
IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 929 www.ijsart.com

Very Deep Convolutional Networks And Random
Forest Used In Image Processing Techniques

Vijay Swaroop A1, Prekshitha S2, Supriya P3, Soujanya G Kiragi4, Zaiba Farheen5

Atria Institute of Technology

Abstract- Here, we inspect the outcome of the convolutional
network depth on its correctness in the large-scale image
recognition tasks. The chief role is thorough valuation of
networks of increasing deepness by means of an architecture
with small (3 × 3) convolution filters, and we also focus on
one the algorithm called “Random Forest”, which is a famous
algorithm in Machine Learning ,This algorithm proves that it
is efficient for the classification purpose. These outcomes in
convolutional network were depended on our ImageNet
Challenge 2014 submission. And in the next segments of the
paper we get the understanding of the convolutional neural
networks and the Random Forest also the differences between
them, then finally we come to the conclusion of knowing the
efficient algorithm in order to classify the images

Keywords- Deep Convolutional Neural Networks, ImageNet,
Feature extraction, Classification, Random Forest, Regression.

I. INTRODUCTION

 Convolutional networks (ConvNets) have freshly
enjoyed a big success in large-scale image and video
recognition (Krizhevsky et al., 2012; Zeiler & Fergus, 2013;
Sermanet et al., 2014; Simonyan & Zisserman, 2014) which is
now possible by the large public image repositories, such as
ImageNet (Deng et al., 2009), and high-performance
computing systems, for imstance GPUs or large-scale
distributed clusters (Dean et al., 2012).particularly,played a
vital role in the progress of deep visual recognition
architectures has been played by the ImageNet Large-Scale
Visual Recog- nition Challenge (ILSVRC) (Russakovsky et
al., 2014), which has served as a testbed for a few generations
of large-scale image classification systems, from high-
dimensional shallow feature en- codings (Perronnin et al.,
2010) (the winner of ILSVRC-2011) to deep ConvNets
(Krizhevsky et al., 2012) (the winner of ILSVRC-2012).
With ConvNets becoming more of a commodity in the
computer vision field, a number of at- tempts have been made
to improve the original architecture of Krizhevsky et al.
(2012) in a bid to achieve better accuracy. For instance, the
best-performing submissions to the ILSVRC- 2013 (Zeiler &
Fergus, 2013; Sermanet et al., 2014) utilised smaller receptive
window size and smaller stride of the first convolutional layer.

Another line of improvements dealt with training and testing
the networks densely over the whole image and over multiple
scales (Sermanet et al., 2014; Howard, 2014). In this paper, we
address another important aspect of ConvNet architecture
design – its depth. To this end, we fix other parameters of the
architecture, and steadily increase the depth of the network by
adding more convolutional layers, which is feasible due to the
use of very small (3 × 3) convolution filters in all layers.

As a result, we come up with significantly more

accurate ConvNet architectures, which not only achieve the
state-of-the-art accuracy on ILSVRC classification and
localisation tasks, but are also applicable to other image
recognition datasets, where they achieve excellent
performance even when used as a part of a relatively simple
pipelines (e.g. deep features classified by a linear SVM
without fine-tuning). We have released our two best-
performing models1 to facilitate further research.

The rest of the paper is organised as follows. In Sect.

2, we describe our ConvNet configurations. The details of the
image classification training and evaluation are then presented
in Sect. 3, and the configurations are compared on the
ILSVRC classification task in Sect. 4. Sect. 5 concludes the
paper. For completeness, we also describe and assess our
ILSVRC-2014 object localisation system in Appendix A, and
discuss the generalisation of very deep features to other
datasets in Appendix B. Finally, Appendix C contains the list
of major paper revisions.

II. CONVNET CONFIGURATIONS

To measure the improvement brought by the

increased ConvNet depth in a fair setting, all our ConvNet
layer configurations are designed using the same principles,
inspired by Ciresan et al. (2011); Krizhevsky et al. (2012). In
this section, we first describe a generic layout of our ConvNet
configurations (Sect. 2.1) and then detail the specific
configurations used in the evaluation (Sect. 2.2). Our design
choices are then discussed and compared to the prior art in
Sect. 2.3.

ARCHITECTURE

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 930 www.ijsart.com

During training, the input to our ConvNets is a fixed-

size 224 × 224 RGB image. The only pre- processing we do is
subtracting the mean RGB value, computed on the training set,
from each pixel. The image is passed through a stack of
convolutional (conv.) layers, where we use filters with a very
small receptive field: 3 × 3 (which is the smallest size to
capture the notion of left/right, up/down,center). In one of the
configurations we also utilise 1 × 1 convolution filters, which
can be seen asa linear transformation of the input channels
(followed by non-linearity). The convolution stride isfixed to 1
pixel; the spatial padding of conv. layer input is such that the
spatial resolution is preserved after convolution, i.e. the
padding is 1 pixel for 3 × 3 conv. layers. Spatial pooling is
carried out by five max-pooling layers, which follow some of
the conv. layers (not all the conv. layers are followed by max-
pooling). Max-pooling is performed over a 2 × 2 pixel
window, with stride 2.

A stack of convolutional layers (which has a different

depth in different architectures) is followed by three Fully-
Connected (FC) layers: the first two have 4096 channels each,
the third performs 1000- way ILSVRC classification and thus
contains 1000 channels (one for each class). The final layer is
the soft-max layer. The configuration of the fully connected
layers is the same in all networks.

All hidden layers are equipped with the rectification

(ReLU (Krizhevsky et al., 2012)) non-linearity. We note that
none of our networks (except for one) contain Local
Response Normalisation (LRN) normalisation (Krizhevsky et
al., 2012): as will be shown in Sect. 4, such normalisation does
not improve the performance on the ILSVRC dataset, but
leads to increased memory con- sumption and computation
time. Where applicable, the parameters for the LRN layer
are those of (Krizhevsky et al., 2012).

CONFIGURATIONS

The ConvNet configurations, evaluated in this paper,
are outlined in Table 1, one per column. In the following we
will refer to the nets by their names (A–E). All configurations
follow the generic design presented in Sect. 2.1, and differ
only in the depth: from 11 weight layers in the network A (8
conv. and 3 FC layers) to 19 weight layers in the network E
(16 conv. and 3 FC layers). The width of conv. layers (the
number of channels) is rather small, starting from 64 in the
first layer and then increasing by a factor of 2 after each max-
pooling layer, until it reaches 512.

In Table 2 we report the number of parameters for

each configuration. In spite of a large depth, the number of

weights in our nets is not greater than the number of weights
in a more shallow net with larger conv. layer widths and
receptive fields (144M weights in (Sermanet et al., 2014)).

DISCUSSION

Our ConvNet configurations are quite different from
the ones used in the top-performing entries of the ILSVRC-
2012 (Krizhevsky et al., 2012) and ILSVRC-2013
competitions (Zeiler & Fergus, 2013; Sermanet et al., 2014).
Rather than using relatively large receptive fields in the first
conv. lay- ers (e.g. 11 × 11 with stride 4 in (Krizhevsky et al.,
2012), or 7 × 7 with stride 2 in (Zeiler & Fergus, 2013;
Sermanet et al., 2014)), we use very small 3 × 3 receptive
fields throughout the whole net, which are convolved with the
input at every pixel (with stride 1). It is easy to see that a stack
of two 3 × 3 conv. layers (without spatial pooling in between)
has an effective receptive field of 5 × 5; three

Table 1: ConvNet configurations (shown in columns). The
depth of the configurations increases from the left (A) to the

right (E), as more layers are added (the added layers are
shown in bold). The convolutional layer parameters are

denoted as “conv(receptive field size)-(number of channels)”.
The ReLU activation function is not shown for brevity.

Table 2: Number of parameters (in millions).

such layers have a 7 × 7 effective receptive field. So
what have we gained by using, for instance, a stack of three 3
× 3 conv. layers instead of a single 7 × 7 layer? First, we

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 931 www.ijsart.com

incorporate three non-linear rectification layers instead of a
single one, which makes the decision function more
discriminative.

Second, we decrease the number of parameters:

assuming that both the input and the output of a three-layer 3
× 3 convolution stack has C channels, the stack is
parametrised by 3 .32C2Σ = 27C2

weights; at the same time, a single 7 × 7 conv. layer

would require 72C2 = 49C2 parameters, i.e. 81% more. This
can be seen as imposing a regularisation on the 7 × 7 conv.
filters, forcing them to have a decomposition through the 3 × 3
filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers

(configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the
receptive fields of the conv. layers. Even though in our case
the 1 × 1 convolution is essentially a linear projection onto the
space of the same dimensionality (the number of input and
output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that
1 × 1 conv. layers have recently been utilised in the “Network
in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously

used by Ciresan et al. (2011), but their nets are significantly
less deep than ours, and they did not evaluate on the large-
scale ILSVRC dataset. Goodfellow et al. (2014) applied deep
ConvNets (11 weight layers) to the task of street number
recognition, and showed that the increased depth led to better
performance. GoogLeNet (Szegedy et al., 2014), a top-
performing entry of the ILSVRC-2014 classification task, was
developed independently of our work, but is similar in that it
is based on very deep ConvNets (22 weight layers) and small
convolution filters (apart from 3 × 3, they also use 1 × 1 and 5
× 5convolutions). Their network topology is, however, more
complex than ours, and the spatial reso-lution of the feature
maps is reduced more aggressively in the first layers to
decrease the amount of computation. As will be shown in
Sect. 4.5, our model is outperforming that of Szegedy et al.
(2014) in terms of the single-network classification accuracy.

III. CLASSIFICATION FRAMEWORK

In the previous section we presented the details of our

network configurations. In this section, we describe the details
of classification ConvNet training and evaluation.

TRAINING

The ConvNet training procedure generally follows
Krizhevsky et al. (2012) (except for sampling the input crops
from multi-scale training images, as explained later). Namely,
the training is carried out by optimising the multinomial
logistic regression objective using mini-batch gradient descent
(based on back-propagation (LeCun et al., 1989)) with
momentum. The batch size was set to 256, momentum to 0.9.
The training was regularised by weight decay (the L2 penalty
multiplier set to5 · 10−4) and dropout regularisation for the
first two fully-connected layers (dropout ratio set to 0.5). The
learning rate was initially set to 10−2, and then decreased by a
factor of 10 when the validation set accuracy stopped
improving. In total, the learning rate was decreased 3 times,
and the learning was stopped after 370K iterations (74
epochs). We conjecture that in spite of the larger number of
parameters and the greater depth of our nets compared to
(Krizhevsky et al., 2012), the nets required less epochs to
converge due to (a) implicit regularisation imposed by greater
depth and smaller conv. filter sizes; (b) pre-initialisation of
certain layers.

The initialisation of the network weights is important,

since bad initialisation can stall learning due to the instability
of gradient in deep nets. To circumvent this problem, we
began with training the configuration A (Table 1), shallow
enough to be trained with random initialisation. Then, when
training deeper architectures, we initialised the first four
convolutional layers and the last three fully- connected layers
with the layers of net A (the intermediate layers were
initialised randomly). We did not decrease the learning rate for
the pre-initialised layers, allowing them to change during
learning.

For random initialisation (where applicable), we

sampled the weights from a normal distribution with the zero
mean and 10−2 variance. The biases were initialised with zero.
It is worth noting that after the paper submission we found that
it is possible to initialise the weights without pre-training by
using the random initialisation procedure of Glorot & Bengio
(2010).

To obtain the fixed-size 224×224 ConvNet input

images, they were randomly cropped from rescaled training
images (one crop per image per SGD iteration). To further
augment the training set, the crops underwent random
horizontal flipping and random RGB colour shift (Krizhevsky
et al., 2012).

Training image rescaling is explained below.

Training image size. Let S be the smallest side of an
isotropically-rescaled training image, from which the ConvNet

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 932 www.ijsart.com

input is cropped (we also refer to S as the training scale).
While the crop size is fixed to 224 × 224, in principle S can
take on any value not less than 224: for S = 224 the crop will
capture whole-image statistics, completely spanning the
smallest side of a training image; forS ≫ 224 the crop will
correspond to a small part of the image, containing a small
object or an object part.

We consider two approaches for setting the training
scale S. The first is to fix S, which corresponds to single-scale
training (note that image content within the sampled crops can
still represent multi- scale image statistics). In our
experiments, we evaluated models trained at two fixed scales:
S = 256 (which has been widely used in the prior art
(Krizhevsky et al., 2012; Zeiler & Fergus, 2013; Sermanet et
al., 2014)) and S = 384. Given a ConvNet configuration, we
first trained the network using S = 256. To speed-up training
of the S = 384 network, it was initialised with the weights pre-
trained with S = 256, and we used a smaller initial learning
rate of 10−3.

The second approach to setting S is multi-scale

training, where each training image is individually rescaled by
randomly sampling S from a certain range [Smin, Smax] (we
used Smin = 256 and Smax = 512). Since objects in images can
be of different size, it is beneficial to take this into account
during training. This can also be seen as training set
augmentation by scale jittering, where a single model is
trained to recognise objects over a wide range of scales. For
speed reasons, we trained multi-scale models by fine-tuning
all layers of a single-scale model with the same configuration,
pre-trained with fixed S = 384.

TESTING

At test time, given a trained ConvNet and an input
image, it is classified in the following way. First, it is
isotropically rescaled to a pre-defined smallest image side,
denoted as Q (we also refer to it as the test scale). We note
that Q is not necessarily equal to the training scale S (as we
will show in Sect. 4, using several values of Q for each S
leads to improved performance). Then, the networkis applied
densely over the rescaled test image in a way similar to
(Sermanet et al., 2014). Namely, the fully-connected layers are
first converted to convolutional layers (the first FC layer to a 7
× 7 conv. layer, the last two FC layers to 1 × 1 conv. layers).
The resulting fully-convolutional net is then applied to the
whole (uncropped) image. The result is a class score map with
the number ofchannels equal to the number of classes, and a
variable spatial resolution, dependent on the input image size.
Finally, to obtain a fixed-size vector of class scores for the
image, the class score map is spatially averaged (sum-pooled).

We also augment the test set by horizontal flipping of the
images; the soft-max class posteriors of the original and
flipped images are averaged to obtain the final scores for the
image.

Since the fully-convolutional network is applied over

the whole image, there is no need to sample multiple crops at
test time (Krizhevsky et al., 2012), which is less efficient as it
requires network re-computation for each crop. At the same
time, using a large set of crops, as done by Szegedy et al.
(2014), can lead to improved accuracy, as it results in a finer
sampling of the input image compared to the fully-
convolutional net. Also, multi-crop evaluation is
complementary to dense evaluation due to different
convolution boundary conditions: when applying a ConvNet
to a crop, the convolved feature maps are padded with zeros,
while in the case of dense evaluation the padding for the same
crop naturally comes from the neighbouring parts of an image
(due to both the convolutions and spatial pooling), which
substantially increases the overall network receptive field, so
more context is captured. While we believe that in practice the
increased computation time of multiple crops doesnot justify
the potential gains in accuracy, for reference we also evaluate
our networks using 50 crops per scale (5 × 5 regular grid with
2 flips), for a total of 150 crops over 3 scales, which is
comparable to 144 crops over 4 scales used by Szegedy et al.
(2014).

IMPLEMENTATION DETAILS

Our implementation is derived from the publicly
available C++ Caffe toolbox (Jia, 2013) (branched out in
December 2013), but contains a number of significant
modifications, allowing us to perform training and evaluation
on multiple GPUs installed in a single system, as well as train
and evaluate on full-size (uncropped) images at multiple
scales (as described above). Multi-GPU training exploits data
parallelism, and is carried out by splitting each batch of
training images into several GPU batches, processed in
parallel on each GPU. After the GPU batch gradients are
computed, they are averaged to obtain the gradient of the full
batch. Gradient computation is synchronous across the GPUs,
so the result is exactly the same as when training on a single
GPU.

While more sophisticated methods of speeding up

ConvNet training have been recently pro- posed (Krizhevsky,
2014), which employ model and data parallelism for different
layers of the net, we have found that our conceptually much
simpler scheme already provides a speedup of 3.75 times on
an off-the-shelf 4-GPU system, as compared to using a single
GPU. On a system equipped with four NVIDIA Titan Black

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 933 www.ijsart.com

GPUs, training a single net took 2–3 weeks depending on the
architecture.

IV. RANDOM FOREST

Random Forest is the most popular and more

powerful supervised machine learning algorithm.It is capable
of performing both regression and classification tasks.As the
name suggests,this algorithm creates a random forest with
number of decision trees.More the trees in the forest, more
Robust the prediction,Thus it gives up the high accuracy

WORKING OF RANDOM FOREST

To classify a new object based on the attribute.Each tree gives
a classification and we say the tree votes for that class.

We first choose the classification having more votes of all the
other tree in the forest

And in the regression takes the averege of the output by
different trees.

ADVANTAGES

 Some Random forest algorithm can be used for
classification and regression tasks.

 Handle the missing values and maintains accuracy for
missing data.

 When we have more trees in the forest ,it wont
overfit the model.

 It has the power to handle large dataset with higher
dimensionality.

DISADVANTAGES

 Good job at classification but was as good as for
regression.

 We have very little control on what the model does.

APPLICATIONS

 It can be used in the banking sectors.
 It can be used in the meddicine sectors to identify the

correct combination of components to validate the
medicine.

 It is also used to identify disease by analyzing the
patient’s medical reccord.

 In computer vision Random Forest is used for image
classification.

 PSEUDOCODE

 Assume number of cases in the training set is
‘N’.Then sample of these ‘N’ cases is taken at
random but with replacement

 If there are ‘M’ input variables or features,a number
m<M is specified such that at each node m variables
are selected at random out of the ‘M’.The best split
on these m is used to split the node.The value of ‘m’
is held constant while we grow the forest

 Each tree is grown to the largest extent possible and
there is no pruning.

 Predict new data by aggregating the predictions of
the trees(i.e majority votes for classification average
for regression).

 IMPLEMENTATION

 Assume we found a 1000 Random decision trees.
 We need to pass the test features through the Rows of

each randomly created trees
 Say if we have 1000 Random decision trees to create

the forest.
 If an image contain hand,each Random forest will

predict the different outcome or class for the same
test features.

 Let us consider the random set of features for
example a finger

 Suppose 100 Random decision trees predict some
unit target,such as a finger,thumb.

 Then the votes for finger is given out of 100
 If finger is getting the highest votes then the final

random forest returns the finger to predict the
target,this concept of voting is known as the
“majority voting”.

 It also predicts rest of the fingers to be the fingers
then the high level decision tree can vote that the
image is a hand

This is why Random Forest is known as “Ensemble

macline learning algorithm”, where ensembles are divide and
conquer approach .

V. CONCLUSION

In this work we evaluated very deep convolutional

networks (up to 19 weight layers) for large- scale image
classification. It was demonstrated that the representation
depth is beneficial for the classification accuracy, and that
state-of-the-art performance on the ImageNet challenge
dataset can be achieved using a conventional ConvNet

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 934 www.ijsart.com

architecture (LeCun et al., 1989; Krizhevsky et al., 2012) with
substantially increased depth. In the appendix, we also show
that our models generalise well to a wide range of tasks and
datasets, matching or outperforming more complex
recognition pipelines built around less deep image
representations. Our results yet again confirm the importance
of depth in visual representations.Deep Convolutional Neural
Networks are very efficient in feature extraction for large-
scale unstructured data,but Random forest is used for the
structured data classification as it proves that it is efficient in
classifying the small-scale structured data.

VI. ACKNOWLEDGEMENTS

This work was supported by ERC grant VisRec no.
228180. We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the GPUs used for this
research.

REFERENCES

[1] Bell, S., Upchurch, P., Snavely, N., and Bala, K. Material

recognition in the wild with the materials in context
database. CoRR, abs/1412.0623, 2014.

[2] Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman,
A. Return of the devil in the details: Delving deep into
convolutional nets. In Proc. BMVC., 2014.

[3] Cimpoi, M., Maji, S., and Vedaldi, A. Deep convolutional
filter banks for texture recognition and segmentation.
CoRR, abs/1411.6836, 2014.

[4] Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M.,
and Schmidhuber, J. Flexible, high performance
convolutional neural networks for image classification. In
IJCAI, pp. 1237–1242, 2011.

[5] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K.,
Le, Q. V., and Ng, A. Y. Large scale distributed deep
networks. In NIPS, pp. 1232–1240, 2012.

[6] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. Imagenet: A large-scale hierarchical image
database. In Proc. CVPR, 2009.

[7] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,
Tzeng, E., and Darrell, T. Decaf: A deep convolutional
activation feature for generic visual recognition. CoRR,
abs/1310.1531, 2013.

[8] Everingham, M., Eslami, S. M. A., Van Gool, L.,
Williams, C., Winn, J., and Zisserman, A. The Pascal
visual object classes challenge: A retrospective. IJCV,
111(1):98–136, 2015.

[9] Fei-Fei, L., Fergus, R., and Perona, P. Learning
generative visual models from few training examples: An
incremental bayesian approach tested on 101 object

categories. In IEEE CVPR Workshop of Generative Model
Based Vision, 2004.

[10] Girshick, R. B., Donahue, J., Darrell, T., and Malik, J.
Rich feature hierarchies for accurate object detection and
semantic segmentation. CoRR, abs/1311.2524v5, 2014.
Published in Proc. CVPR, 2014.

[11] Gkioxari, G., Girshick, R., and Malik, J. Actions and
attributes from wholes and parts. CoRR, abs/1412.2604,
2014.

[12] Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Proc.
AISTATS, volume 9, pp. 249–256, 2010.

[13] Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and
Shet, V. Multi-digit number recognition from street view
imagery using deep convolutional neural networks. In
Proc. ICLR, 2014.

[14] Griffin, G., Holub, A., and Perona, P. Caltech-256 object
category dataset. Technical Report 7694, California
Institute of Technology, 2007.

[15] He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid
pooling in deep convolutional networks for visual
recognition. CoRR, abs/1406.4729v2, 2014.

[16] Hoai, M. Regularized max pooling for image
categorization. In Proc. BMVC., 2014.

[17] Howard, A. G. Some improvements on deep
convolutional neural network based image classification.
In Proc. ICLR, 2014.

[18] Jia, Y. Caffe: An open source convolutional
architecture for fast feature embedding.
http://caffe.berkeleyvision.org/, 2013.

[19] Karpathy, A. and Fei-Fei, L. Deep visual-semantic
alignments for generating image descriptions. CoRR,
abs/1412.2306, 2014.

[20] Kiros, R., Salakhutdinov, R., and Zemel, R. S. Unifying
visual-semantic embeddings with multimodal neural
language models. CoRR, abs/1411.2539, 2014.

[21] Krizhevsky, A. One weird trick for parallelizing
convolutional neural networks. CoRR, abs/1404.5997,
2014. Krizhevsky, A., Sutskever, I., and Hinton, G. E.
ImageNet classification with deep convolutional neural
net- works. In NIPS, pp. 1106–1114, 2012.

[22] LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D.
Backpropa- gation applied to handwritten zip code
recognition. Neural Computation, 1(4):541–551, 1989.

[23] Lin, M., Chen, Q., and Yan, S. Network in network. In
Proc. ICLR, 2014.

[24] Long, J., Shelhamer, E., and Darrell, T. Fully
convolutional networks for semantic segmentation. CoRR,
abs/1411.4038, 2014.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 935 www.ijsart.com

[25] Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning
and Transferring Mid-Level Image Representations using
Convolutional Neural Networks. In Proc. CVPR, 2014.

[26] Perronnin, F., Sa´nchez, J., and Mensink, T. Improving
the Fisher kernel for large-scale image classification. In
Proc. ECCV, 2010.

[27] Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S.
CNN Features off-the-shelf: an Astounding Baseline for
Recognition. CoRR, abs/1403.6382, 2014.

[28] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet
large scale visual recognition challenge. CoRR,
abs/1409.0575, 2014.

[29] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus,
R., and LeCun, Y. OverFeat: Integrated Recognition,
Localization and Detection using Convolutional
Networks. In Proc. ICLR, 2014.

[30] Simonyan, K. and Zisserman, A. Two-stream
convolutional networks for action recognition in videos.
CoRR, abs/1406.2199, 2014. Published in Proc. NIPS,
2014.

[31] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich,Going deeper with convolutions. CoRR,
abs/1409.4842, 2014.

[32] Wei, Y., Xia, W., Huang, J., Ni, B., Dong, J., Zhao, Y.,
and Yan, S. CNN: Single-label to multi-label. CoRR,
abs/1406.5726, 2014.

[33] Zeiler, M. D. and Fergus, R. Visualizing and
understanding convolutional networks. CoRR,
abs/1311.2901, 2013. Published in Proc. ECCV, 2014.

