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Abstract- Here, we inspect the outcome of the convolutional 
network depth on its correctness in the large-scale image 
recognition tasks. The chief role is thorough valuation of 
networks of increasing deepness by means of an architecture 
with small  (3 × 3) convolution filters, and we also focus on 
one the algorithm called “Random Forest”, which is a famous 
algorithm  in Machine Learning ,This algorithm proves that it 
is efficient for the classification purpose. These outcomes in 
convolutional network were depended on our ImageNet 
Challenge 2014 submission. And in the next segments of the 
paper we get the understanding of the convolutional neural 
networks and the Random Forest also the differences between 
them, then finally we come to the conclusion of knowing the 
efficient algorithm in order to classify the images 
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I. INTRODUCTION 
 
 Convolutional networks (ConvNets) have freshly 
enjoyed a big  success  in  large-scale image and video 
recognition (Krizhevsky et al., 2012; Zeiler & Fergus, 2013; 
Sermanet et al., 2014; Simonyan & Zisserman, 2014) which is 
now possible by the large public image repositories, such as 
ImageNet (Deng et al., 2009), and high-performance 
computing systems, for imstance  GPUs or large-scale 
distributed clusters (Dean et al., 2012).particularly,played a 
vital role in the progress of deep visual recognition 
architectures has been played by the ImageNet Large-Scale 
Visual Recog- nition Challenge (ILSVRC) (Russakovsky et 
al., 2014), which has served as a testbed for a few generations 
of large-scale image classification systems, from high-
dimensional shallow feature en- codings (Perronnin et al., 
2010) (the winner of ILSVRC-2011) to deep ConvNets 
(Krizhevsky et al., 2012) (the winner of ILSVRC-2012). 
With ConvNets becoming more of a commodity in the 
computer vision field, a number of at- tempts have been made 
to  improve the  original architecture  of  Krizhevsky et al.  
(2012)  in  a bid to achieve better accuracy. For instance, the 
best-performing submissions to the ILSVRC- 2013 (Zeiler & 
Fergus, 2013; Sermanet et al., 2014) utilised smaller receptive 
window size and smaller stride of the first convolutional layer. 

Another line of improvements dealt with training  and testing 
the networks densely over the whole image and over multiple 
scales (Sermanet et al., 2014; Howard, 2014). In this paper, we 
address another important aspect of ConvNet architecture 
design – its depth. To this end, we fix other parameters of the 
architecture, and steadily increase the depth of the network by 
adding more convolutional layers, which is feasible due to the 
use of very small (3 × 3) convolution filters in all layers. 

 
As a result, we come up with significantly more 

accurate ConvNet architectures, which not only achieve the 
state-of-the-art accuracy on ILSVRC classification and 
localisation tasks, but are also applicable to other image 
recognition datasets, where they achieve excellent 
performance even when used as a part of a relatively simple 
pipelines (e.g. deep features classified by a linear SVM 
without fine-tuning). We have released our two best-
performing models1 to facilitate further research. 

 
The rest of the paper is organised as follows. In Sect. 

2, we describe our ConvNet configurations. The details of the 
image classification training and evaluation are then presented 
in Sect. 3, and the configurations are compared on the 
ILSVRC classification task in Sect. 4. Sect. 5 concludes the 
paper. For completeness, we also describe and assess our 
ILSVRC-2014 object localisation system in Appendix A, and 
discuss the generalisation of very deep features to other 
datasets in Appendix B. Finally, Appendix C contains the list 
of major paper revisions. 
 

II. CONVNET CONFIGURATIONS 
 
To measure the improvement brought by the 

increased ConvNet depth in a fair setting, all our ConvNet 
layer configurations are designed using the same principles, 
inspired by Ciresan et al. (2011); Krizhevsky et al. (2012). In 
this section, we first describe a generic layout of our ConvNet 
configurations (Sect. 2.1) and then detail the specific 
configurations used in the evaluation (Sect. 2.2). Our design 
choices are then discussed and compared to the prior art in 
Sect. 2.3. 
 
ARCHITECTURE 
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During training, the input to our ConvNets is a fixed-

size 224 × 224 RGB image. The only pre- processing we do is 
subtracting the mean RGB value, computed on the training set, 
from each pixel. The image is passed through a stack of 
convolutional (conv.) layers, where we use filters with a very 
small receptive field: 3 × 3 (which is the smallest size to 
capture the notion of left/right, up/down,center). In one of the 
configurations we also utilise 1 × 1 convolution filters, which 
can be seen asa linear transformation of the input channels 
(followed by non-linearity). The convolution stride isfixed to 1 
pixel; the spatial padding of conv. layer input is such that the 
spatial resolution is preserved after convolution, i.e. the 
padding is 1 pixel for 3 × 3 conv. layers. Spatial pooling is 
carried out by five max-pooling layers, which follow some of 
the conv. layers (not all the conv. layers are followed by max-
pooling). Max-pooling is performed over a 2 × 2 pixel 
window, with stride 2. 

 
A stack of convolutional layers (which has a different 

depth in different architectures) is followed by three Fully-
Connected (FC) layers: the first two have 4096 channels each, 
the third performs 1000- way ILSVRC classification and thus 
contains 1000 channels (one for each class). The final layer is 
the soft-max layer. The configuration of the fully connected 
layers is the same in all networks. 

 
All hidden layers are equipped with the rectification 

(ReLU (Krizhevsky et al., 2012)) non-linearity. We note that 
none of our networks (except for one) contain  Local  
Response  Normalisation (LRN) normalisation (Krizhevsky et 
al., 2012): as will be shown in Sect. 4, such normalisation does 
not improve the performance on the ILSVRC dataset, but 
leads to increased memory con- sumption and computation 
time. Where applicable,  the  parameters for the LRN  layer 
are  those of (Krizhevsky et al., 2012). 
 
CONFIGURATIONS 
 

The ConvNet configurations, evaluated in this paper, 
are outlined in Table 1, one per column. In the following we 
will refer to the nets by their names (A–E). All configurations 
follow the generic design presented in Sect. 2.1, and differ 
only in the depth: from 11 weight layers in the network A (8 
conv. and 3 FC layers) to 19 weight layers in the network E 
(16 conv. and 3 FC layers). The width of conv. layers (the 
number of channels) is rather small, starting from 64 in the 
first layer and then increasing by a factor of 2 after each max-
pooling layer, until it reaches 512. 

 
In Table 2 we report the number of parameters for 

each configuration. In spite of a large depth, the number of 

weights in our nets is not greater than the number of weights 
in a more shallow net with larger conv. layer widths and 
receptive fields (144M weights in (Sermanet et al., 2014)). 
 
DISCUSSION 
 

Our ConvNet configurations are quite different from 
the ones used in the top-performing entries  of the ILSVRC-
2012 (Krizhevsky et al., 2012) and ILSVRC-2013 
competitions (Zeiler & Fergus, 2013; Sermanet et al., 2014). 
Rather than using relatively large receptive fields in the first 
conv. lay- ers (e.g. 11 × 11 with stride 4 in (Krizhevsky et al., 
2012), or 7 × 7 with stride 2 in (Zeiler & Fergus, 2013; 
Sermanet et al., 2014)), we use very small 3  × 3 receptive 
fields throughout the whole net, which are convolved with the 
input at every pixel (with stride 1). It is easy to see that a stack 
of two 3 × 3 conv. layers (without spatial pooling in between) 
has an effective receptive field of 5 × 5; three 

 
Table 1: ConvNet configurations (shown in columns). The 
depth of the configurations increases from the left (A) to the 

right (E), as more layers are added (the added layers are 
shown in bold). The convolutional layer parameters are 

denoted as “conv(receptive field size)-(number of channels)”. 
The ReLU activation function is not shown for brevity. 

 
 

Table 2: Number of parameters (in millions). 

 
 

such layers have a 7 × 7 effective receptive field. So 
what have we gained by using, for instance, a stack of three 3 
× 3 conv. layers instead of a single 7 × 7 layer? First, we 
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incorporate three non-linear rectification layers instead of a 
single one, which makes the decision function more 
discriminative. 

 
Second, we decrease the number of parameters: 

assuming that both the input and the output of a three-layer 3 
× 3 convolution stack has C channels, the stack is 
parametrised by 3 .32C2Σ = 27C2 

 
weights; at the same time, a single 7 × 7 conv. layer 

would require 72C2 = 49C2 parameters, i.e. 81% more. This 
can be seen as imposing a regularisation on the 7 × 7 conv. 
filters, forcing them to have a decomposition through the 3 × 3 
filters (with non-linearity injected in between). 

 
The incorporation of 1 × 1 conv. layers 

(configuration C, Table 1) is a way to increase the non- 
linearity of the decision function without affecting the 
receptive fields of the conv. layers. Even though in our case 
the 1 × 1 convolution is essentially a linear projection onto the 
space of the same dimensionality (the number of input and 
output channels is the same), an additional non-linearity is 
introduced by the rectification function. It should be noted that 
1 × 1 conv. layers have recently been utilised in the “Network 
in Network” architecture of Lin et al. (2014). 

 
Small-size convolution filters have been previously 

used by Ciresan et al. (2011), but their nets  are significantly 
less deep than ours, and they did not evaluate on  the  large-
scale  ILSVRC dataset. Goodfellow et al. (2014) applied deep 
ConvNets (11  weight  layers)  to  the  task  of street number 
recognition, and showed that the increased depth led to better 
performance. GoogLeNet (Szegedy et al., 2014), a top-
performing entry of the ILSVRC-2014 classification task, was 
developed independently of our work, but is similar in that it 
is based on very deep ConvNets (22 weight layers) and small 
convolution filters (apart from 3 × 3, they also use 1 × 1 and 5 
× 5convolutions).  Their network topology is, however, more 
complex than ours, and the spatial reso-lution of the feature 
maps is reduced more aggressively in the first layers to 
decrease the amount  of computation. As will be shown in 
Sect. 4.5, our model is outperforming that of Szegedy et al. 
(2014) in terms of the single-network classification accuracy. 
 

III. CLASSIFICATION FRAMEWORK 
 
In the previous section we presented the details of our 

network configurations. In this section, we describe the details 
of classification ConvNet training and evaluation. 
 
TRAINING 
 

The ConvNet training procedure generally follows 
Krizhevsky et al. (2012) (except for sampling the input crops 
from multi-scale training images, as explained later). Namely, 
the training is carried out by optimising the multinomial 
logistic regression objective using mini-batch gradient descent 
(based on back-propagation (LeCun et al., 1989)) with 
momentum. The batch size was set to 256, momentum to 0.9.  
The training was regularised by weight decay (the L2 penalty 
multiplier set  to5 · 10−4) and dropout regularisation for the 
first two fully-connected layers (dropout ratio set to 0.5). The 
learning rate was initially set to 10−2, and then decreased by a 
factor of 10 when the validation set accuracy stopped 
improving.  In total, the learning rate was decreased 3 times, 
and the learning was stopped after 370K iterations (74 
epochs). We conjecture that in spite of the larger number of 
parameters and the greater depth of our nets compared to 
(Krizhevsky et al., 2012), the nets required less epochs to 
converge due to (a) implicit regularisation imposed by greater 
depth and smaller conv. filter sizes; (b) pre-initialisation of 
certain layers. 

 
The initialisation of the network weights is important, 

since bad initialisation can stall learning due to the instability 
of gradient in deep nets.  To  circumvent this problem,  we 
began with training  the configuration A (Table 1), shallow 
enough to be trained with random initialisation. Then, when 
training deeper architectures, we initialised the first four 
convolutional layers and the last three fully- connected layers 
with the layers of net A (the intermediate layers were 
initialised randomly). We did not decrease the learning rate for 
the pre-initialised layers, allowing them to change during 
learning. 

 
For random initialisation (where applicable), we 

sampled the weights from a normal distribution with the zero 
mean and 10−2 variance. The biases were initialised with zero. 
It is worth noting that after the paper submission we found that 
it is possible to initialise the weights without pre-training by 
using the random initialisation procedure of Glorot & Bengio 
(2010). 

 
To obtain the fixed-size 224×224 ConvNet input 

images, they were randomly cropped from rescaled training 
images (one crop per image per SGD iteration). To further 
augment the training set, the crops underwent random 
horizontal flipping and random RGB colour shift (Krizhevsky 
et al., 2012). 

 
Training image rescaling is explained below. 
 
Training image size. Let S be the smallest side of an 
isotropically-rescaled training image, from which the ConvNet 
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input is cropped (we also refer to S as the training scale). 
While the crop size is fixed to 224 × 224, in principle S can 
take on any value not less than 224: for S = 224 the crop will 
capture whole-image statistics, completely spanning the 
smallest side of a training image; forS ≫ 224 the crop will 
correspond to a small part of the image, containing a small 
object or an object part. 
 

We consider two approaches for setting the training 
scale S. The first is to fix S, which corresponds to single-scale 
training (note that image content within the sampled crops can 
still represent multi- scale image statistics). In our 
experiments, we evaluated models trained at two fixed scales: 
S = 256 (which has been widely used in the prior art 
(Krizhevsky et al., 2012; Zeiler & Fergus, 2013; Sermanet et 
al., 2014)) and S = 384. Given a ConvNet configuration, we 
first trained the network using S = 256. To speed-up training 
of the S = 384 network, it was initialised with the weights pre-
trained with S = 256, and we used a smaller initial learning 
rate of 10−3. 

 
The second approach to setting S is multi-scale 

training, where each training image is individually rescaled by 
randomly sampling S from a certain range [Smin, Smax] (we 
used Smin = 256 and Smax = 512). Since objects in images can 
be of different size, it is beneficial to take this into account 
during training. This can also be seen as training set 
augmentation by scale jittering, where a single model is 
trained to recognise objects over a wide range of scales. For 
speed reasons, we trained multi-scale models by fine-tuning 
all layers of a single-scale model with the same configuration, 
pre-trained with fixed S = 384. 
 
TESTING 
 

At test time, given a trained ConvNet and an input 
image, it is classified in the following way. First, it is 
isotropically rescaled to a pre-defined smallest image side, 
denoted as Q (we also refer to it   as the test scale). We note 
that Q is not necessarily equal to the training scale S (as we 
will show  in Sect. 4, using several values of Q for each S 
leads to improved performance). Then, the networkis applied 
densely over the rescaled test image in a way similar to 
(Sermanet et al., 2014). Namely, the fully-connected layers are 
first converted to convolutional layers (the first FC layer to a 7 
× 7 conv. layer, the last two FC layers to 1 × 1 conv. layers). 
The resulting fully-convolutional net is then applied to the 
whole (uncropped) image. The result is a class score map with 
the number ofchannels equal to the number of classes, and a 
variable spatial resolution, dependent on the input image size. 
Finally, to obtain a fixed-size vector of class scores for the 
image, the class score map is spatially averaged (sum-pooled). 

We also augment the test set by horizontal flipping of the 
images; the soft-max class posteriors of the original and 
flipped images are averaged to obtain the final scores for the 
image. 

 
Since the fully-convolutional network is applied over 

the whole image, there is no need to sample multiple crops at 
test time (Krizhevsky et al., 2012), which is less efficient as it 
requires network re-computation for each crop. At the same 
time, using a large set of crops, as done by Szegedy et al. 
(2014), can lead to improved accuracy, as it results in a finer 
sampling of the input image compared to the fully-
convolutional net. Also, multi-crop evaluation is 
complementary to dense evaluation due to different 
convolution boundary conditions: when applying a ConvNet 
to a crop, the convolved feature maps are padded with zeros, 
while in the case of dense evaluation the padding for the same 
crop naturally comes from the neighbouring parts of an image 
(due to both the convolutions and spatial pooling), which 
substantially increases the overall network receptive field, so 
more context is captured. While we believe that in practice the 
increased computation time of multiple crops doesnot justify 
the potential gains in accuracy, for reference we also evaluate 
our networks using 50 crops per scale (5 × 5 regular grid with 
2 flips), for a total of 150 crops over 3 scales, which is 
comparable to 144 crops over 4 scales used by Szegedy et al. 
(2014). 
 
IMPLEMENTATION DETAILS 
 

Our implementation is derived from the publicly 
available C++ Caffe toolbox (Jia, 2013) (branched out in 
December 2013), but contains a number of significant 
modifications, allowing us to perform training and evaluation 
on multiple GPUs installed in a single system, as well as train 
and evaluate on full-size (uncropped) images at multiple 
scales (as described above). Multi-GPU training exploits data 
parallelism, and is carried out by splitting each batch of 
training images into several GPU batches, processed in 
parallel on each GPU. After the GPU batch gradients are 
computed, they are averaged to obtain the gradient of the full 
batch. Gradient computation is synchronous across the GPUs, 
so the result is exactly the same as when training on a single 
GPU. 

 
While more sophisticated methods of speeding up 

ConvNet training have been recently pro-  posed (Krizhevsky, 
2014), which employ model and data parallelism for different 
layers of the net, we have found that our conceptually much 
simpler scheme already provides a speedup of 3.75 times on 
an off-the-shelf 4-GPU system, as compared to using a single 
GPU. On a system equipped with four NVIDIA Titan Black 
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GPUs, training a single net took 2–3 weeks depending on the 
architecture. 
 

IV. RANDOM FOREST 
 
Random Forest is the most popular and more 

powerful supervised machine learning algorithm.It is capable 
of performing both regression and classification tasks.As the 
name suggests,this algorithm creates a random forest with 
number of decision trees.More the trees in the forest, more 
Robust the prediction,Thus it gives up the high accuracy  
 
WORKING OF RANDOM FOREST 
 
To classify a new object based on the attribute.Each tree gives 
a classification and we say the tree votes for that class. 
 
We first choose the classification having more votes of all the 
other tree in the forest  
 
And in the regression takes the averege of the output by 
different trees. 
 
ADVANTAGES 
 

 Some Random forest algorithm can be used for 
classification and regression tasks. 

 Handle the missing values and maintains accuracy for 
missing data. 

 When we have more trees in the forest ,it wont 
overfit the model. 

 It has the power to handle large dataset with higher 
dimensionality. 

 
DISADVANTAGES 
 

 Good job at classification but was as good as for 
regression. 

 We have very little control on what the model does. 
 
APPLICATIONS 
 

 It can be used in the banking sectors. 
 It can be used in the meddicine sectors to identify the 

correct combination of components to validate the 
medicine. 

 It is also used to identify disease by analyzing the 
patient’s medical reccord. 

 In computer vision Random Forest is used for image 
classification. 

 

 PSEUDOCODE 
 

 Assume number of cases in the training set is 
‘N’.Then sample of these ‘N’ cases is taken at 
random but with replacement 

 If there are ‘M’ input variables or features,a number 
m<M is specified such that at each node m variables 
are selected at random out of the ‘M’.The best split 
on these m is used to split the node.The value of ‘m’ 
is held constant while we grow the forest 

 Each tree is grown to the largest extent possible and 
there is no pruning. 

 Predict new data by aggregating the predictions of 
the trees(i.e majority votes for classification average 
for regression). 

 
 IMPLEMENTATION 
 

 Assume we found a 1000 Random decision trees. 
 We need to pass the test features through the Rows of 

each randomly created trees 
 Say if we have 1000 Random decision trees to create 

the forest. 
 If an image contain hand,each Random forest will 

predict the different outcome or class for the same 
test features. 

 Let us consider the random set of features for 
example a finger 

 Suppose 100 Random decision trees predict some 
unit target,such as a finger,thumb. 

 Then the votes for finger is given out of 100 
 If finger is getting the highest votes then the final 

random forest returns the finger to predict the 
target,this concept of voting is known as the 
“majority voting”. 

 It also predicts rest of the fingers to be the fingers 
then the high level decision tree can vote that the 
image is a hand 

 
This is why Random Forest is known as “Ensemble 

macline learning algorithm”, where ensembles are divide and 
conquer approach . 
 

V. CONCLUSION 
 
In this work we evaluated very deep convolutional 

networks (up to 19 weight layers) for large- scale image 
classification. It was demonstrated that the representation 
depth is beneficial for the classification accuracy, and that 
state-of-the-art performance on the ImageNet challenge 
dataset can be achieved using a conventional ConvNet 
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architecture (LeCun et al., 1989; Krizhevsky et al., 2012) with 
substantially increased depth. In the appendix, we also show 
that our models generalise well to a wide range of tasks and 
datasets, matching or outperforming more complex 
recognition pipelines built around less deep image 
representations. Our results yet again confirm the importance 
of depth in visual representations.Deep Convolutional Neural 
Networks are very efficient in feature extraction for large-
scale unstructured data,but Random forest is used for the 
structured data classification as it proves that it is efficient in 
classifying the small-scale structured data. 
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