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I. INTRODUCTION 

 

 In 1983, A.S.Mashhour [3] introduced the supra 

topological spaces. In 2013, Saeid Jafari [4] introduced and 

studied a class of sets and a class of maps between topological 

spaces called supra β-open sets and supra β-continuous maps, 

respectively. In 2012, O.R.Sayed [5] researched supra β-

connectedness by means of a supra β-separated sets.  In [7], 

the authors introduced the notion of supra β-irresolute maps 

and supra β-Ti. In [6], the authors introduced the concepts of 

totally supra β-continuous functions, slightly supra β-

continuous functions and strongly supra β-continuous 

functions.  

   

Section 2 deals with the preliminary concepts. In 

Section 3, we investigate some other properties of supra  β-

irresolute maps. In Section 4, we discuss about slightly supra 

β-continuous functions, strongly supra β-continuous functions 

and totally supra β-continuous functions and the relationship 

between these functions. 

 

II. PRELIMINARIES 

   

A subcollection  where  is the 

power set of , is called a supra topology [3] on  if 

 and µ is closed under arbitrary union. The ordered 

pair  is called a supra topological space. The elements 

of µ are said to be supra open in  and the complement 

of a supra open set is called a supra closed set. The supra 

closure of a set , denoted by is the intersection of 

supra closed sets containing  The supra interior of a set , 

denoted by (A), is the union of supra open sets contained 

in  The supra topology µ on  is associated with the 

topology  if   

    

Throughout this paper,  and  

(or simply X, Y and Z) denote topological spaces on which no 

separation axioms are assumed unless explicitly stated where 

µ, ρ and η are the associated supra topologies with  and . 

For a subset of , the complement of  is denoted by -

. 

 

Definition 2.1 Let  be a supra topological space. Let  

be a subset of  Then  is said to be a 

 

(1) supra β-open set [4] if 

  
(2) supra β-closed set [4] if X-A is supra β-open set. 

(3) supra β-clopen set [6] if A is both supra β-open and 

supra β-closed. 

 

Definition 2.2 [4] The supra β-closure of a set , denoted by 

is the intersection of supra β-closed sets containing 

 The supra β-interior of a set , denoted by , is 

the union of supra β-open sets contained in  

 

Definition 2.3 [5] Let A and B be subsets of a supra 

topological space (X,µ). Then A and B are said to be supra β-

separated if   

 

Definition 2.4 [5] A subset  of  is a supra β-connected set 

if it cannot be represented as a union of two nonempty supra 

β-separated sets. If  is supra β-connected, then  is called a 

supra β-connected space. 
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Definition 2.5 A map f:X→Y is said to be  

 

(1) supra β-continuous map [4]  if the inverse image of 

each open set in  is supra β-open in  

(2) supra β-open map [4] if the image of each open set 

in  is supra β-open in .  

(3) supra β-irresolute map [7] if the inverse image of 

each supra β-open set in  is supra β-open in  

(4) continuous map [2] if the inverse image of each 

open set in  is open in  

(5) totally supra β-continuous function [6] if the 

inverse image of each open set in  is supra β-clopen 

in  

(6) slightly supra β-continuous function at a point 

 [6] if for each clopen subset  in  

containing , there exists a supra β-open subset 

 in  containing  such that The 

function  is said to be a slightly supra β-

continuous function if  is a slightly supra β-

continuous function at each point of  

(7) strongly supra β-continuous function [6] if the 

inverse image of every subset of  is a supra β-

clopen subset of   

 

Definition 2.6 [2] A topological space  is said to be a 

-space if for each pair of distinct points  and  in  there 

exist an open set  in  which contains one of them but not 

the other. 

 

Definition 2.7 [7] A supra topological space  is said to 

be 

 

(1) supra β-  if for each pair of distinct points  and  

in , there exists supra β-open sets  and  in  

such that ,  and , . 

(2) supra β-  if for each pair of distinct points  and  

in , there exists disjoint supra β-open sets  and  

in  such that  and . 

 

Definition 2.8 [1] A space X is said to be  

 

(1) clopen-T1 if for each pair of distinct points x and y in 

X, there exist clopen sets U and V in X containing x 

and y respectively such that  and . 

(2) clopen-T2 if for each pair of distinct points x and y in 

X, there exist disjoint clopen sets U and V in X such 

that  and . 

 

Theorem 2.9 [4] The following conditions are equivalent for a 

supra topological space . 

 

(1)  is not supra β-connected. 

(2) There exist two non-empty disjoint supra β-open sets 

such that . 

(3) There exist two non-empty disjoint supra β-closed 

sets such that . 

Theorem 2.10 Let G . Then G is supra β-connected if and 

only if there do not exist two supra β-closed sets A and B in X 

such that , ,  and 

.   

 

III. SUPRA β-IRRESOLUTE MAPS 

 

In this section, some other properties of supra β-

irresolute maps are investigated. 

 

Theorem 3.1 If one of the following conditions holds, then 

the map f:X→Y is supra β-irresolute. 

 

1.  for every subset 

A of Y. 

2.  for every subset 

A of Y. 

3.  for every subset B of 

X. 

 

Proof: Let A be any supra β-open subset of Y. If Condition 

(1)  holds, then 

. We know that 

. Thus 

. Then  is supra β-open 

set in X. Hence f is supra β-irresolute. If condition (2) 

 holds, then we have 

. This is nothing but 
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condition (1). If condition (3)  

holds for every subset B of Y, then 

 for every subset A of Y. 

This is nothing but condition (2). Hence f is supra β-irresolute. 

     

The converse of Theorem 3.1 need not be true as 

shown by the following example. 

 

Example 3.2 Let X={a,b,c,d}. Clearly µ={υ,X,{a},{b},{a,b}} 

is a supra topology on X. Here the sets 

υ,X,{a},{b},{a,b},{a,c},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},{a,c

,d},{b,c,d} are supra β-open. Let Y={a,b,c}. Clearly 

ρ={υ,Y,{a},{a,b},{b,c}} is a supra topology on Y. Here all 

the subsets of X except {c} are supra β-open. Define f:X→Y  

by f(a)=c,f(b)=a,f(c)=f(d)=b. Clearly the inverse image of 

every supra β-open in Y is supra β-open in X. Hence f is a 

supra β-irresolute map. Then 

 

(1) Let A={b}. Then 

 and 

. Hence 

. 

(2) Let A={a,c}. Then 

 and 

 Hence 

 
(3)  

(4) Let A={a,b}. Then  and 

 Hence 

 
 

Theorem 3.3 Let f:X→Y be a map. Then the following 

conditions are equivalent: 

 

(1) f is a supra β-irresolute map. 

(2) The inverse image of each supra β-closed set in Y is 

supra β-closed set in X. 

(3)  for every subset 

B of Y. 

(4)  for every subset A of 

X. 

(5)  for every 

subset B of Y. 

 

Proof:  

 

(1) (2) Let f be a supra β-irresolute map. Let A be a supra β-

closed subset of Y. Then Y-A is supra β-open in Y. Since f is 

a supra β-irresolute map, (Y-A) is supra β-open in X. That 

is, X-  is supra β-open in X. Hence  is supra β-

closed in X. 

 

(2) (3) Let B be any subset of Y. Since  is supra β-

closed in Y and By (2),  is supra β-closed in X. 

Therefore, 

. 

Hence  for every subset B 

of Y. 

 

(3) (4) Assume that the condition 

 holds for every subset B 

of Y. Let A be any subset of X. Then f(A) Y. By (3), 

. Hence 

 for every subset A of X. 

 

(4) (5) Assume that the condition 

 holds for every subset A of X. 

Let B be any subset of Y. Then X-  By (4), 

- (f(X- (B))). Then 

)= . 

Hence   

 

(5) (1) Assume that the condition 

 holds for every subset 

B of Y. Let B be any supra β-open subset of Y. By (5), 

 We know that 

 Thus 

 Therefore,  is supra 

β-open in X. Hence f is a supra β-irresolute map. 
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Theorem 3.4 If f:X→Y is a supra β-irresolute surjective map 

and C and D are supra β-separated sets in Y, then  

and  are supra β-separated in X. 

 

Proof: Let f:X→Y be a supra β-irresolute map. Since C and D 

are supra β-separated in Y, 

. By Theorem 3.3 (3), 

. Then 

 Hence  Similarly we can 

prove that . Hence 

 and  are supra β-separated in X. 

 

Theorem 3.5 If f:X→Y is supra β-irresolute bijective map and 

A is a supra β-connected subset of X, then f(A) is a supra β-

connected subset of Y. 

 

Proof: Suppose f(A) is not a supra β-connected subset of Y. 

Then f(A)=C D where C and D are non-empty supra β-

separated sets in Y. By Theorem 3.4,  and  

are supra β-separated sets in X. Since f is bijective,  

and  are non-empty. Since f is bijective, A= 

 Hence A is not a supra β-connected 

subset of X, which is a contradiction.Thus f(A) is a supra β-

connected subset of Y. 

 

Theorem 3.6 If f:X→Y is a supra β-irresolute map and G is 

supra β-connected in X, then f(G) is supra β-connected in Y. 

Proof: Suppose f(G) is not connected in Y, then there exist 

two supra β-closed sets A and B in Y such that , 

f( ,  and .  

Then ), ), 

=  and 

. This implies that G is not 

supra β-connected in X, which is a contradiction. Hence f(G) 

is supra β-connected in Y. 

 

Corollary 3.7 If f:X→Y is a surjective supra β-irresolute map 

and X is supra β-connected, then Y is supra β-connected 

Proof: By Theorem 3.6, f(X) is supra β-connected. That is, Y 

is supra β-connected. 

 

IV TOTALLY SUPRA β-CONTINUOUS FUNCTIONS, 

SLIGHTLY SUPRA β-CONTINUOUS FUNCTIONS 

AND STRONGLY SUPRA β-CONTINUOUS 

FUNCTIONS 

    

In this Section, we investigate some other properties 

of totally supra β-continuous functions, slightly supra β-

continuous functions and strongly supra β-continuous 

functions. Also, the relationship between these functions and 

supra β-irresolute maps are discussed. 

 

Theorem 4.1 Let f:X→Y be a totally supra β-continuous 

injective function. If Y is a T0-space, then X is a supra β-T2 

space. 

 

Proof: Let x and y be any pair of distinct points in X. Since f 

is injective, f(x) f(y) in Y. Since Y is a T0-space, there exists 

an open set V in Y containing f(x) but not f(y) or containing 

f(y) but not f(x). Thus for the first case,  and 

. Since f is a totally supra β-continuous 

function,  and  are disjoint supra β-

clopen sets in X containing x and y respectively. The proof of 

the other case is similar. Hence X is a supra β-T2 space. 

 

Theorem 4.2 Every slightly supra β-continuous function into 

a discrete space is strongly supra β-continuous function. 

 

Proof: Let f:X→Y be a slightly supra β-continuous function 

where Y is a discrete space. Let A be any subset of Y. Then A 

is a clopen set in X. Since f is a slightly supra β-continuous 

function,  is supra β-clopen in X. Hence f is a 

strongly supra β-continuous function. 

 

Theorem 4.3 Let f:X→Y and g:Y→Z be functions. Then 

gof:X→Z. 

 

(1) If f is supra β-irresolute and g is slightly supra β-

continuous then gof is slightly supra β-continuous. 

(2) If f is slightly supra β-continuous and g is continuous, 

then gof is slightly supra β-continuous. 

 

Proof:  Let V be any clopen subset of Z. 

 

(1) Since g is slightly supra β-continuous,  is 

supra β-open in Y. Since f is supra β-irresolute, 

 is supra β-open in X. That is, 

 is supra β-open in X. 
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(2) Since g is continuous,  is clopen in Y. Since 

f is slightly supra β-continuous,  is 

supra β-open in X. That is,  is supra β-

open in X. 

         

Hence gof is slightly supra β-continuous. 

 

Corollary 4.4 If f:X→Y is supra β-irresolute and g:Y→Z is 

supra β-continuous then gof:X→Z is slightly supra β-

continuous. 

 

Proof: Since every supra β-continuous function is slightly 

supra β-continuous function, g is slightly supra β-continuous 

function. By Theorem 4.3 (1), gof is slightly supra β-

continuous. 

 

Theorem 4.5 Let f:X→Y be a supra β-irresolute supra β-open 

surjective map and g:Y→Z be a function. Then g is slightly 

supra β-continuous if and only if gof is slightly supra β-

continuous. 

 

Proof: 

  Let g be slightly supra β-continuous. By Theorem 4.3 (1), 

gof is slightly supra β-continuous. 

 

.  Let gof be slightly supra β-continuous. Let V be any 

clopen subset of Z. Then (gof)
-1

(V) is supra β-open in X. Since 

f is supra β-open, f((gof)
-1

(V)) is supra β-open in Y. Since f is 

surjective, f((gof)
-1

(V))=f(f
-1

(g
-1

(V)))= g
-1

(V) is supra β-open 

in Y. Hence g is slightly supra β-continuous. 

 

Theorem 4.6 Let f:X→Y be a slightly supra β-continuous 

injective map and Y is clopen-Ti, then X is supra β-Ti for 

i=1,2. 

 

Proof: Let x and y be any two distinct points in X. Then f(x) 

and f(y) are distinct points in Y. 

 

(1) For i=1. Since Y is clopen-T1, there exist clopen sets 

V and W in Y such that  and 

. Since f is slightly supra β-

continuous, f
-1

(V) and f
-1

(W) are supra β-open in X 

such that   and 

. This shows that X is 

supra β-T1. 

(2) For i=2. Since Y is clopen-T2, there exist disjoint 

clopen sets V and W in Y such that  and 

. Since f is slightly supra β-continuous, f
-

1
(V) and f

-1
(W) are disjoint supra β-open in X 

containing x and y respectively. Hence X is supra β-

T2. 

 

Proposition 4.7 Every supra β-irresolute map is slightly supra 

β-continuous. 

Proof: Let f:X→Y be a supra β-irresolute map. Let A be any 

clopen subset of Y. Then A is open in Y. Since ρ is the 

associated supra topology with σ, A is supra open in Y. Then 

A is supra β-open in Y. Since f is supra β-irresolute, f
-1

(A) is 

supra β-open in X. Hence f is slightly supra β-continuous. 

          

The converse of Proposition 4.7 need not be true as 

shown by the following example. 

 

Example 4.8 Let X={a,b,c} and τ={υ,X,{a,b}} be a topology 

on X. Clearly µ={υ,X,{a},{a,b},{b,c}} is a supra topology on 

X. Here the only clopen sets are υ and X and all the subsets of 

X except {c} are supra β-open in X. Define f:X→X by 

f(a)=c,f(b)=a,f(c)=b. Clearly the inverse image of every clopen 

set is supra β-open. Hence f is a slightly supra β-continuous 

function. But the inverse image of a supra β-open set {b} is 

{c} which is not a supra β-open set. Hence f is not a supra β-

irresolute map. 

 

Proposition 4.9 Every strongly supra β-continuous function is 

supra β-irresolute. 

 

Proof: Let f:X→Y be a strongly supra β-continuous function. 

Let A be any supra β-open subset of Y. Since f is a strongly 

supra β-continuous function, f
-1

(A) is supra β-clopen in X. 

That is, f
-1

(A) is supra β-open in X. Hence f is supra β-

irresolute. 

 

The converse of Proposition 4.9 need not be true as 

shown by the following example. 

 

Example 4.10 Let X={a,b,c} and τ={υ,X,{a,b}} be a 

topology on X. Clearly µ={υ,X,{a},{a,b},{b,c}} is a supra 

topology on X. Here all the subsets of X except {c} are supra 

β-open and all the subsets of X except {c} and {a,b} are supra 

β-clopen in X. Define f:X→X by f(a)=b,f(b)=a,f(c)=c. 

Example 3.6 in [7] shows that this map f is a supra β-irresolute 

map. But the inverse image of the set {a,b} is {a,b} which is 

not supra β-clopen. Hence f is not a strongly supra β-

continuous function. 

 

Remark 4.11 Totally supra β-continuous functions and supra 

β-irresolute maps are independent.  

        

For example, Let X={a,b,c} and τ={υ,X,{a,b}} be a 

topology on X. Clearly µ={υ,X,{a},{a,b},{b,c}} is a supra 
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topology on X. Here the sets υ,X,{a,b} are open, all the 

subsets of X except {c} are supra β-open and all the subsets of 

X except {c} and {a,b} are supra β-clopen in X. 

 

(1) Define f:X→X by f(a)=c, f(b)=a, f(c)=b. Clearly the 

inverse image of every open set is supra β-clopen. 

Hence f is a totally supra β-continuous function. 

Example 4.8 shows that this map f is not a supra β-

irresolute map. 

(2) Define f:X→X by f(a)=b, f(b)=a, f(c)=c. Example 3.6 

in [7] shows that this map f is  a supra β-irresolute 

map. Clearly the inverse image of the open set {a,b} 

is {a,b} which is not supra β-clopen. Hence f is not a 

totally supra β-continuous function. 

 

V. CONCLUSION 

    

In this paper, we have investigated some other 

properties of supra β-irresolute maps, totally supra β-

continuous functions, slightly supra β-continuous functions 

and strongly supra β-continuous functions. Also, the 

relationship between these functions are discussed. 
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