
IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 559 www.ijsart.com

Handwritten Character Recognition

 Abhinav Walde1, Nilesh Thote2, Shubham Thakare3, Dr.D.R.Ingle4
 Department Of Computer Engineering

 1,2,3 Bharati Vidyapeeth College of Engineering, Navi Mumbai
 4 Professor, Bharati Vidyapeeth College of Engineering, Navi Mumbai

Abstract- Handwritten English text recognition is emerging
areas of research in the field of optical character recognition.
In this paper, using The K-nearest neighbor decision rule has
often been used in these pattern recognition problems it is on
based approach is used to recognize the text. The offline
handwritten text is segmented into lines, lines into words and
words into character for recognition. Shape features are
extracted from the characters and fed into SVM classifier for
recognition.

I. INTRODUCTION

 Humans recognize characters easily and they repeat
the character recognition process thousands of times every day
as they read papers or books. However, after many years of
intensive investigation and research, the ultimate goal of
developing an optical character recognition (OCR) system
with the same reading capabilities as humans still remains
unachieved. One of the main objectives of an OCR is to reach
a 5 characters/second speed with a 99.9% recognition rate,
with no errors. OCR is the process of converting an image
representation of a document into an editable format. In the
middle of the 1940s, the first character recognizers appeared
and mainly focused on machine-printed text, and some of
them dealt with handwritten text or symbols. In 1950s,
commercial character recognizers were available for Latin
languages. In 1980s, many structural and statistical methods
were used in character recognition; some of those recognizers
broke the character image into a set of lines and curves and
basically focused on the shape recognition techniques without
using any semantic information.

 After 1990, complex character recognition algorithms
were developed; many recognizers used sophisticated
methodologies such as neural networks, hidden Markov
models and natural language processing techniques. Many
applications such as reading postal address off envelopes,
reading customer filled forms, archiving and retrieving text
and digitizing libraries benefit from OCR systems.

 OCRs are divided into two major categories:
typewritten and handwritten. Type written OCR systems
recognize a document that has been previously typed and
scanned prior to recognition progress. On the other hand,
handwritten OCR systems recognize a text that has been

written by a human. Comparing to handwritten OCR systems,
Typewritten OCR systems are usually easier to design and the
recognition rate achieved for typewritten recognition systems
is more than the handwritten.

 OCRs are further categorized to offline and online
recognition systems. In offline OCR systems, the image of the
typewritten or the handwritten text is acquired through
scanning. The image then is read by the OCR system and is
analyzed for recognition. In online OCR systems, input of the
OCR system is an image of a handwritten text which is usually
acquired using cell phone or a portable personal computer.

Aim
The aim of this project is to develop such a tool which takes
an Image as input and extract characters (alphabets, digits,
symbols) from it. The Image can be of handwritten document
or Printed document. It can be used as a form of data entry
from printed records.

1.2.ARCHITECTURE OF THE PROPOSED SYSTEM

The Architecture of optical characters recognition system on a
grid infrastructure consists of three main components. They
are:

 Scanner
 Ocr hardwired or software
 K-NN algorithm

1.2. Scope of the project

 The scope of our product Optical Character
Recognition on a grid infrastructure is to provide an efficient
and enhanced software tool for the users to perform Document

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 560 www.ijsart.com

Image Analysis, document processing by reading and
recognizing the characters in research, academic,
governmental and business organizations that are having large
pool of documented, scanned images. Irrespective of the size
of documents and the type of characters in documents, the
product is recognizing them, searching them and processing
them faster according to the needs of the environment.

1.3. TRAINING

For training purpose we had to know about are:

 Python
 Machine learning
 Data mining

III. NORMALIZATION

 Now as we have extracted the character we need to
Normalize the size of the characters. There are large variations
In the sizes of each Character hence we need a method To
normalize the size.

 We have found a simple method to implement the
normalizing. To understand this method considers an example
that we have extracted a character of size 7 X 8. We want to
convert it to size of 10 X 10. So we make a matrix of 70 X 80
by duplicating rows and columns. Now we divide this 70 X 80
into sub Matrix of 7 X 8. We extract each sub matrix and
calculate the no. of ones in that sub matrix. If the no. of one’s
is greater than half the size of sub matrix we assign 1 to
corresponding position in normalized matrix. Hence the output
would be a 10 X 10 matrix.

Fig 5(a) shows original representation of the character

Fig 5(b) shows the Normalized Character representation after

normalizing.

The Fig 5(a) is shows a representation of character of 12 X12
size. Using the above algorithm it is converted into character
of 8 X 8 as shown in the Fig 5(b).

Skew Detection

The Characters are often found to be skewed. This would
impose problems on the efficient character recognition. So to
correct the effect of this skewdness we need counter rotate the
image by an angle .We use a very simple but effective
technique for Skew Correction. We use “Line Fitting” i.e.
Linear Regression to find the angle. Consider the Skewed
character as a Graph i.e. all the pixels that have value 1 are
considered to be data points. Then we perform linear
regression using the equation Y = M*X +C. Using the
formulas for regress

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 561 www.ijsart.com

sion we calculate M= (nxiyi - xiyi) / (nxi2-(xi)2).This angle is
equivalent to the skewed angle so by rotating the image by
opposite of this angle will remove the skew news. This is a
very crude way of removing sleekness there are other highly
efficient ways of removing Skew ness . But for Characters that
have very low Skew Angles this gets the thing done.

IV.SOFTWARE REQUIREMENTS SPECIFICATION

 System Operating: Windows-XP
 Programming Language : Core Java
 User Interface : Swings

V.HARDWARE REQUIREMENTS SPECIFICATION

Processor : Pentium IV processor or higher
RAM: Minimum of 512 MB RAM

VI. K-NEAREST NEIGHBORS

A case is classified by a majority vote of its neighbors, with
the case being assigned to the class most common amongst its
K nearest neighbors measured by a distance Function. If K =
1, then the case is simply assigned to the Class of its nearest
neighbor

6.1. Use of K-NN algorithm:

KNN can be used for both classification and regression
predictive problems. However, it is more widely used in
classification problems in the industry. To evaluate any
technique we generally look at 3 important aspects:

Ease to interpret output
 Calculation time
 Predictive Power

Examples to place KNN in the scale:

KNN algorithm fairs across all parameters of considerations. It
is commonly used for its easy of interpretation and low
calculation time.

6.2. K-NN algorithm works:

6.2.1. Characters Extraction and Data Preparation
Singling out each character from an image using
OpenCV’s find Contour operation did not produce reliable

results due to noise. For this specific problem, it was more
robust to detect the “bounding box” around the character
(image cropping) and then “single out” each digit out of the
cropped image. The latter step is easy after finding the
bounding box since each character will have a fixed
coordinates relative to the upper-left corner of the cropped
image.

 6.2.2. Detecting the Bounding Box

Using third party tools to crop the boundaries of the images
did not work well on all images. Instead, I created a simple
method to deterministically crop the images and detect the
bounding box with 100% accuracy.

The method starts by counting the blue pixels of a rectangle as
shown in Figure. If the count of blue pixels exceeds an
empirically set value, then the coordinates of the rectangle are
the upper boundary of the digits and will be used to crop the
image.

6.2.3 Character Extraction

Now that the bounding box is detected, it should be easy to
single out each digit since each character will have pre-fixed
coordinates relative to the top-left corner of the cropped
image. It applied the above code on a set of images and
manually sorted the images of each digit into separate folders
labeled from ‘A’ to ‘B’ as shown below to create my training /
testing dataset. Now that we created the training dataset and
stored into features and features label arrays, we then
divided our training sets into training and test sets using
sklearn’s function train_test_split and used the result to train
a k-NN classifier and finally saved the model as illustrated in
the code below.

6.2.4. Predicting

The process of predicting digits on new images follows the
same steps of singling out the digits illustrated in the training
steps above and then simply applying k-
NN’s predict function k-NN’s predict function returns a single
digit value between ‘A’ and ‘Z’ to denote the prediction
class of the input
image.KNN’s predict_proba function returns the accuracy
associated with each predicted class. Finally, predictions = list
(map (lambda x: predict(x), hogs)) results in the following
vector of tuples where each tuple represents the predicted class
of each of the digits on the image with its associated
prediction confidence. Any prediction that does not classify an
input with 100% confidence will be presented to the user for
manual correction as illustrated in the next section.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 562 www.ijsart.com

6.2.4. Presentation

The last step was to present the result of the Machine Learning
model in an excel file as shown below. For digits that were not
predicted with 100% accuracy, I embedded the image of the
expected digit below the actual prediction. This minor
presentation tweak decreased the user’s time to fix the non
accurate prediction by 80%. Furthermore, this activity is not
daunting as it does not require significant mental effort. A user
can scroll over the file in few minutes and visually matches
the actual result to the expected result. Many of the predictions
were actually false negative; hence the user did not have to
make many corrections.

Fig 9 recognition

Fig 8.Ttraining automated character extraction

Fig 10 Training – User defined

VII. TESTS AND RESULTS ANALYSIS

7.1 Test

This section shows some implementation results. The
training variables involved in the tests were: the number of
cycles, the size of the hidden layer, and the number of hidden
layer. The dataset consisted of A-Z typed characters of
different size and type. Thus the input layer consisted of 100
neurons, and the output layer 26 neurons (one for each

character). Ideally, we’d like our training and testing data to
consist of thousands of samples, but this not feasible since this
data was created from scratch

7.2 Result Analysis

From the results, the following observations are made:
 A small number of nodes in the hidden layer (eg.

26)lower the accuracy.
 A large number of neurons in the hidden layer help in

increasing the accuracy; however there is probably some
upper limit to this which is dependent on the data being
used. Additionally, high neuron counts in the hidden

 Layers increase training time significantly.
 As number of hidden layer increases the accuracy

increases initially and then saturates at certain rate
probably due to the data used in training.

 Mostly Accuracy is increased by increasing the number of
cycles.

 Accuracy could also be increased by increasing the
training set.

VIII. CONCLUSIONS

 The back propagation neural network discussed and
implemented in this paper can also be used for almost any
general image recognition applications such as face detection
and fingerprint detection. The implementation of the fully
connected back propagation network gave reasonable results
toward recognizing characters.

 The most notable is the fact that it cannot handle
major variations in translation, rotation, or scale. While a few
pre-processing steps can be implemented in order to account
for these variances, as we did. In general they are difficult to
solve completely.

REFERENCES

[1] S. Basavaraj Patil, N. V. Subbareddy ‘Neural network

based system for script identification in Indian
documents’ in Sadhana Vol. 27, Part 1, February 2002,
pp. 83–97.

[2] T. V. Ashwin, P. S. Sastry ’A font and size-independent
OCR system for printed Kannada documents using
support vector machines’ in Sadhana Vol. 27, Part 1,
February 2002, pp. 35–58.

[3] Kavallieratou, E.; Fakotakis, N.; Kokkinakis, G.,’ New
lgorithms for skewing correction and slant removal on
word-level [OCR]’ in Proceedings of ICECS '99.

[4] Simmon Tanner, “Deciding whether Optical Character
Recognition is Feasible”.

IJSART - Volume 5 Issue 4 –APRIL 2019 ISSN [ONLINE]: 2395-1052

Page | 563 www.ijsart.com

[5] Matthew Ziegler, “Handwritten Numeral Recognition via
Neural Networks with Novel Preprocessing Schemes”.

[6] Hamid, N. A., & Sjarif, N. N. A. (2017). Handwritten
Recognition Using SVM, KNN and Neural Network.
arXiv preprint arXiv:1702.00723.

[7] Patel, I., Jagtap, V., & Kale, O. (2014). A Survey on
Feature Extraction Methods for Handwritten Digits
Recognition. International Journal of Computer
Applications, 107(12)

