
IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 944 www.ijsart.com

A Modified Indicator-Based Evolutionary Algorithm

(Mibea) AND SUMO Algorithm In Remodularidation

G Srinivas Achar
1
, Vijay Swaroop

2
, Vinutha Yadav

3
, Swati Kumari

4

1, 2Assistant Professor
1, 2, 3, 4, Atria Institute of Technology, Visvesvaraya Technological University, Bangalore

Abstract- Remodularising the components of a software

system is challenging: sound design principles (e.g., coupling

and cohesion) need to be balanced against developer intuition

of which entities conceptually belong together. Despite this,

automated approaches to remodularisation tend to ignore

domain knowledge, leading to results that can be nonsensical

to developers. Nevertheless, suppling such knowledge is a

potentially burdensome task to perform manually. A lot

information may need to be specified, particularly for large

systems. Addressing these concerns, we propose the

SUpervised reMOdularisation (SUMO) approach.Multi-

objective evolutionary algorithms (MOEAs) based on the

concept of Pareto-dominance have been successfully applied

to many real-world optimisation problems. Recently, research

interest has shifted towards indicator-based methods to guide

the search process towards a good set of trade-off solutions.

One commonly used approach of this nature is the indicator-

based evolutionary algorithm (IBEA). In this study, we

highlight the solution distribution issues within IBEA and

propose a modification of the original approach by embedding

an additional Pareto-dominance based component for

selection. The improved performance of the proposed modified

IBEA (mIBEA) is empirically demonstrated on the well-known

DTLZ set of benchmark functions. Our results show that

mIBEA achieves comparable or better hypervolume indicator

values and epsilon approximation values in the vast majority

of our cases (13 out of 14 under the same default settings) on

DTLZ1-7. The modification also results in an over 8-fold

speed-up for larger populations. SUMO is a technique that

aims to leverage a small subset of domain knowledge about a

system to produce a remodularisation that will be acceptable

to a developer. With SUMO, developers refine a

modularisation by iteratively supplying corrections. These

corrections constrain the type of remodularisation eventually

required, enabling SUMO to dramatically reduce the solution

space. This in turn reduces the amount of feedback the

developer needs to supply. We perform a comprehensive

systematic evaluation using 100 real world subject systems.

Our results show that SUMO and mLBEA guarantees

convergence on a target remodularisation with a tractable

amount of user interaction.

Keywords- Software remodularisation, domain knowledge, set

partitioning.

I. INTRODUCTION

 REMODULARISATION remains a difficult and

unsolved problem in software maintenance. As software

evolves to meet new requirements, its design invariably

deteriorates,makingithardertomaintain.Tomoderatethisdeterior

ation, systems can be remodularised so that their components

are configured in a way that enables, for example,

comprehension [1] or performance [2]. The task of

restructuring a system by hand tends to be prohibitively time

consuming andresourceintensive[3]. Existing remodularisation

algorithms have sought to produce improved designs

automatically, but have been unable to do so satisfactorily [3],

[4]. Automated algorithms have focused on using techniques

such as clustering or formal concept analysis [5], [6], [7], [8],

[9], [10], [11] to produce groupings for software components.

However, these techniques formulate modules by focussing on

the source code alone, and consequently tend to produce

solutions that do not make sense from a conceptual point of

view [3], [4], [12]. For example, an industrial study [3] of the

popular Bunch remodularisation tool [11] found that Bunch‟s

results were “non-acceptable for the domain experts” for the

task of reorganising software components for a large medical

system, consisting of several million lines of code. In multi-

objective optimisation, where multiple objectives are

optimised simultaneously, the goal is to find a set of Pareto-

optimal solutions known as the Pareto front (PF). The PF

consists of a set of solutions that are not dominated by each

other, which are termed as non-dominated solutions,

representing the trade-off that exists between different

objectives. This dominance relation, also known as Pareto

dominance relation, (≺) is defined between solutions x1 and

x2. We say w.l.o.g., in a minimisation problem that x1

dominates x2 (x1 ≺ x2) if and only if fi(x1) ≤ fi(x2) for all k

objective functions (i ∈{1,...k}), and fi(x1) < fi(x2) for at least

one objective function. One of the difficulties in multi-

objective search is to find a set of solutions to minimise the

distance to the true Pareto front (PF) while maintaining the

diversity of the solution set in the objective space. Multi-

objective evolutionary algorithms (MOEAs) are widely used

to solve various multi-objective optimisation problems [16]

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 945 www.ijsart.com

and are considered to be general and robust search

mechanisms

[1]. Evolutionary algorithms (EAs) are a class of stochastic

optimisation methods that mimic the process of evolution in

nature. Examples of EAs, such as genetic algorithms,

evolutionary programming, and evolution strategies [1]

operate on a set of solutions using the basic principles of

natural evolution: selection, reproduction by means of

recombination and mutation. The algorithmic difference

between single-objective EAs and MOEAs is that additionally

in an MOEA, the multiple objectives of a solution must be

transformed into a single fitness value to facilitate the

comparison of individual solutions [6]. Thus, MOEAs often

vary in the method of this transformation, considering the

balance of convergence and diversification during the search.

Some MOEAs, such as NSGA-II [7], SPEA2 [18], and AGE

[3, 13] incorporate Pareto-based ranking of the individuals and

an additional density measurement (crowding distance in

NSGA-II, k-th nearest neighbour in SPEA2, dominance in

AGE) in the objective space. However, between two non-

dominated solutions, purely Pareto-based MOEAs are not able

to ascertain which solutions have better potential for

convergence. IBEA[17] was one of the earliest indicator-based

MOEAs proposed in the literature. Originally, it came in two

variants: one using -dominance for guidance, denoted IBEA,

and another based on hyper volume, denoted IBEAHD („HD‟

stands for hyper volume difference) which will be referred to

as IBEA from this point onward in this study. IBEA associates

a fitness value with each solution based on the selected

indicator (hyper volume or), attempting to guide the search

towards the true PF. IBEA was shown to achieve significantly

better performance on various benchmark functions than

NSGA-II and SPEA2 [17], however the distribution of the

solutions found by IBEA has rarely been reported or discussed

in detail. In this paper, we propose a modified variant of

IBEAHD, termed mIBEA, which adds a Pareto-based element

to this indicator-based method, analysing the distribution of

nondominated solutions found. For further information about

MOEAs and indicator-based MOEAs in particular, we refer

the interested reader to [5, 6, 16]. The remainder of the paper

is structured as follows. We first describe the original IBEA in

Section II-A, then present observations of the solution

distributions observed using existing MOEAs in Section II-B.

The proposed mIBEA is introduced in Section III.

Experimental results comparing IBEA and mIBEA are

presented in Section IV. These limitations have led to the

realisation that software remodularisation techniques must

necessarily involve a degree of input from an expert.

Accordingly, several variants of existing modularisation

algorithms have been developed, which seek to accommodate

this need [11], [13]. However, they tend to be limited in

practical terms as they either (a) interrogate the user for

feedback in a way that renders them prohibitively expensive,

or (b) fail to provide guidance to the user, leaving them with

no indication of how much input is necessary or of value to

the underlying algorithm. In order to address these problems,

we introduce the Supervised reMOdularisation (SUMO)

technique [14]. SUMO is based on the observation that

existing general purpose clustering algorithms can be

improved with relatively little domain knowledge [15].

Remodularisation algorithms often produce

partialsolutions[3],[4],but given a set of corrections, these

partial solutions may be transformed into desired

modularisations. For example, given a proposed clustering for

a data processing framework, a developer might make an

observation that contradicts the current proposed solution,

such as “Classes XMLParser and Abstract Parser belong

together, but neither should be in the same module as Data

Visualizer.” SUMO provides a mechanism by which to enable

the developer to feed-in this corrective information in the form

of specific relationships, for example “XML Parser does not

belong with Data Visualizer”.

II. INDICATOR-BASED EVOLUTIONARY

ALGORITHM AND SUMO ALGORITHM

Since the focus in the paper is on the hypervolume

variant of IBEA, i.e. IBEAHD, we first give a detailed

description of the original IBEA. We then provide

visualisations and observations for the non-dominated solution

sets found using IBEA and two other existing MOEAs, one

Pareto dominance-based (NSGA-II [7]) and one indicator-

based (SMS-EMOA [2]). A. Description of IBEA The core

idea of IBEAHD is to employ a binary hypervolume indicator

in the selection process, when determining which solutions

survive to the next generation. The binary hypervolume

indicator assigns a real-valued number to two solution sets

with respect to a reference point. The formula of IHD(A,B) is

defined as space that is dominated by population B, but not by

A, shown in Equation (1) [17].

IHD(A,B) =(IH(B)−IH(A),∀x2 ∈ B∃x1 ∈ A : x1 ≺ x2 IH(A +

B)−IH(A),o.w. (1)

 where IH(A) denotes the hypervolume formed by the solution

set A. Correspondingly, IH(A + B) means the hypervolume of

the union of solution set A and B. IHD(A,B) is negative if all

solutions in B are dominated by solutions in A. Note that

IH(A) 6= IH(B).

The pseudocode of the original IBEA is given in Alg.

1. IBEA first randomly generates an initial population in

Step1, then the following steps loop until the stopping

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 946 www.ijsart.com

criterion is satisfied. The objective values are scaled and the

fitness is assigned to each individual in Step2 and Step3. Step4

performs environmental selection, iteratively removing the

worst individual in the population P based on indicator value

until µ individuals remain (this step will do nothing in the first

iteration of the algorithm as P = µ). Upon removal of each

solution, the indicator values of the remaining solutions must

be updated. This step continues until the number of solutions

in P does not exceed µ. The standard mating selection (Step6)

and variation (Step7) steps are performed to generate new

individuals and add them to the population P.

Fig. 2 summarises the steps of the SUMO algorithm,

which we elaborate in more detail in Algorithm 1. The

algorithm relies on two types of information that influences

the solutions it generates:

1) An initial modularisation, Mod

2) Corrections Relþ and Rel

Fig. 2. The SUMO process: Starting with an initial

modularisation Mod,SUMO repeatedly presents the

hypothesised solution H and refines it according to relations

supplied by the user. In this example Bunch(highlighted by the

asterisk) generates the starting point; in practice other

remodularisation algorithms can be used.

The algorithm begins with an initial modularisation

Mod, which may be the current package structure, or a

proposed modularisation from a tool such as Bunch [11]. The

algorithm builds on this solution by iteratively soliciting

feedback from a user and applying a constraint solver to

produce new solutions.

Fig. 3. Eliciting relations

Algorithm 1. SUMO Algorithm

Input: Mod

Data: Rel ; Relþ; solved; H; NewPos; NewNeg

Uses: solveðX; Y; ZÞ, identifyCorrectionsðXÞ

Result: H

Relþ ;;

Rel ;;

solved false;

H Mod;

while ð:solvedÞ do

ðNewPos; NewNegÞ identifyCorrectionsðHÞ; if ðNewPos [

NewNeg ¼ ;Þ then

solved true;

else

Relþ [NewPos;

Relþ

Rel Rel [NewNeg;

H solveðRelþ; Rel ; HÞ;

end

end

return H

III. METHEDOLOGY

Producing a partition of elements that is consistent

with the relations in Relþ and Rel is a constraint satisfaction

prob-lem that existing solvers can provide solutions for. Given

a set of elements E ¼ fe0; . . . ; en g in a system, we represent

each distinct module to which they potentially belong as a

unique number drawn from the set N ¼ ½1 : n&. The solver

must then find a set of assignments (i.e., a partition) p : E ! N,

where each element in E is mapped to a number that denotes

its module. The constraints on the possible mappings of p are

contained within Relþ and Rel .

 A pair fei; ejg in Relþ implies pðeiÞ ¼ pðejÞ.

Similarly, the presence of a pair fei; ejg in Rel implies that

pðeiÞ ¼6 pðejÞ. Fig. 4 shows an example in which the

elements of the set E are to be remodularised subject to the

given relations in Relþ and Rel . The lower portion of the

figure shows how these can be translated into a constraint

program that can be solved by existing constraint solvers.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 947 www.ijsart.com

Fig 4. . Representing remodularisation as a constraint

program. Ele-ments (left) become variables, and user-supplied

relations (right) are translated into constraints.

Firstly, we can see that the solutions from NSGA-II

can cover the whole fronts of all the problems DTLZ1-3.

Secondly, SMS-EMOA can reach almost full coverage of the

PF for DTLZ1, however, on DTLZ2 and 3 the PFs have clear

gaps between the border and central area. Thirdly, similar to

SMSEMOA, IBEA also shows clear gaps (empty space) on

the PF of DTLZ2. Also, solutions by the original IBEA are

heavily concentrated in the corner points on DTLZ1 and

DTLZ3. The GS measurement of the solution fronts obtained

from NSGA-II, SMS-EMOA and IBEA (as illustrated in

Figure 1) is shown in Table

I. The best GS on each benchmark function is

highlighted in bold. Not surprisingly, IBEA performs poorly

w.r.t. GS among all the three algorithms on DTLZ13.

However, interestingly, although SMS-MOEA shows gaps on

the resultant PFs of DTLZ2 and 3, the GS indicator still shows

that it performs best on both problems. This suggests that

under certain situations (e.g., PFs of DTLZ2 and 3 from SMS-

EMOA) GS cannot capture the distribution of the PF, i.e., the

spread calculated is not equivalent to the distribution.

Fig 5: : Comparison of non-dominated solution sets for

NSGAII, SMS-EMOA and IBEA.

Fig. 6. The SUMO user interface, showing an overview of a

hypothesised modularisation in the top right hand corner. The

main panel zooms into a smaller part of this modularisation,

allowing the user to add positive and negative information.

SUMO aids the user by with the help of JavaDocs in the

bottom right panel. In this example, the main panel shows a

positive link between “AsynchronousComputationException”

and “Platform”, and a negative link between “Synchronized”

and “Platform”.

Fig. 7. Box plot of the number of SUMO iterations for

convergence for each subject system for the 75 percent user

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 948 www.ijsart.com

model, showing the variance for each subject system. The

breaks are to illustrate scale.

Algorithm 2:

 mIBEA Input: µ: population size;

 N: number of total solution evaluations;

 ρ: objective values scaling factor;

 κ: indicator value (hypervolume difference) scaling factor

Output: A: Pareto set approximation

 Step1: Initialisation (see Step 1 in Alg. 1);

 Step2.1: Use the fast non-dominated sorting of NSGA-II to

get non-dominated solutions in P and use the non-dominated

solutions as the new P.

 1) rank the solutions in P: Ranking rankedP = new

Ranking(P);

 2) get the non-dominated solutions:

 P = rankedP.getSubfront(0);

Step2.2: Scale objective values (see Step 2 in Alg. 1); Steps 3-

7 are the same as the original IBEA in Alg.

Fig. 8. Cumulative number of subject systems ordered by

median steps to converge. Half of the SF100 is remodularised

within 51 SUMO itera-tions; most are remodularised within

500. The dashed line indicates the total number of subject

systems from the SF100 in the study (92).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we described SUMO, an algorithm

designed to solve the problems faced when using automatic

remodular-isation algorithms. The interactive element of

SUMO creates a virtuous cycle of improvement that is

guaranteed to be con-sistent with the user‟s domain

knowledge. Transitivity of positive relations enables SUMO to

make the most of the information provided by the user, which

we demonstrated in Theorem 2 as well as practically in a

comprehensive sys-tematic evaluation.

The study, built on data collected from an

observational pilot study, explored the performance of SUMO

for a diverse set of software systems. The results indicate that

SUMO produces accurate result from an amount of user input

that falls well below the theoretical worst-case. They also

indicate that in order to produce an approximate result, this

can be achieved with an amount of input that is far lower than

the amount required to obtain an exact result.Our ongoing and

future work is focused on further improving SUMO. This

involves the incorporation of auto-mated source code

refactoring tools that work alongside SUMO [48], refining the

constraint satisfaction algorithm to favour better results, and

improving the user-interface to enable the user to be more

expressive when specifying rela-tions between classes and

modules. Alongside these improvements, we also intend to

experiment with the appli-cation of SUMO in an industrial

context.

The way in which we initialise the constraint solver

leaves it free to select any solution, but more likely to choose

similar solutions. This initialisation could be fur-ther

improved by representing the similarity to the previ-ous

solution explicitly by treating the problem as a constrained

minimisation problem. This would require adoption of an

appropriate objective function and is a strategy to the problem

similar to Bavota et al.‟s interactive GA [16]. We intend to

evaluate to what extent we can improve the solutions produced

by identifyCorrections without negatively impacting the speed

at which it returns solutions. The proposed mIBEA introduces

the ranking from Pareto dominance-based multi-objective

evolutionary algorithm into the indicator-based algorithm

during the elite solution preservation process.

The empirical results from mIBEA over the entire

DTLZ benchmark functions show that mIBEA significantly

improves the original IBEA on the coverage of resultant

Pareto fronts, as well as hypervolume and +. Also, over 8fold

speed-ups are obtained when using a larger population size.

Also note that the proposed mIBEA does not introduce any

additional parameter to the original IBEA.

REFERENCES

[1] T. Back, U. Hammel, and H.-P. Schwefel. Evolutionary

computation: Comments on the history and current state.

IEEE Transactions on Evolutionary Computation, 1(1):

3–17, 1997.

[2] N. Beume, B. Naujoks, and M. Emmerich. Sms-emoa:

Multiobjective selection based on dominated

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 949 www.ijsart.com

hypervolume. European Journal of Operational Research,

181 (3):1653–1669, 2007.

[3] K.Bringmann,T.Friedrich,F.Neumann,andM.Wagner.

Approximation-guided evolutionary multi-objective

optimization. In International Joint Conference on

Artificial Intelligence (IJCAI), pages 1198–1203. AAAI,

2011.

[4] D. Brockhoff. A bug in the multiobjective optimizer ibea:

Salutary lessons for code release and a performance

reassessment. In Int. Conference on Evolutionary

MultiCriterion Optimization, pages 187–201. Springer,

2015.

[5] S. Chand and M. Wagner. Evolutionary many-objectiv

optimization: A quick-start guide. Surveys in Operations

Research and Management Science, 20(2):35 – 42, 2015.

[6] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen, et

al. Evolutionary algorithms for solving multi-objective

problems, volume 5. Springer, 2007.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast

and elitist multiobjective genetic algorithm: NSGAII.

IEEE Transactions on Evolutionary Computation, 6

(2):182–197, 2002.

[8] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable

test problems for evolutionary multiobjective

optimization. Springer, 2005.

[9] F. E. C. Duran, C. Cotta, and A. J. Fern´andez-Leiva. A

comparative study of multi-objective evolutionary

algorithms to optimize the selection of investment

portfolios with cardinality constraints. In European

Conference on the Applications of Evolutionary

Computation, pages 165–173. Springer, 2012.

[10] J. J. Durillo and A. J. Nebro. jmetal: A java framework

[11] B. S. Mitchell and S. Mancoridis, “On the automatic

modulariza-tion of software systems using the bunch

tool,” IEEE Trans. Softw. Eng., vol. 32, no. 3, pp. 193–

208, Mar. 2006.

[12] N. Anquetil and J. Laval, “Legacy software restructuring:

Analyz-ing a concrete case,” in Proc. 15th Eur. Conf.

Softw. Maintenance Reengineering, 2011, pp. 279–286.

[13] R. W. Schwanke, “An intelligent tool for re-engineering

software modularity,” in Proc. 13th Int. Conf. Softw.

Eng., 1991, pp. 83–92.

[14] M. Hall, N. Walkinshaw, and P. McMinn, “Supervised

software modularisation,” in Proc. 28th IEEE Int. Conf.

Softw. Maintenance, 2012, pp. 472–481.

[15] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrodl,€

“Constrained k-means clustering with background

knowledge,” in Proc. 18th Int. Conf. Mach. Learn., 2001,

pp. 577–584.

[16] G. Bavota, F. Carnevale, A. D. Lucia, M. D. Penta, and

R. Oliveto, “Putting the developer in-the-loop: An

interactive GA for soft-ware re-modularization,” in Proc.

4th Int. Symp. Search Based Softw. Eng., 2012, pp. 75–

89.

[17] L. Ponisio and O. Nierstrasz, “Using context information

to re-architect a system,” Proc. 3rd Softw. Meas. Eur.

Forum, vol. 2006, pp. 91–103, 2006.

[18] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and

Y. Cai, “Enhancing architectural recovery using

concerns,” in Proc. 26th IEEE/ACM Int. Conf.

Automated Softw. Eng., 2011, pp. 552–555.

[19] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using

cohesion and coupling for software remodularization: Is it

enough?” ACM Trans. Softw. Eng. Methodology, vol. 25,

no. 3, pp. 24:1–24:28, 2016. [Online]. Available:

http://doi.acm.org/10.1145/2928268

[20] H. A. Muller,€ M. A. Orgun, S. R. Tilley, and J. S. Uhl,

“A reverse-engineering approach to subsystem structure

identification,” J. Softw. Maintenance: Res. Practice, vol.

5, no. 4, pp. 181–204, Dec. 1993.

[21] B. Andreopoulos, A. An, V. Tzerpos, and X. Wang,

“Multiple layer clustering of large software systems,” in

Proc. 12th Work. Conf. Reverse Eng., 2005, pp. 79–88.

[22] A. Marx, F. Beck, and S. Diehl, “Computer-aided

extraction of software components,” in Proc. 17th Work.

Conf. Reverse Eng., 2010,PP183–192.

http://doi.acm.org/10.1145/2928268

