Further Study On Supra β **-Irresolute Maps**

S. Sharmila¹, Dr. S. Nithyanantha Jothi²

¹Dept of Mathematics

²Assistant Professor, Dept of Mathematics

^{1, 2}, Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu, India

Abstract- In this paper, we investigate some other properties of supra β -irresolute maps, totally supra β -continuous functions, slightly supra β -continuous functions and strongly supra β -continuous functions. Also, the relationship between these functions are discussed.

Keywords- slightly supra β -continuous function, strongly supra β -continuous function, supra β -irresolute map, supra β -Ti, totally supra β -continuous function.

Mathematics Subject Classification (2010): 54C05, 54C08, 54C10, 54D10.

I. INTRODUCTION

In 1983, A.S.Mashhour [3] introduced the supra topological spaces. In 2013, Saeid Jafari [4] introduced and studied a class of sets and a class of maps between topological spaces called supra β -open sets and supra β -continuous maps, respectively. In 2012, O.R.Sayed [5] researched supra β -connectedness by means of a supra β -separated sets. In [7], the authors introduced the notion of supra β -irresolute maps and supra β -continuous functions, slightly supra β -continuous functions.

Section 2 deals with the preliminary concepts. In Section 3, we investigate some other properties of supra β irresolute maps. In Section 4, we discuss about slightly supra β -continuous functions, strongly supra β -continuous functions and totally supra β -continuous functions and the relationship between these functions.

II. PRELIMINARIES

A subcollection $\mu \subseteq P(X)$ where P(X) is the power set of X, is called a supra topology [3] on X if $X, \emptyset \in \mu$ and μ is closed under arbitrary union. The ordered pair (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) and the complement of a supra open set is called a supra closed set. The supra closure of a set A, denoted by $Cl^{\mu}(A)$, is the intersection of supra closed sets containing A. The supra interior of a set A, denoted by $Int^{\mu}(A)$, is the union of supra open sets contained in A. The supra topology μ on X is associated with the topology τ if $\tau \subseteq \mu$.

Throughout this paper, $(X, \tau), (Y, \sigma)$ and (Z, ν) (or simply X, Y and Z) denote topological spaces on which no separation axioms are assumed unless explicitly stated where μ , ρ and η are the associated supra topologies with τ, σ and ν . For a subset A of X, the complement of A is denoted by X_{-A} .

Definition 2.1 Let (X, μ) be a supra topological space. Let A be a subset of X. Then A is said to be a

- (1) supra β -open set [4] if $A \subseteq Cl^{\mu}(Int^{\mu}(Cl^{\mu}(A))).$
- (2) supra β -closed set [4] if X-A is supra β -open set.
- (3) supra β -clopen set [6] if A is both supra β -open and supra β -closed.

Definition 2.2 [4] The supra β -closure of a set A, denoted by $Cl^{\mu}_{\beta}(A)$, is the intersection of supra β -closed sets containing A. The supra β -interior of a set A, denoted by $Int^{\mu}_{\beta}(A)$, is the union of supra β -open sets contained in A.

Definition 2.3 [5] Let A and B be subsets of a supra topological space (X,μ) . Then A and B are said to be **supra** β separated if $A \cap Cl^{\mu}_{\beta}(B) = Cl^{\mu}_{\beta}(A) \cap B = \emptyset$.

Definition 2.4 [5] A subset A of X is a **supra \beta-connected set** if it cannot be represented as a union of two nonempty supra β -separated sets. If X is supra β -connected, then X is called a **supra \beta-connected space**.

Definition 2.5 A map $f: X \rightarrow Y$ is said to be

- (1) supra β -continuous map [4] if the inverse image of each open set in Y is supra β -open in X.
- (2) supra β -open map [4] if the image of each open set in X is supra β -open in Y.
- (3) supra β-irresolute map [7] if the inverse image of each supra β -open set in Y is supra β -open in X.
- (4) continuous map [2] if the inverse image of each open set in Y is open in X.
- (5) totally supra β -continuous function [6] if the inverse image of each open set in Y is supra β -clopen $_{in} X$.
- (6) slightly supra β -continuous function at a point $x \in X$ [6] if for each clopen subset V in Y containing f(x), there exists a supra β -open subset $U_{\text{in}} X_{\text{containing}} x_{\text{such that}} f(U) \subseteq V_{\text{The}}$ function f is said to be a slightly supra β continuous function if f is a slightly supra β continuous function at each point of X.
- (7) strongly supra β -continuous function [6] if the inverse image of every subset of Y is a supra β clopen subset of X.

Definition 2.6 [2] A topological space (X, τ) is said to be a **T**_{0-space} if for each pair of distinct points x and y in X, there exist an open set U in X which contains one of them but not the other.

Definition 2.7 [7] A supra topological space (X, μ) is said to be

- (1) supra β - T_1 if for each pair of distinct points x and yin X, there exists supra β -open sets U and V in X such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.
- (2) supra β - T_2 if for each pair of distinct points x and yin X, there exists disjoint supra β -open sets U and Vin X such that $x \in U$ and $y \in V$.

Definition 2.8 [1] A space X is said to be

- (1) **clopen-T**₁ if for each pair of distinct points x and y in X, there exist clopen sets U and V in X containing x and y respectively such that $y \notin U$ and $x \notin V$.
- (2) clopen- T_2 if for each pair of distinct points x and y in X, there exist disjoint clopen sets U and V in X such that $x \in U$ and $y \in V$.

Theorem 2.9 [4] The following conditions are equivalent for a supra topological space (X, μ)

- (1) (X, μ) is not supra β -connected.
- (2) There exist two non-empty disjoint supra β -open sets such that $X = A \cup B$
- (3) There exist two non-empty disjoint supra β -closed sets such that $X = A \cup B$.

Theorem 2.10 Let $G \subseteq X$. Then G is supra β -connected if and only if there do not exist two supra β -closed sets A and B in X $G \not\subseteq A$ $G \not\subseteq B G \subseteq A \cup B$ that such and $A \cap B \cap G = \emptyset$

III. SUPRA β-IRRESOLUTE MAPS

In this section, some other properties of supra β irresolute maps are investigated.

Theorem 3.1 If one of the following conditions holds, then the map f:X \rightarrow Y is supra β -irresolute.

1. $\int_{-1}^{-1} (Int_{\beta}^{\rho}(A) \subseteq Int_{\beta}^{\mu}(f^{-1}(A)))$ for every subset 2. $Cl^{\mu}_{\beta}(f^{-1}(A)) \subseteq f^{-1}(Cl^{\rho}_{\beta}(A))$ for every subset 3. $f(Cl^{\mu}_{\beta}(B)) \subseteq Cl^{\rho}_{\beta}(f(B))$ for every subset B of

Proof: Let A be any supra β -open subset of Y. If Condition $f^{-1}(Int^{\rho}_{\beta}(A) \subseteq Int^{\mu}_{\beta}(f^{-1}(A))$ $A) \subseteq Int^{\mu}(f^{-1}(A))$ holds, (1) then

$$f^{-1}(A) \subseteq Int^{\mu}_{\beta}(f^{-1}(A))$$
. We know that
 $Int^{\mu}_{\beta}(f^{-1}(A)) \subseteq f^{-1}(A)$ Thus

$$(A) \subseteq f^{-1}(A)$$
 Thus

 $f^{-1}(A) = Int^{\mu}_{\beta}(f^{-1}(A))$. Then $f^{-1}(A)$ is supra β -open set in X. Hence f is supra β -irresolute. If condition (2) $Cl^{\mu}_{R}(f^{-1}(A)) \subseteq f^{-1}(Cl^{\rho}_{\beta}(A))$ holds, then we have $f^{-1}(Int^{\rho}_{\beta}(A) \subseteq Int^{\mu}_{\beta}(f^{-1}(A))$ This is nothing but

condition (1). If condition (3) $f(Cl^{\mu}_{\beta}(B)) \subseteq Cl^{\rho}_{\beta}(f(B))$ holds for every subset B of Y, then $Cl^{\mu}_{\beta}(f^{-1}(A)) \subseteq f^{-1}(Cl^{\rho}_{\beta}(A))$ for every subset A of Y. This is nothing but condition (2). Hence f is supra β -irresolute.

The converse of Theorem 3.1 need not be true as shown by the following example.

Example 3.2 Let X= $\{a,b,c,d\}$. Clearly $\mu = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ a supra topology on Х. Here is the sets $\varphi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c\}, \{a, b, c\}, \{a, c, c\}, \{a, c,$ d, $\{b,c,d\}$ are supra β -open. Let $Y = \{a,b,c\}$. Clearly $\rho = \{\phi, Y, \{a\}, \{a, b\}, \{b, c\}\}$ is a supra topology on Y. Here all the subsets of X except $\{c\}$ are supra β -open. Define f:X \rightarrow Y by f(a)=c,f(b)=a,f(c)=f(d)=b. Clearly the inverse image of every supra β -open in Y is supra β -open in X. Hence f is a supra β -irresolute map. Then

(1) Let
$$A=\{b\}$$
. Then
 $f^{-1}(Int_{\rho}^{\rho}(A)) = f^{-1}(\{b\}) = \{c, d\}$

$$Int^{\mu}_{\beta}(f^{-1}(A)) = Int^{\mu}_{\beta}(\{c,d\}) = \emptyset$$
. Hence

$$f^{-1}\left(Int_{\beta}^{\rho}(A)\right) \not\subseteq Int_{\beta}^{\mu}\left(f^{-1}(A)\right)$$

(2) Let
$$A=\{a,c\}$$
. Then
 $Cl^{\mu}_{\beta}(f^{-1}(A)) = Cl^{\mu}_{\beta}(\{a,b\}) = X$ and

$$f^{-1}\left(Cl^{\rho}_{\beta}(A)\right) = f^{-1}(\{a,c\}) = \{a,b\}.$$

Hence
$$Cl^{\mu}_{\beta}\left(f^{-1}(A)\right) \not\subseteq f^{-1}\left(Cl^{\rho}_{\beta}(A)\right).$$

(4) Let
$$A = \{a, b\}$$
. Then $f\left(Cl_{\beta}^{\mu}(A)\right) = f(X) = Y$ and $Cl_{\beta}^{\rho}(f(A)) = Cl_{\beta}^{\rho}(\{a, c\}) = \{a, c\}$. Hence $f\left(Cl_{\beta}^{\mu}(A)\right) \not\subseteq Cl_{\beta}^{\rho}(f(A))$.

Theorem 3.3 Let $f:X \rightarrow Y$ be a map. Then the following conditions are equivalent:

- (1) f is a supra β -irresolute map.
- (2) The inverse image of each supra β -closed set in Y is supra β -closed set in X.
- (3) $Cl^{\mu}_{\beta}(f^{-1}(B)) \subseteq f^{-1}(Cl^{\rho}_{\beta}(B))$ for every subset B of Y.
- (4) $f(Cl^{\mu}_{\beta}(A)) \subseteq Cl^{\rho}_{\beta}(f(A))$ for every subset A of X

(5)
$$f^{-1}(Int_{\beta}^{\rho}(B)) \subseteq Int_{\beta}^{\mu}(f^{-1}(B))$$
 for every subset B of Y.

Proof:

(1) \Rightarrow (2) Let f be a supra β -irresolute map. Let A be a supra β closed subset of Y. Then Y-A is supra β -open in Y. Since f is a supra β -irresolute map, $f^{-1}(Y-A)$ is supra β -open in X. That is, X- $f^{-1}(A)$ is supra β -open in X. Hence $f^{-1}(A)$ is supra β closed in X.

(2) \Rightarrow (3) Let B be any subset of Y. Since $Cl^{\rho}_{\beta}(B)$ is supra β closed in Y and By (2), $f^{-1}(Cl^{\rho}_{\beta}(B))$ is supra β -closed in X. Therefore.

$$Cl^{\mu}_{\beta}(f^{-1}(B)) \subseteq Cl^{\mu}_{\beta}\left(f^{-1}\left(Cl^{\rho}_{\beta}(B)\right)\right) = f^{-1}(Cl^{\rho}_{\beta}(B))$$

Hence $Cl^{\mu}_{\beta}(f^{-1}(B)) \subseteq f^{-1}(Cl^{\rho}_{\beta}(B))$ for every subset E

for every subset B Hence of Y.

Assume the condition (3)⇒(4) that $Cl^{\mu}_{\mathcal{B}}(f^{-1}(B)) \subseteq f^{-1}(Cl^{\rho}_{\beta}(B))$ holds for every subset B of Y. Let A be any subset of X. Then $f(A) \in Y$. By (3), $f^{-1}(Cl^{\rho}_{\beta}(f(A))) \supseteq Cl^{\mu}_{\beta}(f^{-1}(f(A))) \supseteq Cl^{\mu}_{\beta}(A)$ Hence $f(Cl^{\mu}_{\beta}(A)) \subseteq Cl^{\rho}_{\beta}(f(A))$ for every subset A of X.

(4)⇒(5) Assume condition that the $f(Cl^{\mu}_{\beta}(A)) \subseteq Cl^{\rho}_{\beta}(f(A))$ holds for every subset A of X. Let B be any subset of Y. Then $X \cdot f^{-1}(B) \in Y$. By (4), $f(Cl^{\mu}_{\beta}(X f^{-1}(B))) \subseteq Cl^{\rho}_{\beta(f(X} f^{-1}(B))).$ Then $f(X - Int^{\mu}_{\beta}(f^{-1}(B))) \subseteq Cl^{\rho}_{\beta}(Y - B) = Y - Int^{\rho}_{\beta}(B)$ Hence $f^{-1}\left(Int_{\beta}^{\rho}(B)\right) \subseteq Int_{\beta}^{\mu}\left(f^{-1}(B)\right).$

$$(5)^{\Rightarrow}(1) \quad \text{Assume that the condition} \\ f^{-1}\left(Int_{\beta}^{\rho}(B)\right) \subseteq Int_{\beta}^{\mu}(f^{-1}(B)) \\ \text{holds for every subset} \\ \text{B of Y. Let B be any supra }\beta\text{-open subset of Y. By (5),} \\ f^{-1}(B) \subseteq Int_{\beta}^{\mu}(f^{-1}(B)). \\ \text{We know that} \\ Int_{\beta}^{\mu}(f^{-1}(B)) \subseteq f^{-1}(B). \\ f^{-1}(B) = Int_{\beta}^{\mu}(f^{-1}(B)). \\ \text{Thus f}^{-1}(B) = Int_{\beta}^{\mu}(f^{-1}(B)). \\ \text{Therefore, } f^{-1}(B) \text{ is supra} \end{cases}$$

 β -open in X. Hence f is a supra β -irresolute map.

(3)

Theorem 3.4 If $f: X \to Y$ is a supra β -irresolute surjective map and C and D are supra β -separated sets in Y, then $f^{-1}(C)$ and $f^{-1}(D)$ are supra β -separated in X.

Proof: Let $f: X \rightarrow Y$ be a supra β -irresolute map. Since C and D supra β -separated in Y. $C \cap Cl^{\rho}_{\beta}(D) = Cl^{\rho}_{\beta}(C) \cap D = \emptyset$ By Theorem 3.3 (3), $Cl^{\mu}_{\beta}(f^{-1}(C)) \subseteq f^{-1}(Cl^{\rho}_{\beta}(C))$ Then $Cl^{\mu}_{\beta}(f^{-1}(C)) \cap f^{-1}(D) \subseteq f^{-1}(Cl^{\rho}_{\beta}(C)) \cap$ $f^{-1}(D)=f^{-1}\left(Cl^{\rho}_{\beta}(C)\cap D\right)=f^{-1}(\emptyset)=\emptyset.$ Hence $Cl^{\mu}_{\beta}(f^{-1}(C)) \cap f^{-1}(D) = \emptyset$. Similarly we can $f^{-1}(C)\cap Cl^{\mu}_{\beta}\big(f^{-1}(D)\big)=\emptyset$ that prove Hence $f^{-1}(C)_{\text{and}} f^{-1}(D)_{\text{are supra }\beta\text{-separated in }X.}$

Theorem 3.5 If $f:X \rightarrow Y$ is supra β -irresolute bijective map and A is a supra β -connected subset of X, then f(A) is a supra β -connected subset of Y.

Proof: Suppose f(A) is not a supra β -connected subset of Y. Then $f(A)=C^{\bigcup}D$ where C and D are non-empty supra β -separated sets in Y. By Theorem 3.4, $f^{-1}(C)$ and $f^{-1}(D)$ are supra β -separated sets in X. Since f is bijective, $f^{-1}(C)$ and $f^{-1}(D)$ are non-empty. Since f is bijective, $A=f^{-1}(C)\cup f^{-1}(D)$. Hence A is not a supra β -connected subset of X, which is a contradiction. Thus f(A) is a supra β -connected subset of Y.

Theorem 3.6 If $f:X \rightarrow Y$ is a supra β -irresolute map and G is supra β -connected in X, then f(G) is supra β -connected in Y. **Proof:** Suppose f(G) is not connected in Y, then there exist

two supra β -closed sets A and B in Y such that $f(G) \not\subseteq A$, $f(G) \not\subseteq B, f(G) \subseteq A \cup B$ and $A \cap B \cap f(G) = \emptyset$. Then $G \not\subseteq f^{-1}(A), \quad G \not\subseteq f^{-1}(B),$ $G \subseteq f^{-1}(A \cup B)_{=}f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B) \cap G = \emptyset$. This implies that G is not

supra β -connected in X, which is a contradiction. Hence f(G) is supra β -connected in Y.

Corollary 3.7 If $f:X \rightarrow Y$ is a surjective supra β -irresolute map and X is supra β -connected, then Y is supra β -connected **Proof:** By Theorem 3.6, f(X) is supra β -connected. That is, Y is supra β -connected.

IV TOTALLY SUPRA β-CONTINUOUS FUNCTIONS, SLIGHTLY SUPRA β-CONTINUOUS FUNCTIONS AND STRONGLY SUPRA β-CONTINUOUS FUNCTIONS

In this Section, we investigate some other properties of totally supra β -continuous functions, slightly supra β continuous functions and strongly supra β -continuous functions. Also, the relationship between these functions and supra β -irresolute maps are discussed.

Theorem 4.1 Let $f:X \rightarrow Y$ be a totally supra β -continuous injective function. If Y is a T₀-space, then X is a supra β -T₂ space.

Proof: Let x and y be any pair of distinct points in X. Since f is injective, $f(x) \neq f(y)$ in Y. Since Y is a T₀-space, there exists an open set V in Y containing f(x) but not f(y) or containing f(y) but not f(x). Thus for the first case, $x \in f^{-1}(V)$ and $y \notin f^{-1}(V)$. Since f is a totally supra β -continuous function, $f^{-1}(V)$ and $X - f^{-1}(V)$ are disjoint supra β -clopen sets in X containing x and y respectively. The proof of the other case is similar. Hence X is a supra β -T₂ space.

Theorem 4.2 Every slightly supra β -continuous function into a discrete space is strongly supra β -continuous function.

Proof: Let $f:X \to Y$ be a slightly supra β -continuous function where Y is a discrete space. Let A be any subset of Y. Then A is a clopen set in X. Since f is a slightly supra β -continuous function, $f^{-1}(A)$ is supra β -clopen in X. Hence f is a strongly supra β -continuous function.

Theorem 4.3 Let $f:X \rightarrow Y$ and $g:Y \rightarrow Z$ be functions. Then $gof:X \rightarrow Z$.

- (1) If f is supra β -irresolute and g is slightly supra β -continuous then gof is slightly supra β -continuous.
- (2) If f is slightly supra β -continuous and g is continuous, then gof is slightly supra β -continuous.

Proof: Let V be any clopen subset of Z.

Since g is slightly supra β-continuous, g⁻¹(V) is supra β-open in Y. Since f is supra β-irresolute, f⁻¹(g⁻¹(V)) is supra β-open in X. That is, (gof)⁻¹(V) is supra β-open in X.

(2) Since g is continuous, g⁻¹(V) is clopen in Y. Since f is slightly supra β-continuous, f⁻¹(g⁻¹(V)) is supra β-open in X. That is, (gof)⁻¹(V) is supra β-open in X.

Hence gof is slightly supra β -continuous.

Corollary 4.4 If $f:X \rightarrow Y$ is supra β -irresolute and $g:Y \rightarrow Z$ is supra β -continuous then $gof:X \rightarrow Z$ is slightly supra β -continuous.

Proof: Since every supra β -continuous function is slightly supra β -continuous function, g is slightly supra β -continuous function. By Theorem 4.3 (1), gof is slightly supra β -continuous.

Theorem 4.5 Let $f:X \rightarrow Y$ be a supra β -irresolute supra β -open surjective map and $g:Y \rightarrow Z$ be a function. Then g is slightly supra β -continuous if and only if gof is slightly supra β -continuous.

Proof:

 \Rightarrow Let g be slightly supra β-continuous. By Theorem 4.3 (1), gof is slightly supra β-continuous.

Let gof be slightly supra β-continuous. Let V be any clopen subset of Z. Then $(gof)^{-1}(V)$ is supra β-open in X. Since f is supra β-open, $f((gof)^{-1}(V))$ is supra β-open in Y. Since f is surjective, $f((gof)^{-1}(V))=f(f^{-1}(g^{-1}(V)))=g^{-1}(V)$ is supra β-open in Y. Hence g is slightly supra β-continuous.

Theorem 4.6 Let $f:X \rightarrow Y$ be a slightly supra β -continuous injective map and Y is clopen-T_i, then X is supra β -T_i for i=1,2.

Proof: Let x and y be any two distinct points in X. Then f(x) and f(y) are distinct points in Y.

- (1) For i=1. Since Y is clopen-T₁, there exist clopen sets V and W in Y such that f(x) ∈ V, f(y) ∉ V and f(y) ∈ W, f(x) ∉ W. Since f is slightly supra β-continuous, f¹(V) and f¹(W) are supra β-open in X such that x ∈ f⁻¹(V), y ∉ f⁻¹(V) and y ∈ f⁻¹(W), x ∉ f⁻¹(W). This shows that X is supra β-T₁.
- (2) For i=2. Since Y is clopen-T₂, there exist disjoint clopen sets V and W in Y such that f(x) ∈ V and f(y) ∈ W. Since f is slightly supra β-continuous, f

 $^{1}(V)$ and $f^{-1}(W)$ are disjoint supra β -open in X containing x and y respectively. Hence X is supra β -T₂.

Proposition 4.7 Every supra β -irresolute map is slightly supra β -continuous.

Proof: Let $f:X \rightarrow Y$ be a supra β -irresolute map. Let A be any clopen subset of Y. Then A is open in Y. Since ρ is the associated supra topology with σ , A is supra open in Y. Then A is supra β -open in Y. Since f is supra β -irresolute, $f^{-1}(A)$ is supra β -open in X. Hence f is slightly supra β -continuous.

The converse of Proposition 4.7 need not be true as shown by the following example.

Example 4.8 Let X={a,b,c} and τ ={ ϕ ,X,{a,b}} be a topology on X. Clearly μ ={ ϕ ,X,{a},{a,b},{b,c}} is a supra topology on X. Here the only clopen sets are ϕ and X and all the subsets of X except {c} are supra β -open in X. Define f:X \rightarrow X by f(a)=c,f(b)=a,f(c)=b. Clearly the inverse image of every clopen set is supra β -open. Hence f is a slightly supra β -continuous function. But the inverse image of a supra β -open set {b} is {c} which is not a supra β -open set. Hence f is not a supra β irresolute map.

Proposition 4.9 Every strongly supra β -continuous function is supra β -irresolute.

Proof: Let $f:X \rightarrow Y$ be a strongly supra β -continuous function. Let A be any supra β -open subset of Y. Since f is a strongly supra β -continuous function, $f^{-1}(A)$ is supra β -clopen in X. That is, $f^{-1}(A)$ is supra β -open in X. Hence f is supra β -irresolute.

The converse of Proposition 4.9 need not be true as shown by the following example.

Example 4.10 Let X={a,b,c} and τ ={ ϕ ,X,{a,b}} be a topology on X. Clearly μ ={ ϕ ,X,{a},{a,b},{b,c}} is a supra topology on X. Here all the subsets of X except {c} are supra β -open and all the subsets of X except {c} and {a,b} are supra β -clopen in X. Define f:X \rightarrow X by f(a)=b,f(b)=a,f(c)=c. Example 3.6 in [7] shows that this map f is a supra β -irresolute map. But the inverse image of the set {a,b} is {a,b} which is not supra β -clopen. Hence f is not a strongly supra β -continuous function.

Remark 4.11 Totally supra β -continuous functions and supra β -irresolute maps are independent.

For example, Let $X=\{a,b,c\}$ and $\tau=\{\phi,X,\{a,b\}\}$ be a topology on X. Clearly $\mu=\{\phi,X,\{a\},\{a,b\},\{b,c\}\}$ is a supra

topology on X. Here the sets φ ,X,{a,b} are open, all the subsets of X except {c} are supra β -open and all the subsets of X except {c} and {a,b} are supra β -clopen in X.

- Define f:X→X by f(a)=c, f(b)=a, f(c)=b. Clearly the inverse image of every open set is supra β-clopen. Hence f is a totally supra β-continuous function. Example 4.8 shows that this map f is not a supra β-irresolute map.
- (2) Define f:X→X by f(a)=b, f(b)=a, f(c)=c. Example 3.6 in [7] shows that this map f is a supra β-irresolute map. Clearly the inverse image of the open set {a,b} is {a,b} which is not supra β-clopen. Hence f is not a totally supra β-continuous function.

V. CONCLUSION

In this paper, we have investigated some other properties of supra β -irresolute maps, totally supra β -continuous functions, slightly supra β -continuous functions and strongly supra β -continuous functions. Also, the relationship between these functions are discussed.

VI. ACKNOWLEDGEMENT

The authors express sincere thanks to the referees of the paper. The suggestions are most welcome by the readers.

REFERENCES

- Erdal Ekici and Miguel Caldas, Slightly γ-continuous functions, Bol Soc. Paran. Mat., 22 (2014), 63-74.
- [2] Joshi, K.D., Introduction to General Topology, Wiley Eastern Limited.
- [3] Mashhour, A.S., Allam, A.A., Mahmoud, F.S., Khedr, F.H., On supra topological spaces, Indian J. Pure Appl. Math., 14(1983), 502-510.
- [4] Saeid Jafari and Sanjay Tahiliani, Supra β-open sets and supra β-continuity on topological spaces, Annales Univ. Sci. Budapest., 56(2013), 1-9.
- [5] Sayed, O.R., Supra β-connectedness on topological spaces, Proceedings of the Pakistan Academy of Sciences, 49 (1): 19–23 (2012).
- [6] S. Sharmila and Dr. S. Nithyanantha Jothi, Totally Supra β-Continuous and Slightly Supra β-Continuous Functions, Proceedings of Instructional School on Emerging Trends in Advanced Mathematics (ISETAM 2019), 35 (Abstract only).
- [7] S. Sharmila and Dr. S. Nithyanantha Jothi, Some Continuous and Homeomorphism Maps and Separation Axioms in Supra Topological Spaces via Supra β-Open Sets, Proceedings of the International Conference on

Graph Theory and its Applications (ICGTA 2019), 1-8.