP to analyze the optimum balance

between ILP and TLP in CMPs. we discover that, like

different industrial workloads, Java middleware has solely

a little quantity of instruction-level correspondence, even

once run on terribly aggressive processors. once run on

processors resembling presently accessible processors, the

performance of Java middleware is restricted by frequent

traps, address translation and stalls within the memory

system. we discover that SPECjbb2000 differs from EC

perf in 2 significant ways: (1) the performance of EC perf

is affected {much a lot of|far more |rather more |way more}

by cache and TLB misses throughout instruction fetch and

(2) SPECjbb2000 has more memory-level parallelism.

[3] Web Caching and Zipf-like Distributions: proof and

Implications This paper addresses 2 unresolved problems

concerning net caching. the primary issue is whether or not

net requests from a hard and fast user community square

measure distributed in keeping with Zipf’s law [Zip29].

many early studies have supported this claim [Gla94,

CBC95, ABCdO96] whereas different recent studies have

urged otherwise [NHo + ninety eight, ACC +98]. The

second issue relates to variety of recent studies on the

characteristics of net proxy traces, that have shown that the

hit-ratios and temporal vicinity of the traces exhibit sure

straight line properties that square measure uniform across

the various sets of the traces [CI97, RV98, DMF97,

GB97a, KLM97]. particularly, the second issue is whether

or not these properties square measure inherent to net

accesses or whether or not they square measure merely AN

unit of the traces. a solution to those unresolved problems

can facilitate each net cache resource coming up with and

cache hierarchy style. we have a tendency to show that the

answers to the 2 queries square measure connected. we

have a tendency to initial investigate the page request

distribution seen by net proxy caches victimization traces

from a spread of sources. we discover that the distribution

doesn't follow Zipf’s law exactly, however instead follows

a Zipf-like distribution with the exponent variable from

trace to trace. moreover, we discover that there's (i) a weak

IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 218 www.ijsart.com

corr elation between the access frequency of an online page

and its size and (ii) a weak correlation between access

frequency and its rate of amendment.

[4] Web Caching and Zipf-like Distributions: proof and

Implications. This paper addresses 2 unresolved problems

concerning net caching. the primary issue is whether or not

net requests from a hard and fast user community square

measure distributed in keeping with Zipf’s law many early

studies have supported this claim whereas different recent

studies have urged otherwise.The second issue relates to

variety of recent studies on the characteristics of net proxy

traces, that have shown that the hit-ratios and temporal

vicinity of the traces exhibit sure straight line properties

that square measure uniform across the various sets of the

traces particularly, the question is whether or not these

properties square measure inherent to net accesses or

whether or not they square measure merely AN unit of the

traces. a solution to those unresolved problems can

facilitate each net cache resource coming up with and cache

hierarchy style.

 We show that the answers to the 2 queries square

measure connected,. we have a tendency to initial investigate

the page request distribution seen by net proxy caches

victimization traces from a spread of sources. we discover that

the distribution doesn't follow Zipf’s law exactly, however

instead follows a Zipf-like distribution with the exponent

variable from trace to trace. moreover, we discover that there's

solely (i) a weak correlation between the access frequency of an

online page and its size and (ii) a weak correlation between

access frequency and its rate of amendment. we have a tendency

to then take into account an easy model wherever the online

accesses square measure freelance and therefore the reference

likelihood of the documents follows a Zipf-like distribution.

IV. PROPOSED SYSTEM

 As per today’s fast moving world towards internet and

in need of faster webpages access, our motivation is to develop

a fine and better framework which provide a ease for generating

dynamic webpages for any enterprise level, middle level

organization, low level firms with just \ Dynamic Web

Generation

click of their finger. 21

1) Translation engine - translating your templates along with

prescribed properties and values into actual html page

2) Rule engine applying validations, evaluating expressions,

executing actions etc.. specified against html components.

3) UX engine - applying specified cosmetics on HTML

components

4) JSF, SPRING - data handling, action executor framework

5) XML - data storage and conversion.

V. RESULT AND DISSECTION:

 We have implemented these three benchmarks with a

variety of methods for building dynamic-content applications,

including , Java servlets . In all cases, we use commonly used

open-source software. We also provide a client emulator that

allows a dynamic content Web server to be driven with various

workloads. Our implementations are available freely from our

Web site for other researchers to use.

We are making the source code of our

implementations freely available on our Web site. We hope

other researchers will use them, making performance results of

dynamic content Web sites more reproducible and easier to

compare. The world of today is characterized by tremendous

opportunities for personal and professional development, firstly

due to the progress in transportation technology allowing

people to relocate rapidly from one geography to another and

secondly due to easy access to information and knowledge

through the internet. These world conditions of global mobility

together with available web resources and tools can strongly

contribute to the development of the unique talents of

individuals, which is a critical factor for one’s future career and

life success.

IJSART - Volume 5 Issue 6 –JUNE 2019 ISSN [ONLINE]: 2395-1052

Page | 219 www.ijsart.com

VI. CONCLUSION

 We have implemented the three dynamic content

benchmarks and a workload generator tool that allows us to

vary the workload driving the dynamic content server. We have

used our implementations to carry out a bottleneck

characterization of the benchmarks. Different benchmarks

show different bottlenecks: the database CPU for the online

bookstore, and the Web server CPU for the auction site and the

bulletin board. Complex queries cause the database CPU to be

the bottleneck for the online bookstore. In contrast, the queries

for the other applications are simpler. We are making the

source code of our implementations freely available on our Web

site. We hope other researchers will use them, making

performance results of dynamic content Web sites more

reproducible and easier to compare.

REFERENCES

[1] Bill Marshall Spiderwriting.co.uk. (2017). Static v

Dynamic Website Design – Spider Writing Web Design.

[online] Available at:

http://www.spiderwriting.co.uk/static-dynamic.php

[Accessed 10 Nov. 2017].

[2] Chris K. Codeconquest.com. (2017). Static vs. Dynamic

Websites. [online] Available at:

http://www.codeconquest.com/website/static-vs-dynamic-

websites/ [Accessed 10 Nov. 2017].

[3] Mayers, D. (2017). What is the difference between a back

end and a front-end web programming language? - Kevin

Chisholm - Blog. [online] Kevin Chisholm - Blog.

Available at:https://blog.kevinchisholm.com/web-

development/difference-between-back-front-end-

language/ [Accessed 10 Nov. 2017].

[4] Carey Wodehouse Home, H., Development, W. and

Experience, F. (2017). What is Client-Side Scripting?

Choosing the Scripting Languages for your Web

Application. [online] Hiring — Upwork. Available at:

https://www.upwork.com/hiring/development/how-

scripting-languages-work/ [Accessed 10 Nov. 2017].

[5] Asha Mandava and Solomon Antony Murray , A review

and analysis of technologies for developing web

applications state University Murray, Kentucky.

[6] Carlos Castillo ,A framework for the design and AND

IMPLEMENTATION OF WEB SITES University of

Chile / Newtenberg Digital Publishing Ltd. 2120 Blanco

Encalada /10 Estado 3rd floor, 2002.

[7] Wutthichai Chansuwath, A Model-Driven Development of

Web Applications Using AngularJS Framework, 29 June

2016.

[8] OMG, Documents Associated With XML Metadata

Interchange (XMI), Version 2.4.2[Online].Availa

http://www.omg.org/spec/XMI/2.4.2/. Last Accessed: 30

Mar 2016.

[9] N. Jain, P. Mangal, and D. Mehta, “AngularJS: A modern

MVC framework in JavaScript, J. Global Research in

Computer Science, vol. 5, no. 12, 2015, pp. 17-23.

