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Abstract- Finite Field arithmetic is becoming increasingly a 

very prominent solution for calculations in many applications. 

The most demanding Finite Field arithmetic operation is 

multiplication. In this paper two Finite Field multiplier 

architectures and VLSI implementations are proposed using 

the Montgomery Multiplication Algorithm. The first 

architecture (Folded) is optimized in order to minimize the 

silicon covered area (gate count) and the second (Pipelined) is 

optimized in order to reduce the multiplication time delay. 

Both architectures are measured in terms of gate count-chip 

covered area and multiplication time delay and have more 

than adequate results in comparison with other known 

multipliers. 
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I. INTRODUCTION 

 

 In mathematics, a finite field or Galois field, so-

named in honor of Évariste Galois, is a field that contains a 

finite number of elements. As with any field, a finite field is 

a set on which the operations of multiplication, addition, 

subtraction and division are defined and satisfy certain basic 

rules. The most common examples of finite fields are given by 

the integers of p when p is a prime number. 

 

Elliptic Curve Cryptography, or ECC, is a powerful 

approach to cryptography and an alternative method from the 

well-known RSA. It is an approach used for public key 

encryption by utilizing the mathematics behind elliptic curves   

in order to generate security between key pairs. 

 

II. LITERATURE SURVEY 

 

1. Low complexity Montgomery multiplication architecture 

for Elliptical curve cryptography over GF(p^m) 

 

In this paper, Somsubhra Talapatra proposed a 

scalable VLSI multiplication architecture based on 

Montgomery multiplication (MM)algorithm for elliptic curve 

cryptography (ECC) over GF (pm), where p is a positive prime 

and m is the degree of extension of the base field GF(p), is 

presented. The elements of the GF (pm) are in polynomial 

basis (PB) representation. The coefficients of the polynomials 

are represented in Montgomery residue format to simplify the 

multiplications over GF(p). 

 

2. Hardware implementation of Montgomery multiplier in a 

Systolic array 

 

In this paper, Sıddıka Berna describes a hardware 

architecture for modular multiplication operation which is 

efficient for bit-lengths suitable for both commonly used types 

of Public Key cryptography (PKC) i.e. ECC and RSA 

Cryptosystems. The challenge of current PKC 

implementations is to deal with long numbers (160-2048 bits) 

in order to achieve system’s efficiency, as well as security. 

 

3. Montgomery's Multiplication Technique: How to Make it 

Smaller and Faster 

 

Colin D Walter states that, Montgomery's modular 

multiplication algorithm has enabled considerable progress to 

be made in the speeding up of RSA cryptosystems. Perhaps 

the systolic array implementation stands out most in the 

history of its success. This article gives a brief history of its 

implementation in hardware, taking a broad view of the many 

aspects which need to be considered in chip design. 

 

4. Precise Bounds for Montgomery Modular Multiplication 

and Some Potentially Insecure RSA Moduli 

 

Colin D. Walter states that, An optimal upper bound 

for the number of iterations and precise bounds for the output 

are established for the version of Montgomery Modular 

Multiplication from which conditional statements have been 

eliminated. The removal of such statements is done to avoid 

timing attacks on embedded cryptosystems but it can mean 

greater execution time. Unfortunately, this inefficiency is 

close to its maximal for standard RSA key lengths such as 512 

or 1024 bits. Certain such keys are then potentially subject to 

attack using differential power analysis. These keys are 

identified, but they are rare and the danger is minimal. The 

improved bounds, however, lead to consequent savings in 

hardware. 

 

5. Efficient Implementation of an Elliptic Curve 

Cryptosystem Over Binary Galois Fields in normal and 

Polynomial Bases 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/%C3%89variste_Galois
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Integers_mod_n
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Matthew Estes and Philip Hines, states that, Elliptic 

Curve Cryptography has many features 

that distinguish it from other cryptosystems, one of which is 

that it is still relatively new cryptosystem. As such, many 

improvements in performance have been discovered during 

the last few years for Galois Field operations both in 

Polynomial Basis and in Normal Basis. However, there is still 

some confusion to the relative performance of these new 

algorithms and very little examples of practical 

implementations of these new algorithms. The purpose of this 

project is to implement these high-performance algorithms in 

a library, test their relative performance, and provide a flexible 

framework for integrating 

future algorithms. 

 

Finite field or Galois field 

 

It is particularly useful in translating computer data 

as they are represented in binary forms. That is, computer data 

consist of combination of two numbers, 0 and 1, which are the 

components in Galois field whose number of elements is two. 

Representing data as a vector in a Galois Field allows 

mathematical operations to scramble data easily and 

effectively. 

 

Expression for Galois Field 

 

The elements of Galois Field Gf (p
n
) is defined as, 

 

Gf (p
n
) = (0, 1, , , , , , , , , , , , , , ,p - 1) U 

(p, p + 1, p + 2, , , , , , , , , , , , , , p + p - 1) U 

(
p2

, 
p2

 + 1, p
2
 + 2, , , , , , , , , , , , ,p

2
 + p - 1) U , , , , , U 

(p
(n-1)

, p
(n-1)

+1 ,  p
(n-1)

 + 2, , , , , , p(n-1) + p - 1) 

 

Where,  p belongs to P and n belongs Z.  

 

The order of the field is given by p
n
 while p is called 

the characteristic of the field. On the other hand, gf, as one 

may have guessed it, stands for Galois Field. Also note that 

the degree of polynomial of each element is at most n - 1. 

 

Elliptic Curve Cryptography 

 

ECC has been slowly gaining in popularity over the 

past few years due to its ability to provide the same level of 

security as RSA with a much smaller key size. The resources 

available to crack encrypted keys continues to expand, 

meaning the size of encrypted keys must continue to grow in 

order to remain secure. This can prove to be a burden to 

certain devices, particularly mobile, that do not have as much 

available computational power. However, Elliptic Curve 

Cryptography helps to solve that problem. 

Working  

 

An elliptical curve can simply illustrate as a set of 

points defined by the following equation: 

 

y
2
 = x

3
 + ax + b 

 
 

Based on the values given to a and b, this will 

determine the shape of the curve. Elliptical curve 

cryptography uses these curves over finite fields to create a 

secret that only the private key holder is able to unlock. The 

larger the key size, the larger the curve, and the harder the 

problem is to solve.  

 

Why is ECC Important? 

 

As noted in the previous section, size is a major 

factor in the importance of elliptic curve cryptography. For 

keys of the same size, solving for an elliptic curve discrete 

logarithm is significantly harder than factoring, which is how 

RSA encrypts keys. 

 

To put things into perspective, according a Universal 

Security study, breaking a 228-bit RSA key would take less 

energy than what is needed to boil a teaspoon of water. 

Alternatively, breaking a 228-bit ECC key would require more 

energy than it would take to boil all the water on earth. 

 

Therefore, having the ability to significantly reduce 

the size of these keys can serve very useful for devices which 

have less computational power. 

 

III. MONTGOMERY'S MODULAR  

MULTIPLICATION 

 

Digit Multipliers 

 

Before Montgomery Multiplication digit multipliers 

were used. Since digit multipliers are complex, we will use the 

radix multiplier. These rxr multipliers form the core of an 

RSA processor, forming the digit-by-digit products. The cross-

over point is greater than the size of the digits here. So 

classical multiplication methods are preferable. 

 

Speed is most easily obtained by using at least n 

multipliers to perform a full-length multiplication ai×B (or 

http://eprint.iacr.org/2013/635.pdf
http://eprint.iacr.org/2013/635.pdf
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equivalent) in one clock cycle. In this realistic measure of the 

speed required for real-time decryption is provided by an 

assumption that the internal bus speed is in the order of one k-

bit digit per clock cycle. If the k-bit multiplier operates in one 

cycle with no internal pipelining then computing A×B takes n 

cycles using n multipliers in parallel in order to compute ai×B 

in one cycle. The throughput is therefore one digit per cycle 

for a multiplication.  

 

Modular Reduction 

 

Modular arithmetic has the problem that a division is 

usually needed in order to get the remainder. Division is a 

complex, time consuming operation in GF(2k) fields. Thus, 

methods for bypassing the division obstacle have been 

devised. So, to overcome this we go for Montgomery 

Multiplication Algorithm. 

 

The Montgomery Multiplication Algorithm for GF(2k) 

fields 

 

One of the most popular algorithms, taken from 

standard arithmetic, is the Montgomery Multiplication 

Algorithm. It performs modular multiplication without 

division.  

Instead of a(x) b(x) mod f(x) the algorithm calculates a(x) b(x) 

r-1(x) mod f(x) where r(x) is a precomputed value. It is 

required that gcd (r(x), f(x)) = 1. By choosing r(x) = x k, for 

the gcd(r(x), f(x)) = 1 assumption to hold, it suffices f(x) not 

be divisible by x, which is always the case since f(x) is defined 

over the field GF (2). Through the correct choosing of the 

value r(x), the algorithm becomes less complex and can give 

efficient hardware implementations.   

 

Elliptic Curve Cryptography 

 

ECC has been slowly gaining in popularity over the 

past few years due to its ability to provide the same level of 

security as RSA with a much smaller key size. The resources 

available to crack encrypted keys continues to expand, 

meaning the size of encrypted keys must continue to grow in 

order to remain secure. This can prove to be a burden to 

certain devices, particularly mobile, that do not have as much 

available computational power. However, Elliptic Curve 

Cryptography helps to solve that problem. 

 

Working  

 

An elliptical curve can simply illustrate as a set of 

points defined by the following equation: 

 

y
2
 = x

3
 + ax + b 

 
 

Based on the values given to a and b, this will determine the 

shape of the curve. Elliptical curve cryptography uses these 

curves over finite fields to create a secret that only the private 

key holder is able to unlock. The larger the key size, the larger 

the curve, and the harder the problem is to solve.  

 

Why is ECC Important? 

 

As noted in the previous section, size is a major 

factor in the importance of elliptic curve cryptography. For 

keys of the same size, solving for an elliptic curve discrete 

logarithm is significantly harder than factoring, which is how 

RSA encrypts keys. 

 

To put things into perspective, according a Universal 

Security study, breaking a 228-bit RSA key would take less 

energy than what is needed to boil a teaspoon of water. 

Alternatively, breaking a 228-bit ECC key would require more 

energy than it would take to boil all the water on earth. 

Therefore, having the ability to significantly reduce the size of 

these keys can serve very useful for devices which have less 

computational power. 
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