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Abstract- Robotic frameworks offer the likelihood of 
improving the existence nature of individuals with serious 
engine inabilities, upgrading the person's level of freedom and 
cooperation with the outer condition. Toward this path, the 
administrator's leftover capacities must be misused for the 
control of the robot developments and the fundamental unique 
association through instinctive and successful human-robot 
interfaces. Towards this end, this work goes for investigating 
the capability of a novel Soft Brain-Machine Interface (BMI), 
appropriate for dynamic execution of remote control errands 
for a wide scope of patients. The interface is made out of an 
eye-following framework, for an instinctive and dependable 
control of an automated arm framework's directions, and a 
Brain-Computer Interface (BCI) unit, for the control of the 
robot Cartesian solidness, which decides the connection 
powers between the robot and condition. The last control is 
accomplished by assessing progressively a unidimensional 
record from client's electroencephalographic (EEG) signals, 
which gives the likelihood of a nonpartisan or dynamic state. 
This evaluated state is then converted into a firmness esteem 
for the mechanical arm, permitting a solid adjustment of the 
robot's impedance. A starter assessment of this half and half 
interface idea gave proof on the viable execution of errands 
with dynamic vulnerabilities, showing the extraordinary 
capability of this control technique in BMI applications for 
self-administration and clinical consideration. 

 
I. INTRODUCTION 

 
 The applications of robotic arms in assistive domains 
have demonstrated a high potential in improving the patient’s 
quality of life by reducing their degree of dependence on 
caregivers, aiding them in activities of daily living (ADLs), 
such as self-care and pick-and-place tasks. Patients who can 
benefit from this technology include those with upper body 
disabilities, such as traumatic spinal cord injuries (SCI), 
paraplegic and tetraplegic patients. To make robotic arms 
suitable for the execution of a large class of daily tasks, 
intuitive and user-friendly human-robot interfaces must be 
designed to associate the residual capabilities of the users with 
disabilities to appropriate robot functions. 
 

There are many studies aiming at improving the 
usability of commercially available robotic arms in assistive 
scenarios, by designing control interfaces able to reduce user’s 
cognitive burden and time required to accomplish a task. Such 
interfaces often rely on teleoperation or shared control 
paradigms. Typically the partially or fully autonomous robot 
behaviour is adapted to the user’s high level inputs, based on 
his/her residual limb motor capabilities, to enhance the task 
execution performance. An example of implementation is 
shown in, where shoulder movements are detected. 

 
However, for people suffering from more severe 

forms of motor disabilities, the above mentioned Body-
Machine Interface examples cannot be exploited to drive a 
robot function. To address this issue, former studies explored 
the use of gaze or brain signals, through eye-trackers and 
Brain-Computers Interfaces (BCI) respectively, to produce 
robot control by means of non-muscular channels. Robotic 
systems driven by brain signals, also known as Brain Machine 
Interfaces (BMI), typically exploit P300, steady state visual 
evoked potentials (SSVEP), or motor imagery paradigms, to 
generate high level commands to control a robot. However, 
despite the continuous improvements, BCI systems are still far 
behind those based on Body-Machine Interfaces in terms of 
performance and reliability. This is due to well-known issues, 
such as high cognitive loads on the user, especially in 
continuous control schemes, low performance in high degrees 
of freedom control, and lack of flexibility given that user 
choices are mostly predefined. To overcome the limitations of 
pure BCI systems, hybrid interfaces have been proposed that 
exploit a combined use of EEG and another biosignal, as those 
based on BCI and gaze, to enhance communication or robot 
control. 

 
These are: multi-label learning, more than one class 

can be assigned to an instance. With the increase in the 
number of data. It is worth mentioning that most of the 
existing solutions focus on aspects related to the ease-of-use 
and intuitiveness of the user interface rather than on the 
control of physical interaction capabilities of the robot. The 
latter feature can contribute to enhanced interactions in the 
human robot-environment loop, and the underlying safety. 
When developing a robotic assistive tool, a safe behaviour 
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must be guaranteed e.g., for eating/drinking or personal 
hygiene tasks, as well as in case of accidental arm collisions 
with the environment. A well-known strategy to ensure safety 
in a robotic system is the active impedance control, which 
regulates the interaction between the robot and its 
environment, including a virtual compliance at the joint level 
between the motor and the output, which causes the human 
operator to perceive a softer arm. 
 

Within this context, the concept of Tele impedance 
control has been recently proposed for the control of 
teleoperated robots, not only by means of kinematics 
quantities, to drive robot position and trajectory, but also 
regulating dynamic aspects like its stiffness or full impedance 
parameters during the task execution. Through this 
framework, the robot is able to adapt its physical behaviour to 
various interaction scenarios, by replicating the master’s real-
time measured trajectories and limb impedance, usually 
estimated by processing electromyographic (EMG) signals 
 

Nevertheless, as mentioned above, the use of EMG 
cannot be considered for patients with severe motor 
disabilities. 
 

To address these issues, in this work we present a 
hybrid BMI for real-time planning of a robotic arm 
movements and its physical interaction behaviour. Our 
contribution is twofold. 
 

We use gaze signals for continuous robot position 
control, to explicitly select the target in reaching and grasping 
tasks. In this way, the developed interface can be used by 
severely motor-impaired people, since gaze control is a long 
lasting motor process in most motor diseases. Moreover, the 
gaze constitutes an intuitive and reliable input to control the 
robot motor planning in the 3D space, overcoming the limits 
and constraints of a BCI system, which we use instead for 
low-dimensional control. (2) We introduce the novel idea of 
exploiting EEG signals as an input for active impedance 
control of assistive robots. To the best of our knowledge, it is 
the first attempt in the literature. This approach will enable 
motor-impaired users to achieve also a dynamic control of the 
robot interaction behaviour (stiff/soft). Considering this 
feature, we call the presented system "Soft BMI". The control 
of robot Cartesian stiffness profile is simultaneous to the 
kinematic gaze-driven position control, in a seamless way, and 
the BCI is used to command a less crucial aspect of robot 
behaviour, for which an estimation error does not contribute to 
a substantial reduction of the robot performance. 
 

The proposed technique is implemented in an assistive 
robotics application: using a robotic arm to grasp and move 

objects in tasks with different constraints. In our setup (see 
Fig. 1), the user can drive a compliant robot using gaze and 
move it in an unstructured environment to establish a soft 
contact or avoid high interaction forces during collision. If 
there is a requirement for a higher interaction force profile, the 
operator can increase the robot stiffness to accomplish the 
task, by means of a mental command. A unidimensional index 
corresponding to the probability of command detection is 
associated to the regulation of the robot’s 
 

Cartesian  stiffness  components  in  all  translational  
and rotational directions. This allows for a higher task 
accuracy, as it is well-known that an enhanced movement 
accuracy or increased force capability in humans or robots can 
be achieved by stiffer profiles of the human and the robot 
joints. 
  

II. MATERIALS AND METHODS 
 
Fig. 2 introduces the system, which consists of three main 
parts: Input block, which includes two web cameras, an eye 
tracker, and an EEG headset to achieve the BCI functions; 
Control Interface, implemented in Processing programming 
environment, for the real-time processing of the input data to 
generate suitable control outputs for the third block; and  
 

 
Fig. 1. System setup for Soft Brain-Machine Interface: robot 
translational movements in space are controlled by human 

gaze, while an EEG-driven unidimensional index regulates the 
robot Cartesian stiffness in real-time. 

 
the Actuated System, a 7-DoF torque controlled 

robotic arm equipped with the Pisa/IIT SoftHand. The 
components of the system and the flow of information 
between them are described in detail in the following sub-
sections. 
 
A. Web cameras 
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Two low cost Logitech web cams were used to 
monitor the robot position from different angles and allow the 
user to plan 3D translational movements of the robot end-
effector. Cameras were placed on top and to the side of the 
setup, so that each view allows for a clear selection of a 
coordinate pair. A Logitech B525 HD webcam was set above 
the robot, to capture xy view in robot coordinates system (view 
1 in Fig. 3), while a Logitech HD C270 webcam was put in 
front of the robot, to catch xz view (view 2 in Fig. 3). An 
autonomous algorithm was implemented to build the mapping 
from the gaze coordinates on the screen to the robot 
coordinates for each camera. To this purpose, in the 
calibration phase (executed only once, depending on the 
placement of the cameras), the operator selected a few points  
on the screen, with known coordinates on the KUKA frame  
of reference, for each view. The rest of the mapping, i.e. the 
identification of two homogeneous transformations, was done 
autonomously using the algorithm. 
 
B. Eye-Tracker 
 

The eye-tracker employed in this work was the 
commercially available Tobii EyeX, both in its hardware and 
software (i.e. EyeX SDK) components. The system consists of 
two infrared micro-projectors that are used to illuminate user’s 
eyes, while two optical cameras record the reflections of 
visible and infrared light on corneas and pupils. A USB 3.0 
connection is required to connect the sensor system to the 
computer, in order to transfer the data collected by the 
imaging sensor. 
 

 
 

This information is processed by the dedicated 
software to provide the screen coordinates of the user’s current 
gaze target. The gaze target coordinates provided by the Tobii 
system were transmitted via UDP to the Control Interface 
script at 30 Hz frequency, and filtered using the following 
equation: 
 

 
 

in which Xi denotes the filtered ith coordinate, with 
i=1,2, Ui(t) is the Tobii estimation at time t and V (t) is an 

estimation of the movement speed of the gaze target in the 
current step. More specifically, V (t) was defined as: 
 

 
 

where Xmaxi is the largest value the ith coordinate can 
assume (i.e. the screen resolution along each dimension). With 
this normalization, V (t) varies in the [0,1] range. Intuitively, 
this filter was designed to cancel out minor gaze fluctuations, 
while leaving performance on fast movements as unchanged 
as possible. 
 
C. Brain-Computer Interface 
 

The unidimensional index for the impedance control 
was estimated through the combined use of the EEG system 
Emotiv EPOC+ and its accompanying software. The Emotiv 
EPOC+ is a low cost EEG wireless headset with 14 electrodes 
located at the positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, 
T8, FC6, F4, F8, AF4 according to the International 10-20 
system, communicating with the PC via bluetooth. Sampling 
rate is 256Hz. Given the final goal of developing an affordable 
and usable assistive technology, Emotiv EPOC was chosen in 
this study for his significant advantages in terms of cost, 
portability, robustness and user customization. Although it 
lacks in reliability and signal quality compared to existing 
medical EEG interfaces, it has already been used in robotic 
applications both exploiting its embedded muscular 
measurements and EEG signals (to control a 7 dof robotic 
arm). 
 

The Emotiv software includes a control panel, which 
encompasses a Cognitiv suite. The latter evaluates user’s real 
time brainwave activity to discern the user’s conscious intent 
to perform physical actions on a real or virtual object. Up to 
four actions can be recognized at any given time. The 
detection system outputs a single action or neutral (i.e. no 
action) at a time, along with an action power, a 
unidimensional scalar index ranging between 0 and 1 
representing the detection certainty that the user has entered 
the mental state associated with that action. For the present 
work, only one action, corresponding to the "push" mental 
command was trained and used. Training was performed using 
the Cognitiv suite, and consisted in alternation of neutral and 
active states in trials lasting 8 s each one, for some minutes, 
until user felt comfortable with the state control. In neutral 
trials the user was asked to relax and avoid moving, while 
during active trials the user had to focus on the action of 
pushing a 3D object (cube) represented on the screen. 
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An open source software (Mind Your OSCs) was 
adopted to transmit via OSC protocol the Emotiv readings to 
the Processing Control Interface. To limit quick fluctuations in 
the estimation of the mental action state index, the raw value 
provided by the Cognitiv suite was low-pass filtered with a 
leaky integrator: 
 

 
 

Here, R(t) is the reading provided by the Emotiv 
system at time t, while C(t) is the filtered index describing 
user’s concentration (neutral or active) state. The parameter A 
has a value ranging in the [0,1] interval, with typical values 
around 0.5. This parameter was introduced in order to 
compensate for widely varying performances observed across 
different users and sessions and it was re-calibrated before 
each session in order to provide an acceptable user experience. 
Finally, the upper limit of 1 was imposed to the C value in 
order to keep its range consistent with the input variable R. 
 
D. Graphical User Interface (GUI) 
 

The GUI itself consisted of a vertical panel on the left 
margin of the screen including four buttons (from top to 
bottom: calibration start/stop, change view, open/close and 
stop), while most of the monitor was displaying the live feed 
from the currently selected camera (Fig. 3). The buttons on the 
left allowed the user to: 
 
1) start and stop the calibration to map each webcam screen 

view coordinates with corresponding robot workspace 
coordinates; 

2) switch currently selected camera; 
3) open or close the Pisa/IIT SoftHand; 
4) stop the robot movement in case of wrongly issued 

command. 
 

 
 

The selection of the desired target robot position was 
enabled by fixing gaze on the corresponding point in the 
webcam screen view: if gaze velocity V (t) fell below a certain 
threshold while on top of a specific point on the webcam 
image, a virtual circular button appeared and its progress bar 
started filling as for the buttons of the left panel. If the user did 
not divert its gaze from the button, when the bar was filled the 
target point coordinates X were sent to the robot controller. 
Diverting gaze caused the virtual button to disappear. Rigidity 
of the robot during each movement was a function (see text 
below) of the concentration index C at the time instant in 
which the progress bar filled completely. 
 
E. Actuated System 
 

System evaluation was carried out using a 7-DoF 
KUKA lightweight robotic arm. The robot was controlled in 
torque mode and a Cartesian impedance controller was 
developed to achieve the operator’s planned trajectories 
through the eye-tracker, in KUKA frame of reference (using 
two transformations, as explained above). A fifth order 
polynomial model generated online smooth Cartesian 
trajectories in between two selected points on the screen, 
every time the operator’s gaze target point on screen was 
detected by the User Interface. This consideration was to 
achieve smooth trajectories in a suitable time, that was 
estimated according to the distance from the final destination. 
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The Cartesian stiffness of the robot was allowed to vary 
between a minimum (K0) and maximum (Km) value of 300 to 
 

2000  for all translational components (kt), and 50 to 250 
Nmrad for rotational ones (kr), respectively. The exact value 
was estimated in real-time from the concentration index, using 
a linear mapping: 
 

Kt,r = K0t,r + C(t)(Kmt,r − K0t,r) (4) 
 
 

This profile enables the robot to establish a soft 
contact in case of lower stiffness values, while demonstrating 
a stiff behaviour when a higher precision or force generation is 
required by the task. The Cartesian damping matrix D was 
obtained from the desired K using the double diagonalization 
design as explained. 
 

The robot was equipped with the Pisa/IIT SoftHand, 
an under-actuated and synergy driven robotic hand. The 
embedded adaptivity of the robotic hand made this choice 
ideal for the grasping of objects with various shapes since only 
one actuator input was controlled. The hand unit and power 
driver for the motors (SoftHand and force feedback cuff) are 
custom control boards based on the Texas Instruments 
Luminary DSP chip LM3S8962. The DSP control loop is 
executed at 1KHz while the communication with the host PC 
is achieved through a real time Ethernet link. Motor current 
measurement is performed by a hall effect based current 
sensor (ACS714, Allegro Microsystems Inc.) and appropriate 
signal conditioning integrated in the motor power driver 
module. The robot control script was implemented in C++ 
environment, running in a separate PC and receiving the user 
input from the Processing script via UDP. A data package 
included the selected target gaze coordinates X with a flag 
indicating if they are expressed in view 1 or view 2, a control 
bit indicating open or close state of the hand, and the 
concentration index C(t) describing user’s mental state. 
 

III. SYSTEM EVALUATION 
 

The presented Soft BMI system was tested on two 
different subjects (aged 24 and 33), who were asked to control 
the robot in two different tasks. One subject had previous 
experience with both the Tobii eye tracker and the Emotiv 
BCI system, while the second was a naive subject. Operative 
tests were preceded by a calibration session for both the eye-
tracker and the BCI, with the standard procedures 
implemented in the software suites of the two systems. Both 
subjects were able to control the GUI of the robot within 
minutes: they could deliberately fixate gaze on any given point 

on the screen in order to select it as a robot target position 
while maintaining the chosen mental state, corresponding to 
concentration index equal to 0 for neutral or a scalar between 
0 and 1 for active state, or divert gaze to prevent undesired 
commands.  
 

Fig. 4. Results from system evaluation. Panels A-B: distance 
between current arm endpoint and selected target for high 

(panel A) and low (panel B) stiffness trials and corresponding 
estimated endpoint forces in the push direction (panels C-D). t 

= 0 corresponds to Kuka receiving movement command. 
Black triangles indicate the approximate contact moment 

between soft hand and object. Panels E-H: distance traveled 
by arm endpoint since t = 0 in the vertical direction, for high 
(panel E) and low (panel F) stiffness trials and corresponding 

estimated endpoint forces, in the vertical direction. t = 0 
corresponds to Kuka receiving movement command. Contact 

between grasped object and obstacle occurs almost 
immediately after movement start. Blue (orange) line depicts 

trials performed by experienced (naive) user (S1, S2 
respectively). 

 
 A. Tasks 
 

Two complementary tasks were considered to 
evaluate the effectiveness of the proposed interface for the 
online control of the robot trajectories and physical interaction 
behaviour.  

 
Heavy object pushing: The purpose of this task was 

to demonstrate the need for force production capabilities of 
robots when dealing with precision tasks. In this task, the user 
was asked to position the robotic hand beside a heavy brick 
(about 8 kg), and push it aside by selecting a target position 
around 15 - 20 cm inside the brick from the top view (please 
refer to the accompanying video, see Fig.5 caption). The user 
was asked to perform the task in both neutral and active 
mental state in order to select low and high robot Cartesian 
stiffness profile, until the task was accomplished. 
 
Object grasping and environment collision:  
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This task was designed to stress the need for a 
compliant behaviour of the robot when dealing with an 
unstructured environment, in which collisions with obstacles 
are likely to occur. The user was requested to control the robot 
in order to grasp a partly full plastic water bottle (around 0.2 
kg), lift it and then move the arm such that the part of the 
bottle sticking out below the hand would hit a rigid, 
immovable obstacle. As for the previous task, the user was 
asked to repeat this test in two conditions, with the lowest and 
highest possible levels of robot stiffness respectively.  
Our objective was to examine the effectiveness of the 
proposed interface in allowing the user to control robot 
behaviour adaptability to the environment constraints. 
 
B. Results and Discussion 
 
Heavy object pushing:  

 
Fig. 4 illustrates results of two repetitions of the task, 

performed by the two subjects. Panels A-C and B-D represent 
data collected during the active and neutral mental state, 
corresponding to high and low stiffness respectively. In 
particular, panels A and B show the distance, expressed in 
millimetres, between gaze-selected target and robot endpoint 
current position, while the second row presents the endpoint 
forces produced by the Kuka robot in the y (pushing) 
direction. Different colours correspond to trials performed by 
different subjects. 
 

Since the robot started in the position of the last 
selected target, the distance to target was approximately 0 at 
the beginning of the trial. At t = 0, a new target was chosen in 
order to push the object forward and the robot started moving. 
Impact occurred around 1 s later in all presented trials, as 
evidenced by the black triangles in Fig. 4. After touching the 
obstacle, the robot sharply increased the applied force in y 
direction to reach its intended target, as visible from the sharp 
change in force slope, in panels C-D (see Fig. 5 upper block 
for the snapshots of this experiment).  
 

 
Fig. 5. Screen shots of the heavy object pushing (Task 1) and 

collision (Task 2) tasks in active mental state (stiff) and 
neutral mental state (compliant). For the second task, two 

different examples of the active (stiff) case for the two 
subjects are provided. 

  
In the high stiffness case (C = 0.8,1 at the moment of 

selection for subject S1, S2 respectively), the total force 
produced was high enough to overcome static friction between 
the object and the underlying surface, and a stick-slip 
movement phase occurred, characterized by oscillations in 
force and irregular robot speed, until the endpoint was close to 
its final intended target. In the low stiffness scenario (C = 0 for 
both subjects at the moment of selection) the applied force 
was sufficient to distend the fingers of the SoftHand (hence 
the small reduction in distance to target after reaching the 
object, panel B), but never overcame the  static friction 
threshold. It is worth noting that even in the high stiffness case 
the robot was not perfectly rigid and therefore it stopped 
slightly short of its target and it kept applying force against the 
obstacle. 
 
Object grasping and environment collision: 
 

 Similarly to the previous case, subjects performed 
the task in two conditions: panels E-G on Fig. 4 display results 
for a high-stiffness (active mental state) trial, while panels F-H 
on the right side present the low-stiffness (neutral mental 
state) case. The first row shows the z coordinate of the Kuka 
endpoint recorded starting from the moment of the impact of 
the grasped object against an obstacle, while panels G and H 
show the corresponding estimated forces in vertical z 
direction. 
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As before, t = 0 indicates the time in which the 
movement command is received by the robot. Impact against 
the obstacle occurred almost immediately, with very different 
outcomes depending on robot arm rigidity: for both subjects 
low-stiffness trials (C = 0) resulted in the bottle being 
successfully held on to, whereas high-stiffness trials (C = 1) 
resulted in the dislodgement of the bottle from the soft hand 
grip. Moreover, the high-stiffness case present a strong 
difference for the two subjects: in the case of subject 1 
(S1,blue line), the bottle rolled away after being dislodged, 
whereas for subject 2 (S2, orange line) the plastic bottle was 
stuck between the robot arm and the brick (see Fig. 5 lower 
block for the snapshots of this experiment). The different 
behaviour is clearly shown in the graphs: in the stuck-bottle 
case (panel E, orange line), the robot endpoint was sharply 
pushed upwards by the bottle itself, while for the rolling bottle 
case (panel E, blue line) the impact caused only a minor 
readjustment in the robot trajectory. The corresponding force 
graph (panel G) shows a value of about 2.5 N at the beginning 
of both subjects trials, which was force required to keep the 
bottle lifted and steady. During the impact, forces at the 
endpoint turned negative, as the distal end of the robot arm 
was pushed upwards by the interaction between held bottle 
and obstacle. After the bottle was dislodged, the estimated 
force was around 0 N if the bottle rolled away (blue line) or 
negative when the robot was  actually pushing downwards on 
the stuck bottle (orange line). 
 

In the low stiffness case, the bottle remained within 
the hand for the whole trial, as the robot arm adapted its path 
according to the imposed environment constraints. In 
particular the robot endpoint moved downward when it was 
rotating around the bottle-obstacle contact point for both users 
(first negative peak, panel F), then it moved slightly above 
target as the bottle was dragged on the surface of the obstacle 
(positive peak, panel F). The final position of the robot 
endpoint, as well as the forces expressed at the end of the trial 
(panel H), vary slightly according to the final relative angle 
between the bottle and the obstacle it was resting on. 
 

IV. CONCLUSION 
 

 In this paper, a primer report showed the likelihood 
of controlling both kinematic and dynamic parameters of an 
automated arm through a half breed BMI - Soft BMI -that just 
adventures eye-developments and mind signals. These 
highlights enable the interface to be open to patients with 
separate engine inabilities, where lingering solid capacities 
(barring visual control) can't be abused. The principle 
commitment, contrasted with the best in class of mind 
controlled assistive mechanical technology, lies in the 
presentation of an extra level of control for the client, 

empowering the adaptivity of the robot conduct amid physical 
collaborations with the earth.  
 

The eye-following framework is natural in its 
utilization, as it very well may be aligned and capably 
determined by a client with no past experience inside minutes, 
while keeping up a high level of exactness in the 
determination of wanted targets. Then again, the BMI was 
planned so as to exploit the way that undertakings requiring a 
higher level of mental fixation are commonly those that 
require stiffer developments (for example exceptionally exact 
removals or substantial item moving). Along these lines the 
robot has a default delicate and safe conduct. The BCI channel 
is regularly dormant, and it is simply utilized in assignments 
where high exactness is required. Contrasted with frameworks 
where the eye-tracker alone is utilized for position control, this 
presents a wonderful favourable position. Amid an 
illustration/composing task, for example, as the one displayed 
in [6], a firm conduct is fitting. Then again, while evolving 
task, for example to self-nourishing, robot solidness ought to 
be reconfigured to a lower level by a parental figure, to permit 
security. The arrangement proposed in this examination, takes 
into account a further level of control and accordingly 
autonomy for the patient.  
 

The control of the robot turned out to be very simple 
to learn, as an innocent subject figured out how to play out a 
generally mind boggling assignment, for example, getting an 
item and moving it around with a given level of inflexibility 
inside his first session. Right now, in any case, summoning an 
ideal mental direction required exertion from the client and, 
now and again, numerous endeavours. This could be attributed 
to the constraints associated with the utilization of the business 
EPOC programming and equipment.  

 
Future work will be thus given to re-actualize the 

exhibited impedance control utilizing the identification of 
EEG action identified with engine symbolism, and utilizing a 
medicinal EEG procurement framework. This will permit to 
investigate the plausibility of controlling numerous degrees of 
opportunity by means of BCI, just as to empower the client to 
change robot solidness progressively likewise inside a similar 
preliminary. An orderly report will be then done to tentatively 
assess the proposed interface contrasted with other existing 
methodologies (exclusively gaze-based and BCI based), amid 
the execution of different assignments with expanding trouble 
performed both by sound and debilitated subjects.  
 

The controller exhibited in this work was proposed as 
a proof of idea for a novel sort of interface that could 
incorporate a higher level of self-governance in assistive uses 
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of delicate mechanical autonomy for seriously crippled 
patients. 
 

REFERENCES 
 
[1] K. M. Tsui, H. A. Yanco, D. J. Feil-Seifer, and M. J. 

Mataric,´ “Survey of domain-specific performance 
measures in assistive robotic technology,” in Proceedings 
of the 8th Workshop on Performance Metrics for 
Intelligent Systems. ACM, 2008, pp. 116–123. 

[2] D.-J.  Kim,  R.  Hazlett-Knudsen,  H.  Culver-Godfrey,  
G.  Rucks,  T. Cunningham, D. Portee, J. Bricout, Z. 
Wang, and A. Behal, “How autonomy impacts 
performance and satisfaction: Results from a study with 
spinal cord injured subjects using an assistive robot,” 
IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol. 42, no. 1, pp. 2–14, 
2012. 

[3] S. Jain, A. Farshchiansadegh, A. Broad, F. Abdollahi, F. 
MussaIvaldi, and B. Argall, “Assistive robotic 
manipulation through shared autonomy and a body-
machine interface,” in Rehabilitation Robotics (ICORR), 
2015 IEEE International Conference on. IEEE, 2015, pp. 
526–531. 

[4] H. Jiang, J. P. Wachs, M. Pendergast, and B. S. 
Duerstock, “3d joystick for robotic arm control by 
individuals with high level spinal cord injuries,” in 
Rehabilitation Robotics (ICORR), 2013 IEEE 
International Conference on. IEEE, 2013, pp. 1–5. 

[5] ] “NIST Foundations for innovation in cyber-physical 
systems workshop summary report,” 2012, 
http://events.energetics.com/ NIST-
CPSWorkshop/pdfs/CPS WorkshopReprot v6 6-12-12 
DRAFT. pdf. 

[6]  J. San Augustin, H. Skovsgaard, E. Mollenbach, M. 
Barret, M. Tall, D. W. Hansen, J. P. Hansen, "Evaluation 
of a Low-Cost Open Source Gaze Tracker", Eye-Tracking 
Research& Applications (ETRA) Proceedings, pp. 77-80, 
2009. 

[7] M. Hayhoe, D. Ballard, "Eye movements in natural 
behavior", Trends in Cognitive Sciences, vol. 9, pp. 188-
194, 2005 

[8] Alin Albu-Schäffer , Christian Ott , Gerd Hirzinger, A 
Unified Passivity-based Control Framework for Position, 
Torque and Impedance Control of Flexible Joint Robots, 
International Journal of Robotics Research, v.26 n.1, 
p.23-39, January 2007  

[9] Burdet E,Osu R,Franklin D,Milner TE,Kawato M.The 
central nervous system stabilizes unstable dynamics by 
learning optimal impedance.Nature. 2001. 

[10] Dolan J,Friedman M,Nagurka M.Dynamic and loaded 
impedance components in the maintenance of human arm 

posture.IEEE Transactions on Systems, Man, and 
Cybernetics. 

[11] V.Matic, W. Deburchgraeve and S. Van Huffel. 
Comparison of ICA Algorithms for ECG artifact removal 
from EEG singals. IEEE-EMBS Benelux Chapter 
Symposium. November 9-10, 2009 

[12] Blankertz, Benjamin, Guido Dornhege, et al. Boosting Bit 
Rates and Error Detection for the Classification of Fast-
Paced Motor Commands Based on Single-Trial EEG 
Analysis. IEEE Trasactions on Neural Systems and 
Rehabilitation Engineering. 11.2 (2003) 

[13]  M.D. Eggers and T.S Khon. Learning Algorithms for the 
Multilayer Perceptron. Technical Report 813.October 
1988.  


