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Abstract- Remodularising the components of a software 

system is challenging: sound design principles (e.g., coupling 

and cohesion) need to be balanced against developer intuition 

of which entities conceptually belong together. Despite this, 

automated approaches to remodularisation tend to ignore 

domain knowledge, leading to results that can be nonsensical 

to developers. Nevertheless, suppling such knowledge is a 

potentially burdensome task to perform manually. A lot 

information may need to be specified, particularly for large 

systems. Addressing these concerns, we propose the 

SUpervised reMOdularisation (SUMO) approach.Multi-

objective evolutionary algorithms (MOEAs) based on the 

concept of Pareto-dominance have been successfully applied 

to many real-world optimisation problems. Recently, research 

interest has shifted towards indicator-based methods to guide 

the search process towards a good set of trade-off solutions. 

One commonly used approach of this nature is the indicator-

based evolutionary algorithm (IBEA). In this study, we 

highlight the solution distribution issues within IBEA and 

propose a modification of the original approach by embedding 

an additional Pareto-dominance based component for 

selection. The improved performance of the proposed modified 

IBEA (mIBEA) is empirically demonstrated on the well-known 

DTLZ set of benchmark functions. Our results show that 

mIBEA achieves comparable or better hypervolume indicator 

values and epsilon approximation values in the vast majority 

of our cases (13 out of 14 under the same default settings) on 

DTLZ1-7. The modification also results in an over 8-fold 

speed-up for larger populations. SUMO is a technique that 

aims to leverage a small subset of domain knowledge about a 

system to produce a remodularisation that will be acceptable 

to a developer. With SUMO, developers refine a 

modularisation by iteratively supplying corrections. These 

corrections constrain the type of remodularisation eventually 

required, enabling SUMO to dramatically reduce the solution 

space. This in turn reduces the amount of feedback the 

developer needs to supply. We perform a comprehensive 

systematic evaluation using 100 real world subject systems. 

Our results show that SUMO and mLBEA guarantees 

convergence on a target remodularisation with a tractable 

amount of user interaction. 

 

Keywords- Software remodularisation, domain knowledge, set 

partitioning. 

 

I. INTRODUCTION 

 

 REMODULARISATION remains a difficult and 

unsolved problem in software maintenance. As software 

evolves to meet new requirements, its design invariably 

deteriorates,makingithardertomaintain.Tomoderatethisdeterior

ation, systems can be remodularised so that their components 

are configured in a way that enables, for example, 

comprehension [1] or performance [2]. The task of 

restructuring a system by hand tends to be prohibitively time 

consuming andresourceintensive[3]. Existing remodularisation 

algorithms have sought to produce improved designs 

automatically, but have been unable to do so satisfactorily [3], 

[4]. Automated algorithms have focused on using techniques 

such as clustering or formal concept analysis [5], [6], [7], [8], 

[9], [10], [11] to produce groupings for software components. 

However, these techniques formulate modules by focussing on 

the source code alone, and consequently tend to produce 

solutions that do not make sense from a conceptual point of 

view [3], [4], [12]. For example, an industrial study [3] of the 

popular Bunch remodularisation tool [11] found that Bunch‟s 

results were “non-acceptable for the domain experts” for the 

task of reorganising software components for a large medical 

system, consisting of several million lines of code. In multi-

objective optimisation, where multiple objectives are 

optimised simultaneously, the goal is to find a set of Pareto-

optimal solutions known as the Pareto front (PF). The PF 

consists of a set of solutions that are not dominated by each 

other, which are termed as non-dominated solutions, 

representing the trade-off that exists between different 

objectives. This dominance relation, also known as Pareto 

dominance relation, (≺) is defined between solutions x1 and 

x2. We say w.l.o.g., in a minimisation problem that x1 

dominates x2 (x1 ≺ x2) if and only if fi(x1) ≤ fi(x2) for all k 

objective functions (i ∈{1,...k}), and fi(x1) < fi(x2) for at least 

one objective function. One of the difficulties in multi-

objective search is to find a set of solutions to minimise the 

distance to the true Pareto front (PF) while maintaining the 

diversity of the solution set in the objective space. Multi-

objective evolutionary algorithms (MOEAs) are widely used 

to solve various multi-objective optimisation problems [16] 
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and are considered to be general and robust search 

mechanisms  

 

[1]. Evolutionary algorithms (EAs) are a class of stochastic 

optimisation methods that mimic the process of evolution in 

nature. Examples of EAs, such as genetic algorithms, 

evolutionary programming, and evolution strategies [1] 

operate on a set of solutions using the basic principles of 

natural evolution: selection, reproduction by means of 

recombination and mutation. The algorithmic difference 

between single-objective EAs and MOEAs is that additionally 

in an MOEA, the multiple objectives of a solution must be 

transformed into a single fitness value to facilitate the 

comparison of individual solutions [6]. Thus, MOEAs often 

vary in the method of this transformation, considering the 

balance of convergence and diversification during the search. 

Some MOEAs, such as NSGA-II [7], SPEA2 [18], and AGE 

[3, 13] incorporate Pareto-based ranking of the individuals and 

an additional density measurement (crowding distance in 

NSGA-II, k-th nearest neighbour in SPEA2, dominance in 

AGE) in the objective space. However, between two non-

dominated solutions, purely Pareto-based MOEAs are not able 

to ascertain which solutions have better potential for 

convergence. IBEA[17] was one of the earliest indicator-based 

MOEAs proposed in the literature. Originally, it came in two 

variants: one using -dominance for guidance, denoted IBEA, 

and another based on hyper volume, denoted IBEAHD („HD‟ 

stands for hyper volume difference) which will be referred to 

as IBEA from this point onward in this study. IBEA associates 

a fitness value with each solution based on the selected 

indicator (hyper volume or ), attempting to guide the search 

towards the true PF. IBEA was shown to achieve significantly 

better performance on various benchmark functions than 

NSGA-II and SPEA2 [17], however the distribution of the 

solutions found by IBEA has rarely been reported or discussed 

in detail. In this paper, we propose a modified variant of 

IBEAHD, termed mIBEA, which adds a Pareto-based element 

to this indicator-based method, analysing the distribution of 

nondominated solutions found. For further information about 

MOEAs and indicator-based MOEAs in particular, we refer 

the interested reader to [5, 6, 16]. The remainder of the paper 

is structured as follows. We first describe the original IBEA in 

Section II-A, then present observations of the solution 

distributions observed using existing MOEAs in Section II-B. 

The proposed mIBEA is introduced in Section III. 

Experimental results comparing IBEA and mIBEA are 

presented in Section IV. These limitations have led to the 

realisation that software remodularisation techniques must 

necessarily involve a degree of input from an expert. 

Accordingly, several variants of existing modularisation 

algorithms have been developed, which seek to accommodate 

this need [11], [13]. However, they tend to be limited in 

practical terms as they either (a) interrogate the user for 

feedback in a way that renders them prohibitively expensive, 

or (b) fail to provide guidance to the user, leaving them with 

no indication of how much input is necessary or of value to 

the underlying algorithm. In order to address these problems, 

we introduce the Supervised reMOdularisation (SUMO) 

technique [14]. SUMO is based on the observation that 

existing general purpose clustering algorithms can be 

improved with relatively little domain knowledge [15]. 

Remodularisation algorithms often produce 

partialsolutions[3],[4],but given a set of corrections, these 

partial solutions may be transformed into desired 

modularisations. For example, given a proposed clustering for 

a data processing framework, a developer might make an 

observation that contradicts the current proposed solution, 

such as “Classes XMLParser and Abstract Parser belong 

together, but neither should be in the same module as Data 

Visualizer.” SUMO provides a mechanism by which to enable 

the developer to feed-in this corrective information in the form 

of specific relationships, for example “XML Parser does not 

belong with Data Visualizer”. 

 

II. INDICATOR-BASED EVOLUTIONARY 

ALGORITHM AND SUMO ALGORITHM 

 

Since the focus in the paper is on the hypervolume 

variant of IBEA, i.e. IBEAHD, we first give a detailed 

description of the original IBEA. We then provide 

visualisations and observations for the non-dominated solution 

sets found using IBEA and two other existing MOEAs, one 

Pareto dominance-based (NSGA-II [7]) and one indicator-

based (SMS-EMOA [2]). A. Description of IBEA The core 

idea of IBEAHD is to employ a binary hypervolume indicator 

in the selection process, when determining which solutions 

survive to the next generation. The binary hypervolume 

indicator assigns a real-valued number to two solution sets 

with respect to a reference point. The formula of IHD(A,B) is 

defined as space that is dominated by population B, but not by 

A, shown in Equation (1) [17].  

 

IHD(A,B) =(IH(B)−IH(A),∀x2 ∈ B∃x1 ∈ A : x1 ≺ x2 IH(A + 

B)−IH(A),o.w. (1) 

 

 where IH(A) denotes the hypervolume formed by the solution 

set A. Correspondingly, IH(A + B) means the hypervolume of 

the union of solution set A and B. IHD(A,B) is negative if all 

solutions in B are dominated by solutions in A. Note that 

IH(A) 6= IH(B).      

 

The pseudocode of the original IBEA is given in Alg. 

1. IBEA first randomly generates an initial population in 

Step1, then the following steps loop until the stopping 
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criterion is satisfied. The objective values are scaled and the 

fitness is assigned to each individual in Step2 and Step3. Step4 

performs environmental selection, iteratively removing the 

worst individual in the population P based on indicator value 

until µ individuals remain (this step will do nothing in the first 

iteration of the algorithm as P = µ). Upon removal of each 

solution, the indicator values of the remaining solutions must 

be updated. This step continues until the number of solutions 

in P does not exceed µ. The standard mating selection (Step6) 

and variation (Step7) steps are performed to generate new 

individuals and add them to the population P. 

 

Fig. 2 summarises the steps of the SUMO algorithm, 

which we elaborate in more detail in Algorithm 1. The 

algorithm relies on two types of information that influences 

the solutions it generates: 

 

1) An initial modularisation, Mod  

2) Corrections Relþ and Rel 

 

 
 

Fig. 2. The SUMO process: Starting with an initial 

modularisation Mod,SUMO repeatedly presents the 

hypothesised solution H and refines it according to relations 

supplied by the user. In this example Bunch(highlighted by the 

asterisk) generates the starting point; in practice other 

remodularisation algorithms can be used. 

 

The algorithm begins with an initial modularisation 

Mod, which may be the current package structure, or a 

proposed modularisation from a tool such as Bunch [11]. The 

algorithm builds on this solution by iteratively soliciting 

feedback from a user and applying a constraint solver to 

produce new solutions. 

 

 

 
Fig. 3. Eliciting relations 

Algorithm 1. SUMO Algorithm 

 

Input: Mod 

Data: Rel ; Relþ; solved; H; NewPos; NewNeg 

 

Uses: solveðX; Y; ZÞ, identifyCorrectionsðXÞ 

Result: H 

Relþ ;; 

Rel ;; 

 

solved false; 

 

H Mod; 

 

while ð:solvedÞ do 

 

ðNewPos; NewNegÞ identifyCorrectionsðHÞ; if ðNewPos [ 

NewNeg ¼ ;Þ then 

solved true;  

else 

Relþ [ NewPos; 

 

Relþ  

Rel Rel  [ NewNeg;  

H solveðRelþ; Rel ; HÞ; 

end 

 

end 

 

return H 

 

III. METHEDOLOGY 

 

Producing a partition of elements that is consistent 

with the relations in Relþ and Rel is a constraint satisfaction 

prob-lem that existing solvers can provide solutions for. Given 

a set of elements E ¼ fe0; . . . ; en g in a system, we represent 

each distinct module to which they potentially belong as a 

unique number drawn from the set N ¼ ½1 : n&. The solver 

must then find a set of assignments (i.e., a partition) p : E ! N, 

where each element in E is mapped to a number that denotes 

its module. The constraints on the possible mappings of p are 

contained within Relþ and Rel . 

 

 A   pair fei; ejg in Relþ implies pðeiÞ ¼ pðejÞ. 

Similarly, the presence of a pair fei; ejg in Rel implies that 

pðeiÞ ¼6 pðejÞ. Fig. 4 shows an example in which the 

elements of the set E are to be remodularised subject to the 

given relations in Relþ and Rel . The lower portion of the 

figure shows how these can be translated into a constraint 

program that can be solved by existing constraint solvers. 
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Fig 4. . Representing remodularisation as a constraint 

program. Ele-ments (left) become variables, and user-supplied 

relations (right) are translated into constraints. 

 

Firstly, we can see that the solutions from NSGA-II 

can cover the whole fronts of all the problems DTLZ1-3. 

Secondly, SMS-EMOA can reach almost full coverage of the 

PF for DTLZ1, however, on DTLZ2 and 3 the PFs have clear 

gaps between the border and central area. Thirdly, similar to 

SMSEMOA, IBEA also shows clear gaps (empty space) on 

the PF of DTLZ2. Also, solutions by the original IBEA are 

heavily concentrated in the corner points on DTLZ1 and 

DTLZ3. The GS measurement of the solution fronts obtained 

from NSGA-II, SMS-EMOA and IBEA (as illustrated in 

Figure 1) is shown in Table  

 

I. The best GS on each benchmark function is 

highlighted in bold. Not surprisingly, IBEA performs poorly 

w.r.t. GS among all the three algorithms on DTLZ13. 

However, interestingly, although SMS-MOEA shows gaps on 

the resultant PFs of DTLZ2 and 3, the GS indicator still shows 

that it performs best on both problems. This suggests that 

under certain situations (e.g., PFs of DTLZ2 and 3 from SMS-

EMOA) GS cannot capture the distribution of the PF, i.e., the 

spread calculated is not equivalent to the distribution.  

 

 
Fig 5: : Comparison of non-dominated solution sets for 

NSGAII, SMS-EMOA and IBEA. 

 

 

 
Fig. 6. The SUMO user interface, showing an overview of a 

hypothesised modularisation in the top right hand corner. The 

main panel zooms into a smaller part of this modularisation, 

allowing the user to add positive and negative information. 

SUMO aids the user by with the help of JavaDocs in the 

bottom right panel. In this example, the main panel shows a 

positive link between “AsynchronousComputationException” 

and “Platform”, and a negative link between “Synchronized” 

and “Platform”. 

 

 
Fig. 7. Box plot of the number of SUMO iterations for 

convergence for each subject system for the 75 percent user 
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model, showing the variance for each subject system. The 

breaks are to illustrate scale. 

 

Algorithm 2: 

 

 mIBEA Input: µ: population size; 

 N: number of total solution evaluations; 

 ρ: objective values scaling factor; 

 κ: indicator value (hypervolume difference) scaling factor 

Output: A: Pareto set approximation 

 Step1: Initialisation (see Step 1 in Alg. 1); 

 Step2.1: Use the fast non-dominated sorting of NSGA-II to 

get non-dominated solutions in P and use the non-dominated 

solutions as the new P. 

 1) rank the solutions in P: Ranking rankedP = new 

Ranking(P); 

 2) get the non-dominated solutions: 

 P = rankedP.getSubfront(0);  

Step2.2: Scale objective values (see Step 2 in Alg. 1); Steps 3-

7 are the same as the original IBEA in Alg. 

 

 
Fig. 8. Cumulative number of subject systems ordered by 

median steps to converge. Half of the SF100 is remodularised 

within 51 SUMO itera-tions; most are remodularised within 

500. The dashed line indicates the total number of subject 

systems from the SF100 in the study (92). 

 

IV. CONCLUSIONS AND FUTURE WORK 

 

In this paper, we described SUMO, an algorithm 

designed to solve the problems faced when using automatic 

remodular-isation algorithms. The interactive element of 

SUMO creates a virtuous cycle of improvement that is 

guaranteed to be con-sistent with the user‟s domain 

knowledge. Transitivity of positive relations enables SUMO to 

make the most of the information provided by the user, which 

we demonstrated in Theorem 2 as well as practically in a 

comprehensive sys-tematic evaluation. 

 

The study, built on data collected from an 

observational pilot study, explored the performance of SUMO 

for a diverse set of software systems. The results indicate that 

SUMO produces accurate result from an amount of user input 

that falls well below the theoretical worst-case. They also 

indicate that in order to produce an approximate result, this 

can be achieved with an amount of input that is far lower than 

the amount required to obtain an exact result.Our ongoing and 

future work is focused on further improving SUMO. This 

involves the incorporation of auto-mated source code 

refactoring tools that work alongside SUMO [48], refining the 

constraint satisfaction algorithm to favour better results, and 

improving the user-interface to enable the user to be more 

expressive when specifying rela-tions between classes and 

modules. Alongside these improvements, we also intend to 

experiment with the appli-cation of SUMO in an industrial 

context. 

 

The way in which we initialise the constraint solver 

leaves it free to select any solution, but more likely to choose 

similar solutions. This initialisation could be fur-ther 

improved by representing the similarity to the previ-ous 

solution explicitly by treating the problem as a constrained 

minimisation problem. This would require adoption of an 

appropriate objective function and is a strategy to the problem 

similar to Bavota et al.‟s interactive GA [16]. We intend to 

evaluate to what extent we can improve the solutions produced 

by identifyCorrections without negatively impacting the speed 

at which it returns solutions. The proposed mIBEA introduces 

the ranking from Pareto dominance-based multi-objective 

evolutionary algorithm into the indicator-based algorithm 

during the elite solution preservation process.  

 

The empirical results from mIBEA over the entire 

DTLZ benchmark functions show that mIBEA significantly 

improves the original IBEA on the coverage of resultant 

Pareto fronts, as well as hypervolume and +. Also, over 8fold 

speed-ups are obtained when using a larger population size. 

Also note that the proposed mIBEA does not introduce any 

additional parameter to the original IBEA. 
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