
IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 1364 www.ijsart.com

Solving Real Time Sudoku Images Using Different

Computer Vision Techniques With Deep Learning

Rajat
1
, Rishabh Sharma

2

1, 2 Maharaja Agrasen Institute of technology

Abstract- Sudoku is a logic-based, combinatorial number-

placement puzzle. The objective is to fill a 9×9 grid with digits

so that each column, each row, and each of the nine 3×3

subgrids that compose the grid (also called "boxes", "blocks",

or "regions") contains all of the digits from 1 to 9. The puzzle

setter provides a partially completed grid, which for a well-

posed puzzle has a single solution.

This project aims at developing a highly effective

computer vision based Sudoku solving program that identifies,

recognises and understands an image to generate and solve a

Sudoku. In this project user have to click/upload photo of

sudoku. In this project user have to click/upload photo of

sudoku. The project will automatically detect the problem and

extract sudoku and interpret the value and solve the problem

for you and print the output. The underlying principle is the

use of object detection by finding the largest contour using

adaptive threshold and Image Recognition through neural

networks and finally solving the problem using search

algorithms like Backtracking.We have also shown that

problem specific dataset is better than using general dataset,

that is, MNIST.

I. INTRODUCTION

 Machine learning has been used for years to offer

object detection, image recognition, spam detection, natural

language processing, recommendation system and medical

diagnosis. Today, machine learning algorithms can help us

enhance cybersecurity, ensure public safety, and improve

medical outcomes. Machine learning systems can also make

customer service better and automobiles safer. With machine

learning, we can solve a real-world problem but would not be

too complicated to implement. Machine Learning is very

much popular in gaming field also like Alpha-go which

defeated the national GO champion was starting of a new era.

Sudoku is one of the most popular numbers game that we can

play everyday. Sudoku is a numbers game which players have

to fill each of the blank boxes in a puzzle based on specific

rules. It can be one of the hardest and challenging puzzle to

solve which all age group people love and help them level up

their brain. Just like physical exercise, your mind need some

exercise too. Playing sudoku actually exercises your brain

extensively. So machine learning enable computers to do

things which human can do with superhuman accuracy.

Sudoku is a logic-based, combinatorial number-

placement puzzle. The objective is to fill a 9×9 grid with digits

so that each column, each row, and each of the nine 3×3

subgrids that compose the grid (also called "boxes", "blocks",

or "regions") contains all of the digits from 1 to 9. The puzzle

setter provides a partially completed grid, which for a well-

posed puzzle has a single solution.

Completed games are always a type of Latin square

with an additional constraint on the contents of individual

regions. For example, the same single integer may not appear

twice in the same row, column, or any of the nine 3×3

subregions of the 9x9 playing board.

II. RULES OF SUDOKU

A general Sudoku has a 9 X 9 array of square boxes,

of which some are pre-filled and others are empty. The

scattered random presence and absence of numbers in the

array makes the puzzle. The difficulty of the Sudoku is

measured by the number of pre-provided elements at the start

of the game. A Sudoku containing more numbers is

considered easier than the one having less numbers. A Sudoku

is considered to be complete only when all the 81 boxes are

completely filled while following the rule that no row or

column and no 3 x 3 sub-block repeats of the digit from 1 to 9.

III. DATASET USED

Custom Sudoku Digit Data:

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 1365 www.ijsart.com

Fig.: Sample dataset and Labels

For this task we have created a digit dataset using

different sudoku images. In the dataset of 130 Sudoku Images

we had randomly split the image archive into training and test

sets, with 80 images chosen for the training set and rest 50 for

the testing set. From this we have created archives of

individual digits, classified them using the .dat files and

separated them into their own folders

(`/data/images/classified/0-9). Finally compiles these images

into a binary pickle file that can be consumed for training and

testing purpose. We have used 4 different types of digit

extraction method to create our dataset and find out the best

method among them. Dataset is consisting of (28,28) size gray

scale digits which is similar to a very popular handwritten

digit classification dataset MNIST. We have used small image

size in order to reduce the computational complexity. Then we

have flattened all the images so that a single row with 784

pixels will represent unique image.

There are total 6500 digits in the training dataset

which are classified into 10 categories from 0-9 where 0 is for

all those digits which are not extracted completely and 1-9 is

used to represent the number. So the size of the label array

will become (6500,10) which is the one hot vector represent of

10 categories and size of the training image is (6500,784). We

have also created a test for validating our model using 1

sudoku image. The test contains 4000 unique digits which are

classified similarly as training dataset.

IV. IMPLEMENTATION

The custom image has to be identified from the extra

surroundings of the image and then all the numbers need to be

recognised so that the algorithm can solve them. This was

done in the following ways.

Fig.: Sample Input Sudoku

Preprocessing

Image preprocessing is done because we are working

on a real time based image and the quality of image depends

on the various factors like resolution, brightness, sharpness.

Real time image contains noise that can affect the working and

accuracy of the model so we need to apply some

preprocessing methods

The following are key words that can be used for

implementing different processing methods and hence

recognition models. Many of these key words can be used in

 Basic: Simplifies heuristics for extracting the Sudoku

board out of the image. This speeds up processing but

reduces reliability. This excludes the following heuristics:

 Excluding the border width of the grid when

extracting a board.

 Using a second algorithm for board extraction in

certain cases.

 Using Hough lines and linear algebra when

estimating the grid.

 Adaptive thresholding applied on the whole board

instead of on a cell-by-cell basis.

 Using Sudoku rules to determine failures in

recognition and compensating.

 Cell: Applies a pre-processing mode to each cell but does

not perform digit extraction and scaling.  

 Digit: This implements an extractor algorithm on each

cell that attempts to get the digit, isolate it and scale it.

Should be used with a pre-processing mode that converts

the image to binary (either pure black or white).

 Raw: This uses the full heuristics for board extraction and

grid estimation but performs no pre-processing on the

individual cells.  

 Preprocessing applied on the input image are:

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 1366 www.ijsart.com

● Converting image into grayscale image :

Converting the image to grayscale helps in easy and

fast reading of the image. With grayscale image the colour

information is lost and each element simply be recognised by

the change in brightness of the pixels.

● Gaussian blur is applied :

The raw image obtained as input is full of noise and

difficult to read for any computer. So the image is blurred

using Gaussian Blur and the parts of the image get

smoothened out for easy reading. Gaussian Blur reduced the

complexity of the image significantly and helped in retaining

only those elements which we were interested in.

● Adaptive threshold :

Adaptive Thresholding converts the grayscale image

to a binary image with just two colors black & white. This

binary image was used to make the number and line

recognition clear by a significant number.

● Dilation :

The image obtained by Adaptive Thresholding is

very clear to identify by human eyes but due to the multiple

modifications of the image the numeral and line thickness gets

affected and hence the resultant image gives poor results in

number detection. So dilation was used to gain back the lost

image thickness. Dilation just makes the lines and shapes

more prominent to read and understand by computer hence

improving the accuracy.

Sudoku detection is done by finding the contours and

since we assume in the image the most portion is covered by

the puzzle so the largest contour will give the sudoku.

● Finding all the contours in the image :

The raw image which was grayscaled before is now

ready to get recognised. We assume that the image obtained

by user has Sudoku as it’s prominent feature and based on this

assumption the contour starts to recognise the Sudoku.

● Get the largest contour in the image.

The assumption of Sudoku being the main part of the

image helps in finding the outline of the Sudoku easily. This

detection of the Sudoku is used to find the main outline of the

Sudoku image. At this stage we are enabling computer to

recognise the main 9x9 matrix of the Sudoku.

● Get the largest bounding rectangle within the contour

:

With the outline of the Sudoku getting detected by

the algorithm we can start discarding the extra parts of the

image which play no role in sudoku. We find the corners of

the contour rectangle and convert those points to the X,Y

coordinates of the image pixels.

● Fitting the image in the center using perspective :

Now the image is cut out of the dilated image by

using the formula given in figure 4 and applying it to the

coordinates obtained by largest contour detection. The image

so obtained is the final Sudoku image without any noise or

extra parts.

 Digit isolation is done through various steps:

● Probabilistic Hough Line Transform to find the

location of all grid lines :

Cells of the image are detected by simple probability

method as the image obtained after extra part cutting and noise

reduction is almost straight and simply dividing the image into

9x9 squares can help easily detect the Sudoku cells.

● Extract the largest connected component in the image

:

Now, the position of the pre available numbers is

detected by observing the pixel brightness pattern in each of

the small contours of the grid. The cells with varying pixel

brightness are treated to be filled with data while the rest are

treated to be empty. This process is made more efficient by

giving priority to the center part of each contour.

● Removing all major noise in the cell :

All the major contours of the image are detected and

a new 9x9 grid is created showing the position of probable

numbers and all the empty cells are treated with digit zero “0”

in the new grid.

New 9 by 9 grid is created with the image cell

detected and shifting the digit towards the center and with the

cell size 28 X 28.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 1367 www.ijsart.com

Fig.: Preprocessing Steps

Detecting , interpretation

Now the main task was to detect the digit and then

predict what it is. For this we trained our deep neural net using

Convolution Neural Net on our custom Sudoku image dataset

which is a collection of Sudoku digits of size (28,28).

Model designing

Builds a multi-layered convolutional neural network

for classifying digits drawn in 28x28 squares. Network

contains 5 layers:

 Input layer: 784 neurons  

 1st Convolution layer, 5x5 patches of a 28x28 image

with 32 outputs. 2x2 max  pool downsamples to 14x14 image.

 

 2nd Convolutional layer, 5x5 patches of a 14x14

image with 64 outputs. 2x2 max pool downsamples to 7x7

image.  

 Fully connected layer: 1024 neurons  

 Output layer: 10 neurons   

Fig.: Final Model

Solving Sudoku

Backtracking

Backtracking is a general algorithm for finding all (or

some) solutions to some computational problems, that

incrementally builds candidates to the solutions, and abandons

each partial candidate (“backtracks”) as soon as it determines

that the candidate cannot possibly be completed to a valid

solution.

The idea is that we can build a solution step by step

using recursion; if during the process we realise that is not

going to be a valid solution, then we stop computing that

solution and we return back to the step before (backtrack). In

thecase of the maze, when we are in a dead-end we are forced

to backtrack, but there are other cases in which we could

realise that we’re heading to a non-valid (or not good) solution

before having reached it.

Modification of Backtracking using Elimination

Backtracking solves the Sudoku by solving each and

every possibility one by one. But practically it can take a very

long time to solve the Sudoku this way. So we modify it a bit

by simply eliminating all the useless solution before handedly.

Simple smart elimination removes all the inappropriate

options to give us a simple and faster backtracking algorithm.

All the possible options to the blank spaces are laid out and a

space with least possibilities is chosen as the starting point of

the backtracking algorithm.

Rules for easy and then extra rules for hard Sudoku

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 1368 www.ijsart.com

Implementing Backtracking algorithm directly can

solve most of the puzzles easily. But to save time and

computational power we set some rules that helped us solve

the Sudoku even better.

“If a unit has only one possible place for a given digit, it

must be that digit.”

This rule is applicable on all the Sudoku sets and was

used in the whole algorithm. But to solve some hard Sudokus

we needed to add some extra rules which helped in making the

algorithm better. These rules are

If there are no remaining possibilities for a cell, the board

is invalid.

If there are no possible positions for a digit in a unit, the

board is invalid.

These rules helped in additional fast pacing of the

program and made it better. For testing of the above rules a

Sudoku intentionally made difficult for Brute-Force

implementation was selected. The application of these rules

solved a worst case puzzle in just 0.01 seconds.

Fig.: Major Steps of the Algorithm

Result

In the given project we have 3 major task to solve in order to

have a complete solution.

1) Extract the Sudoku from the given Image 

2) Interpretation of the extracted Sudoku 

3) Solving the sudoku

Task 1:

So we have implemented various preprocessing techniques in

order to extract the correct sudoku from the given image.

Fig.: Extraction Result

Task 2:

Now after extracting the sudoku from the image we

have used our trained Convolutional Neural Net model in

order to predict all the digits and creating the custom sudoku

grid which will be used to solve the sudoku.

Fig.: Interpretation of the extracted sudoku

Task 3:

Now after interpreting the sudoku we have solved it

using Brute force technique known as Backtracking

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 1369 www.ijsart.com

Fig.: Solved Sudoku

Enhancement in our project

We improve our techniques in order to solve sudoku

more efficiently and to solve images which contain more noise

and are of low resolution or highly rotated.

Fig.: Low resolution and blur Sudoku image

Modifications in dataset

The performance of the neural net model to predict

the digit will increase with increase in the size of the dataset.

So now we are using 10k images of digits which are extracted

from 130 different sudoku so with increase in dataset by

including more images and digit from different Fonts help us

to improve the accuracy of digit detection which can be used

to predict digits which are not completely extracted.

Modification in the preprocessing Technique

We improve the preprocessing technique so that all

the digits are extracted properly and complete which will be

used to predict the digit.

Image with low resolution, blurred and highly rotated

are extracted properly due to which interpretation of the digit

is not done correctly. We can improve our technique by

adding few more preprocessing steps like using of Repetitive

thresholding technique which find the optimal threshold and

block value for adaptive threshold function.

V. CONCLUSION

From the result obtained we can say that

preprocessing is required for working with real time images

and we have tried different computer vision techniques for

solving Sudoku and found out that Raw method works the best

after sufficient amount of training. In Raw model we got 129

correctly solved Sudoku out of 130 giving us an accuracy of

99.24% .

REFERENCES

[1] Investigation on the Effect of a Gaussian Blur in Image

Filtering and Segmentation by Estevão S. Gedraite,

Murielle Hadad

https://www.researchgate.net/publication/261278360_Inv

estigation_on_the_effect_of_a_Gaussian_Blur_in_image_

filtering_and_segmentation

[2] Gaussian Blurring-Deblurring for Improved Image

Compression Moi Hoon Yap1, Michel Bister2, Hong Tat

Ewe11Multimedia University (MMU)

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 1370 www.ijsart.com

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

375.9085&rep=rep1&type=pdf

[3] Adaptive Thresholding: A comparative study by Payel

Roy, Saurab Dutta, Nilanjan Dey, Goutami Dey, Sayan

Chakraborty, Ruben Ray

https://www.researchgate.net/publication/269984781_Ada

ptive_thresholding_A_comparative_study

[4] Adaptive Thresholding Using the Integral Image by

Derek Bradley - Carleton University, Canada and Gerhard

Roth - National Research Council of Canada

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

420.7883&rep=rep1&type=pdf

[5] Contour Detection and Hierarchical Image Segmentation

by Pablo Arbela ́ez,Michael Maire, Charless Fowlkes and

Jitendra Malik.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vis

ion/grouping/papers/amfm_pami2010.pdf

[6] A CONVENTIONAL STUDY OF EDGE DETECTION

TECHNIQUE IN DIGITAL IMAGE PROCESSING by

Indrajeet Kumar, Jyoti Rawat, Dr. H.S. Bhadauria

https://www.ijcsmc.com/docs/papers/April2014/V3I4201

497.pdf

[7] Developing the Theory of Perspective Transformation:

Continuity, Intersubjectivity, and Emancipatory Praxis

[8] https://journals.sagepub.com/doi/pdf/10.1177/074171361

6674076

[9] Progressive Probabilistic Hough Transform by J. Matas,

C.Galambos and J. Kittler

https://arxiv.org/pdf/1502.02160.pdf

[10] A Survey on Hough Transform, Theory, Techniques and

Applications by Allam Shehata Hassanein , Sherien

Mohammad, Mohamed Sameer, and Mohammad Ehab

Ragab https://arxiv.org/pdf/1502.02160.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.9085&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.9085&rep=rep1&type=pdf
https://www.researchgate.net/publication/269984781_Adaptive_thresholding_A_comparative_study
https://www.researchgate.net/publication/269984781_Adaptive_thresholding_A_comparative_study
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.7883&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.7883&rep=rep1&type=pdf
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf
https://www.ijcsmc.com/docs/papers/April2014/V3I4201497.pdf
https://www.ijcsmc.com/docs/papers/April2014/V3I4201497.pdf
https://journals.sagepub.com/doi/pdf/10.1177/0741713616674076
https://journals.sagepub.com/doi/pdf/10.1177/0741713616674076
https://arxiv.org/pdf/1502.02160.pdf
https://arxiv.org/pdf/1502.02160.pdf

