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Abstract- Clustering is a technique which is commonly 
known in the domain of machine learning as an 
unsupervised method,it aims at constructing from a set of 
objects some differ-ent groups which are as homogeneous 
as possible. On the other hand support vector machines 
(SVM) and binary decision trees (BDT) were proposed and 
developed as supervised learning techniques where the 
output assembly is previously known. In this work we will 
try to build a clustering algorithm that uses the two 
supervised methods we cited above. 
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I. INTRODUCTION 
 
 Our main idea is inspired from the approach of 
"decision tree based multi-class support vector machine", 
which is a supervised method and some other scientific 
productions using the same principle of coupling "decision 
trees" and "support vector machines”. The approach we are 
talking about is just like any other decision tree algorithm: it 
has as a starting point a root which should contain all the 
records of the data set. Then, by using the two-class SVM 
algorithm, we can construct two classes with the highest 
value of dissimilarity possible (functions measuring the 
dissimilarity, differ from one algorithm to an other). Next, 
we deal with the produced classes with the same manner, 
until reaching the leaves. Thus, the objective of our paper is 
to propose an extension of that approach to unsupervised 
learning (clustering). 
 

The key idea of the algorithm proposed by this 
paper is to construct a decision tree (DT) in which each 
decision node is a two-class SVM, and each two-class SVM 
produces the two most homogeneous clusters possible, then 
we determine the hyperplane that separates the produced 
groups. We repeat the procedure until the stopping criterion 
is reached. And as a result, a binary decision tree is 
constructed. 
 

The number of clusters obtained it also depends on 
the stopping criterion. The stopping criterion of this 
algorithm can take two forms: the group to be separated 

contains only one element, or all possible distances between 
processed group of elements are less than the minimum 
distance below which data separation can never be executed. 
The effectiveness of our algorithm requires that the distance 
threshold is to be given and fixed by experts in the studied 
field. 
 

II. SUPPORT VECTOR MACHINE 
 

Support vector machines (SVM), introduced by 
vapnik, are famous classification techniques based on the 
theory of statistical learning and have been successfully 
applied to classification and regression problems. 
 
A.  Linear Support Vector Machines 
 

We will start with the simplest case: the data are 
linearly separable. In the case of non-separate data, the 
analysis results in a quadratic programming problem. 
 

Considering a binary problem on the 
learning set {(xi, yi)n

i=1} Rl × {+1, −1}, a hyperplane 
separating positive and negative examples exists in the case 
of linearly separable data (a "separator hyperplane"). The 
points x which lie on the hyperplane satisfy w.x + b = 0, 
where w is normal to the hyperplane, x represents the 
argument, and b is a constant value. Thus, the problem for 
the linearly separable case could be formulated as (1). 
 

 
 

Now our problem will be transformed with the 
Lagrangian method to a problem of quadratic programming 
(QP). in order to derive the optimal hyperplane.To do this, 
we first convert the constrained problem given by (1) into 
the un-constrained problem: 
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We must now minimize Lp with respect to w, b, 
and simultaneously require that the derivatives of LP with 
respect to all the αi vanish, 

 
 
Since these are equality constraints in the dual formula-tion, 
we can substitute them into Eq. (2) to give 
 

 
 

 
 

where C is a parameter that must be chosen by the 
user, a large C means the assignment of a higher penalty to 
errors.nor their Lagrange multipliers, appear in the Wolfe 
dual problem, which becomes: 
 

 
 

where NS is the number of support vectors. Thus 
the only difference from the optimal hyperplane case is that 
the αi now have an upper bound of C. 

The other approach is to map the data from the 
input space into a higher dimensional feature space using a 
mapping which we will call φ: 
 

 
 

The use of this mapping or know what φ, will not 
be taken into account because the learning algorithm will 
only answer data through the dot product in H. i.e. on 
functions of the form φ(xi).φ(xj ). 
 
Since the solution in feature space involves only inner 
products of the mapped points, one can obtain the optimal 
hyperplane by kernel trick. Finally, the decision function is 
achieved as (11) 
 

 
 
and f (x) = sign(h(x)) is determined as the classification 
output, where ai is the lagrange multiplier of xi. 
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III. UNSUPERVISED LEARNING: CLUSTERING 
 

 

 
Figure 1 : The most known clustering techniques. 

 
 Hierarchical clustering: regroups algorithms which 

build a hierarchy of clusters, they are either top-down 
algorithms (divisive) or bottom-up algorithms (agglom-
erative). 

 Partitional clustering: consists of constructing a parti-
tion of the data-set’s elements and make of them a set 
of k clusters.One of the most commonly used 
partitional clustering algorithms is the K-means. 

 Density Based clustering:aims at locating the regions of 
data with high density which are separable by the use of 
regions with lower density. 

 
A. Proposed method 
 

In this paper, we propose a clustering algorithm 
based on the tree structured multi-class SVM. Our proposed 
tree is necessary binary, since at each node, the SVM which 
is originally formulated for a two class problem, is applied. 
 

We assume that our algorithm only needs two 
parameters: The distances between the elements of 
generated groups at each node and the partitioning stop 
criterion which is A distance threshold below which the 

separation stops, i.e. the minimum distance with which 
separation can be made. 
 
Let N be the number of data-set patterns denoted as Xi, 
where i=1,2, ... ,N. 
 
The euclidean distance between ith element and jth ele-
ment, is as follows: 
 

 
 

In our proposed clustering method, we start from 
the top of the decision tree which contains all the entities of 
the training data, and we construct a matrix which contains 
all the possible distances between the elements of the 
training data. On the basis of these calculated distances and 
by using SVM, we construct the first hyperplane which must 
separate two entirely different groups (clusters). The idea of 
separation we had, we decided to call it the open window 
technique in fact, on the basis of the matrix of distances 
obtained, we treat the two most distant points and we will 
consider that the entities of our database represent points 
belonging to a window, by opening this window its points 
that were the most distant become the closest points, while 
those who were closest become the farthest. 
 

Thus, each of these two farthest points of which we 
talked previously becomes the representative element of a 
group, so that each of them forms a cluster. By using the 
same matrix of distances obtained at the beginning, for each 
point of the remaining we observe its distance from the two 
points representing the two groups, finally we conclude that 
each treated point must belong to the group with which it 
has the smallest distance. So we get two totally different 
groups. 
 

For the given nodes, we repeat the same operations 
until reaching the stopping criterion i.e. 
 
• The cluster obtained contains only one data. 
 
• The distance between the two furthest points within 
a group is less than a minimum distance threshold fixed in 
advance. 
 

To simplify the explanation we propose a simple 
example illustrating the different steps of our algorithm. 
Therefore, consider the following cloud of points: 
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Figure 2.1 : The data of an illustrative example. 

 
 

For   this   set   of points,   we calculate the 
matrix of Euclidean distances linking all the 
points with  out exception, then we observe the 
two most distan points as shown in
 our example in the figure
 below: 

 
 

 
Figure 2.2 : Determination of the two most distant data. 

 
At this level we are about to build two groups, each 

represented by one of these two points. In a first place, we 
begin by determining the line linking the two points (we 
note it (D)), to be able to construct the two other lines 
passing each one by one of the two points and which are 
perpendicular to (D), lets note (always on the base of our 
explanatory example) the line passing by the right 
representative point as (A) and the other one passing by the 
left representative point as (B). Which is pretty clear on the 
following figure: 
 

 
Figure 2.3 : Division of the database into two homogeneous 

groups. 
 

As we already mentioned, we can use the same ma-
trix of distances we built at the beginning and observe their 
distances to the two representative points of our two 
groups.Thereby, each element of the data set belongs to the 
group having the minimum distance with its representative. 
 

Afterward, each point belonging to the group on the 
right side (using our last figure) will rotate 180 degree 
around the axis (A). In the same way, the elements 
belonging to the other group will make a rotation (of 180 
degree as well) but in the opposite direction around the axis 

 
Since the rotation is 180 degrees, this geometric 

trans-formation is identical to the orthogonal symmetry, i.e. 
we can use the principal of orthogonal symmetry (or axial 
symmetry) to build the image of each point with respect to 
the axes (A) or (B) (depending on the group to which the 
point belongs), then we continue the work with only the 
images of the points by axial symmetry. Next, by applying 
the SVM separation technique, let the group of points of the 
right part be the class 1 and the group of the left part the 
class -1, and calculate a hyperplane which separates the two 
classes. 
 
so we will have two groups completely and easily sepa-
rated, as shown on the following figure: 
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Figure 2.4 : The resulting groups of the first separation at 

the root node. 
 

we retreat the resulting groups following the same 
steps until reaching one of the stop criteria we cited above. 
 

Finish the above steps, we assume that the stopping 
criterion fixed at the beginning has led us to the following 
result (always in the context of our example):  
 

 
Figure 3.1 : The resulting groups using the proposed 

algorithm. 
 
Let figure 3.2 be the obtained tree, structured by following 
the steps of our proposed algorithm: 
 

 
Figure 3.2 : The shape of the resulting decision tree. 

 
IV. THE ALGORITHM STEPS 

 
Step1: Give a distance threshold below which the sepa- 

ration stops: ds. 
 
Step2: Establish the Euclidean Distance Matrix. 
 
Step3: Find the two most distant points i and j, i.e. the 
maximum euclidean distance Edij . 
• If  such two points exist and Edij ≥ ds 
• Then group 1 ← pointi And group -1 ← pointj. 
 
Step4: For each point k of the remaining points (other than i 
and j) compare Edik and Edjk: 
• If  Edik < Edjk 
 
–  Then point k ∈ group 1 
 
• Else 
 
–  If Edik > Edjk 
 
Then point k ∈ group -1 
 
– Else the point k is indifferent between groups 1 and -1 
 
Step5: Determine the two axes of rotation: 
 
• Axis 1: passes by the point i and perpendicular to 
the line linking the points i and j. 
• Axis 2: passes by the point j and perpendicular to 
the line linking the points i and j. 
 
Step6: 
 
• Each point in group 1 will rotate around axis 1 with 
180Âˇr. 
 
• Each point in group -1 will rotate around axis 1 
with -180Âˇr. 
 
Step7: Using the SVM, build the hyperplane that separates 
the 2 groups. 
 
Step8: For each of the resulting groups, return to step 3. 
 
Step9: End. 
 

V. CONCLUSION 
 

In this paper, we proposed a novel clustering 
algorithm based on two efficient supervised techniques, 
which are bi-nary decision trees and support vector 
machines.The clusters obtained towards the end of our new 
algorithm must be entirely different, because the methods 
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used to differentiate them and which are at the base methods 
that were distin-guished to the classification problems, are 
precise and having a minimum rate of error. 

 
Furthermore, the idea on which our algorithm is 

based, minimizes absolutely the dissimilarity within each of 
the produced clusters, for the simple reason that the most 
dissimilar clusters should be separated at the very beginning 
of the tree. Because quite simply they are easy to separate. 
 

It is real that our proposed algorithm produces 
homoge-neous clusters. But it is also quite clear that for a 
treated data set, the accomplished separation is rigorous, 
because some of the resulting clusters can be merged 
together. Thus, in a future work we will propose a method 
that will constitute the remedy of this little problem, so that 
the algorithm can give more efficient results. 
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