
IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 916 www.ijsart.com

Hacking And Prevention For Secure Bank System

Pratik Suryawanshi1, Abhishek Dhole2, Somanath Maske3, Supriya Shirsat4

1, 2, 3, 4 Dept of Computer Engineering
1, 2, 3, 4 RMD Sinhgad School of Engineering

Abstract- This is a Banking web application which provides
various functionalities to User and Admin. Admin can approve
or reject user application. Admin can search customers by ac-
count number or customer name. Admin can see logs of at-
tacks. User can do online transactions like Fund Transfer, Bill
Payments (electricity bill, income tax, mobile recharge).The
application is prevented by detecting different attacks such as
SQL injection, URL injection, Cross site Scripting attack and
Brute force attack. User will get randomly generated user-
name, password and pin number on his email. After every
transaction user will get notification by message. User can see
his account details and mini statement.

I. INTRODUCTION

 In this we are using Banking application can do
online trans- action, and can detect attacks like SQL injection,
Brute force attack, URL injection, Cross site scripting attack.
Personal information of user get stored in database in
encrypted for- mat. Dynamic password and pin generates and
send to user on his Email. After every transaction user get
notification by message. User can see his account details and
mini state- ments

The Advanced Encryption Standard or AES is a

symmet- ric block cipher used by the U.S. government to
protect clas- sified information and is implemented in software
and hard- ware throughout the world to encrypt sensitive data.

II. MOTIVATION BACKGROUND

We are motivated from the attack on COSMOS bank

in Aug,2018. NPCI says cyber fraud due to malware attack on
banks IT system. Hacker used middleware attack and
transferred 94 crore over in 21 countries.

III. RELATED WORK

Server-side approaches: Cross-site Scripting is essentially an
input filtering failure. Consequently, methods have been
developed to target malicious inputs even before they reach
the web server. Traditionally, web application firewalls

Figure 1: Work Flow Diagram.

(WAFs) are either scanning for attack signatures in

the pa- rameters passed on to the web application (including
POST- parameters, cookies, etc.), or require an administrator
to manually specify a ruleset to match requests against . Both
ways can be regarded as an external second in- put filter- ing
layer. A first anomaly-based intrusion detection system for
web applications was proposed by Kruegel and Vigna in .
Their system derives a number of statistical character- istics
from observed HTTP requests, regarding the param- eters
length, character distribution, structure, presence and order.
However, unlike our methods, both approaches con- centrate
solely on the incoming query parameters while ig- noring the
respective HTTP response, thus either causing unnecessary
false positives or missing certain attacks. Is- mail et al.
describe an XSS detection mechanism which follows an
approach similar to our reflected detector . Us- ing a server-
side proxy incoming parameters are checked for contained
HTML markup. If such a parameter could be identified, the
respective HTTP response is examined if the same HTML
markup can be found in the responses HTML content. In
comparison to our approach the proposed tech- nique has
several shortcomings. The HTML- based match- ing approach
is inaccurate, as it fails to identify in-script and attribute-
injections. Furthermore, unlike our technique, the proposed
detector also does not consider transformation- processes,
such as character-encoding or removal filters, that may alter
the incoming parameters before their reflection on the
outgoing HTML. Taint analysis has been proven to be a
powerful tool for detecting code injection vulnerabilities.
Taint analysis tracks the flow of untrusted data through the
application. All user-provided data is tainted until its state is
explicitly set to be untainted. This allows the detection if un-
trusted data is used in a security sensible context. Taint anal-
ysis was first introduced by Perls taint mode. More recent

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 917 www.ijsart.com

work describes finer grained approaches towards dynamic
taint propagation. These techniques allow the tracking of
untrusted input on the basis of single characters. In indepen-
dent concurrent works Nguyen-Tuong et al and Pietraszek and
Vanden Berghe proposed fine grained taint propagation to
counter various classes of injection at- tacks. Halfond et al.
describe a related approach (positive tainting) which, un- like
other proposals, is based on the tracking of trusted data. Xu et
al propose a fine grained taint mechanism that is im-
plemented using a C-to-C source code translation technique.
Their method detects a wide range of injection attacks in C
programs and in languages which use interpreters that were
written in C. To protect an interpreted application against
injection attacks the application has to be executed by a re-
compiled interpreter. However, in any case dynamic taint
tracking requires profound changes to either the monitored
application or the application server/run-time. Thus, access to
the source code of one of these components is required. Also,
a taint tracking based solution is necessarily always specific
for a certain technology (programming language, application
server), while real-life web applications are of- ten composed
of heterogeneous systems. Finally, real-time data-tracking
always introduces certain performance penal- ties. In
comparison, our approach is applicable with all lan- guages
and application servers, does not require any changes to the
executed code, and is able to monitor highly heteroge- neous
set-ups. Also, as we propose a passive offline detector, no
performance penalties are introduced.

Client-side approaches: We are proposing detection methods
that are positioned exclusively at the server-side. For the sake
of completeness, this section lists related ap- proaches that
incorporate the client-side web browser: In concurrent and
independent work an XSS filter for the Inter- net Explorer
browser was implemented which follows an ap- proach that is
closely related to our reflected detector: Based on an analysis
of outgoing HTTP parameters, signatures are generated which
are then checked against the correspond- ing HTTP response.
Furthermore, the NoScript- plugin for Firefox provides a
simple protection mechanism against re- flected XSS:
Outgoing HTTP parameters are checked if they potentially
contain JavaScript code. If such parameters are detected, the
plugin warns the user be- fore sending the re- spective HTTP
request. As the incoming HTTP response is ignored, the
plugin produces unnecessary false positives. Both browser-
based approaches are unable to detect stored XSS.

 With Browser-Enforced Embedded Policies (BEEP)
, the web server includes a whitelist-like policy into each page,
allowing the browser to detect and filter unwanted scripts. As
the policy itself is a JavaScript, this method is very flex- ible
and for instance allows the definition of regions, where scripts

are disallowed. BEEP re- quires the usage of a mod- ified web
browser. does not elaborate how the list of legit- imate scripts
is supposed to be compiled. Instead this step is left to the
applications developers. As our generic detec- tor is
specifically designed to establish the list of legitimate scripts,
a combination of the two approaches appears to be promising.
Finally, Hallaraker and Vigna in modified Mozil- las
SpiderMonkey Engine to track the behaviour of client- side
JavaScript. The activity profile of each script then is matched
against a set of high-level policies for detecting ma- licious
behaviour.

IV. OVERVIEW

Our detection mechanism for reflected XSS is based

on the observation that reflected XSS implies a direct re-
lationship between the input data (e.g., HTML parameters)
and the injected script. More precisely: The injected script is
fully contained both in the HTTP request and the HTTP
response. Reflected XSS should therefore be detectable by
simply matching incoming data and outgoing JavaScript us-
ing an appropriate similarity metric. It is crucial to empha- sise
that we match the incoming data only against script code
found in HTML. Non-script HTML content is ignored. See
Section 5 for our script-extraction technique. For the sake of
readability we will uses the term parameters as a gener- alized
term for all user-provided data in the sequel. We can formulate
the problem to be solved as follows:

Problem 1: Given a set of parameters P = p1, p2, ..., pm and a
set of scripts S = s1, s2, ..., sn find all matches between P and
S in which pi was used to define parts of sj.

Figure 2: Passive XSS attack detection

V. ADOBTED ALGORITHM

Definition 1: Given a string p = p1p2...pn , the DFA

Dp = (Q, , , s0, F) DFA with Q = s0, s1, ..., sn (states)
: Q Q : (si, wj) = (transitions) sj i ¡ j [jJ : i ¡ jJ ¡ j pj = pjr] F
= Q (final states)
s0 Q (starting state) (alphabet)accepts exactly the set of all
subsequences of p.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 918 www.ijsart.com

Figure 3: Algorithm for encoding removal

Figure 4: System Architecture.

VI. LIMITATION

The proposed detector relies upon a direct

comparison of in- coming HTTP-parameters and outgoing
HTML. Stored XSS is therfore not always detectable with this
approach: the required direct relationship between HTTP
request and re- sponse does not necessarily exist. It might be
possible to de- tect the initial exploiting request/response pair,
if the given stored XSS takes effect immediately. However, in
certain cases, the HTTP request that injects the malicious
payload permanently in the application and the poisoned
HTML re- sponse are not created consecutively.

VII. METHODOLOGY

Generally, any attack detection system should have two

major capabilities: detecting as many attacks as possible
whilst having a false-positive rate as low as possible. We
assessed the detection abilities of both approaches by apply-

ing them to crafted attacks injected into otherwise benign data
and real-world attack data of disclosed XSS problems.
Furthermore, we measured the false-positive rate by apply- ing
the detectors to our collected dataset which we assumed
contained no attacks. This time every alarm was counted as a
false-positive and logged. Afterwards all alarms were re-
viewed by hand to make sure there really were no attacks in
the data. The error-rates were divided by the number of pages
used for testing in order to remove the influence of different
web application sizes.

VIII. CONCLUSION

We described XSSDS a server-side Cross-site

Scripting de- tection system. The systems uses two novel
detection- ap- proaches that are based on generic observations
of XSS at- tacks and web applications. A prototypical
implementation demonstrated our approachs capabilities to
reliably detect XSS attacks while maintaining a tolerable false
positive rate. As our approach is completely passive and solely
requires reading access to the applications HTTP traffic, it is
appli- cable to a wide range of scenarios and works together
with all existing web technologies.

REFERENCES

[1] R. A. Baeza-Yates and G. H. Gonnet. Fast text searching

for regular expressions or automaton searching on tries.
Journal of the ACM, 43(6):915 936, November 1996.

[2] Blwood. Multiple xss vulnerabilities in tikiwiki 1.9.x.
mailing list Bugtraq, http://www.securityfocus.
com/archive/1/435127/30/120/threaded, May 2006.

[3] S. Christey and R. A. Martin. Vulnerability type distribu-
tions in cve, version 1.1. [online], http://cwe.mitre.
org/documents/vuln-trends/index.html, (09/11/07), May
2007.

[4] K. Fernandez and D. Pagkalos. Xssed.com - xss (cross-
site scripting) information and vulnerabile web- sites
archive. [on- line], http://xssed.com (03/20/08).

[5] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biology.
Cam- bridge University Press, New York, USA, 1997.
ISBN 0521585198.

[6] W. G. Halfond, A. Orso, and P. Manolios. Using posi-
tive tainting and syntax-aware evaluation to counter sql
injection attacks. In 14th ACM Symposium on the Foun-
dations of Soft- ware Engineering (FSE), 2006

[7] O. Hallaraker and G. Vigna. Detecting malicious
javascript code in mozilla. In Proceedings of the IEEE In-
ternational Conference on Engineering of Complex Com-
puter Systems (ICECCS), pages 8594, June 2005.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 919 www.ijsart.com

[8] R. Hansen. XSS (cross-site scripting) cheat sheet - esp:
for filter evasion. [online], http://ha.ckers.org/xss. html,
(05/05/07).

[9] O. Ismail, M. Eto, Y. Kadobayashi, and S. Yam- aguchi.
A proposal and implementation of automatic
detection/collec- tion system for cross-site scripting vul-
nerability. In 8th In- ternational Conference on Advanced
Information Network- ing and Applications (AINA04),
March 2004.

[10] T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced embedded poli-
cies. In 16th International World Wide Web Conference
(WWW2007), May 2007.

[11] A. Klein. Cross site scripting explained. White Pa- per,
Sanc- tum Security Group, http://crypto.stanford.
edu/cs155/CSS.pdf, June 2002.

[12] A. Klein. Dom based cross site scripting or xss of the
third kind. [online], http://www.webappsec.org/
projects/articles/071105.shtml, (05/05/07), Sebtember
2005.

[13] J. Kratzer. Jspwiki multiple vulnerabilitie. Post- ing
to the Bugtraq mailinglist, http://seclists.org/ bug-
traq/2007/Sep/0324.html, September 2007.

[14] C. Kruegel and G. Vigna. Anomaly detection of web-
based attacks. In Proceedings of the 10th ACM Con-
ference on Computer and Communication Security (CCS
03), pages 251261. ACM Press, October 2003.

[15] G. Maone. Noscript firefox extension. Software, http:
//www.noscript.net/whats, 2006.

[16] Misc. New xss vectors/unusual javascript. [on- line],
 http://sla.ckers.org/forum/read.php? 2,15812 (04/01/08),
 2007.

