Near Difference Mean Cordial Labeling Of Some Path Related Graphs

M.Jeya Packya Lakshmi¹, Dr.S.Shenbaga Devi² ^{1, 2} Dept of MATHEMATICS

^{1, 2} Aditanar College of Arts and Science, Tiruchendur-TamilNadu.

Abstract- Let G = (V, E) be a simple graph. A Near difference mean cordial labeling on G is a function in $f:V(G) \rightarrow \{1, 2, ..., p - 1, p + 1\}$ such that for each edge uv the induced map f^* defined by $f^*(uv) = \begin{cases} 1 & if | f(u) - f(v) | \equiv 0 \pmod{2} \\ 0 & elsewhere \end{cases}$ and it satisfies the condition $| e_f(0) - e_f(1) | \leq 1$, where $e_f(0)$ and $e_f(1)$ represent the number of edges labeled with 0 and 1 respectively. A graph that admits a Near difference mean cordial labeling is called a Near difference mean cordial graph.

In this paper, we proved that the graphs Path $(\mathbf{P_n})_{,Comb}$ $(\mathbf{P_n} \odot K_1)_{,Broken\ Comb\ Br(n),\ Star}$ $(\mathbf{K_{1,n}})_{,Globe\ Gl(n)\ are\ Near\ difference\ mean\ cordial\ graphs.}$

Keywords- Near difference mean cordial graph, Near difference mean cordial labeling.

I. INTRODUCTION

A graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges. Each pair $e=\{u,v\}$ of vertices in E is called edges or a line of G.In this paper, we proved that the graphs Path (P_n), Comb ($P_n \odot K_1$), Broken Comb Br(n), Star ($K_{1,n}$), Globe Gl(n) are Near difference mean cordial graphs.

II. PRELIMINARIES

Let G = (V, E) be a simple graph. A Near difference mean cordial labeling on G is a function in $f: V(G) \rightarrow \{1, 2, ..., p - 1, p + 1\}$ such that for each edge uv the induced map f^* defined by $f^*(uv) = \begin{cases} 1 & if |f(u) - f(v)| \equiv 0 \pmod{2} \\ elsewhere \\ ef(0) - e_f(1)| \leq 1 \\ where & e_f(0) \\ and & e_f(1) \\ ef(0) - e_f(1)| \leq 1 \\ ef(0) - e_f(1)| \leq 1 \\ ef(0) + e_f(1) \\ ef(0) - e_f(1)| \leq 1 \\ ef(0) + e_f(1) \\ ef(0) - e_f(1)| \leq 1 \\ ef(0) - e_f(1)| = 1 \\ ef(0) -$

DEFINITION 2.1:

Path is a graph whose vertices can be listed in the order (u_1, u_2, \dots, u_n) such that the edges are $\{u_i u_{i+1}\}$ where $i = 1, 2, \dots, n$

DEFINITION 2.2:

A graph obtained by joining a single pendant edge to eachvertex of path is called a comb and it is denoted by $P_n \bigcirc K_1$

DEFINITION 2.3:

Broken comb is a graph obtained from the comb by removing the end pendant vertices.

DEFINITION 2.4:

 $k_{1,m}$ is called a Star graph, $m \ge 1$

DEFINITION 2.5:

Globe is a graph obtained from two isolated vertices are joined by $n_{\text{paths of length 2. It is denoted by }} Gl_n$.

III. MAIN RESULT

Theorem 3.1: Path P_n is a near difference mean cordial graph

Proof:Let
$$V(P_n) = \{u_i : 1 \le i \le n\}$$

 $E(P_n) = \{u_i u_{i+1} : 1 \le i \le n-1\}$

Case (i): When n is even.

We define a labeling

$$\begin{array}{l} f: V(G) \rightarrow \\ \{1,2,\ldots,p-1,p+1\} as follows: \end{array}$$

$$f(u_{2i-1}) = i, \ 1 \le i \le \frac{n}{2}$$

$$f(u_{2i}) = \frac{n+2}{2} + (i-1), \qquad 1 \le i \le \frac{n-2}{2}$$

$$f(u_n) = n+1$$

The induced edge labeling are,

$$f^*(u_i u_{i+1}) = \begin{cases} 1 & if |f(u_i) - f(u_{i+1})| \equiv 0 \pmod{2} \\ 0 & elsewhere \end{cases}$$

Here,
$$e_f(0) = \frac{n}{2}$$
 and $e_f(1) = \frac{n-2}{2}$, when $n \equiv 0 \pmod{4}$

$$e_f(0) = \frac{n-2}{2}$$
 and $e_f(1) = \frac{n}{2}$, when $n \equiv 2 \pmod{4}$

Case (ii): When ⁿ is odd.

We define a labeling

$$\begin{split} &f: V(G) \rightarrow \\ \{1,2,\ldots,p-1,p+1\} as follows: \\ &f(u_{2i-1}) = i, \ 1 \leq i \leq \frac{n-1}{2} \\ &f(u_{2i}) = \frac{n+3}{2} + (i-1), \qquad 1 \leq i \leq \frac{n-2}{2} \\ &f(u_{n-1}) = n+1 \\ &f(u_n) = \frac{n+1}{2} \end{split}$$

The induced edge labeling are,

$$f^*(u_i u_{i+1}) = \begin{cases} 1 & if |f(u_i) - f(u_{i+1})| \equiv 0 \pmod{2} \\ 0 & elsewhere \end{cases}$$

$$_{\text{Here,}} e_f(0) = \frac{n-1}{2} = e_f(1)$$

Therefore, it satisfies the condition
$$|e_f(0) - e_f(1)| \le 1$$
.

Hence,
$$f$$
 is a near difference mean cordial labeling.

Thus, path P_n is a near difference mean cordial graph.

Example: The Near difference mean cordial labeling of P_8 with $n \equiv 0 \pmod{4}_{\text{is shown in fig 1}}$

The Near difference mean cordial labeling of P_{10} with $n \equiv 2 \pmod{4}_{\text{is shown in fig 2}}$

The Near difference mean cordial labeling of P_7 is shown in fig 3

Theorem 3.2:Comb $P_n \odot K_1$ is a near difference mean cordial graph.

Proof: Let
$$G = P_n \odot K_1$$
 be a graph.

Let

labeling

$$V(G) = \{u_i, v_i : 1 \le i \le n\},\$$

$$E(G) = \{u_i u_{i+1} : 1 \le i \le n - 1\} \cup \{u_i v_i : 1 \le i \le n\}$$

We define a labeling $f: V(G) \rightarrow \{1, 2, ..., p-1, p+1\}$ as follows:

 $\begin{array}{ll} f(u_i) = 2i - 1, & 1 \leq i \leq n \\ f(v_i) = 2i, & 1 \leq i \leq n - 1 \\ f(v_n) = 2n + 1 \end{array}$

The induced edge labeling

$$f^*(u_i u_{i+1}) = \begin{cases} 1 & if |f(u_i) - f(u_{i+1})| \equiv 0 \pmod{2} \\ 0 & elsewhere \end{cases}$$

Proof: Let
$$G = Br(n)_{\text{be a graph.}}$$

Let

$$V(G) = \{u_i : 1 \le i \le n, v_i : 1 \le i \le n - 1\}$$
and

$$E(G) = \{u_i u_{i+1} : 1 \le i \le n - 1\} \cup$$

$$\{u_{i+1} v_i : 1 \le i \le n - 1\}$$

We define a

$$f: V(G) \rightarrow \{1, 2, ..., p-1, p+1\}$$
 as follows:

$$f(u_i) = 2i - 1, \quad 1 \le i \le n$$

 $f(v_i) = 2i, \quad 1 \le i \le n - 2$

The induced edge labeling are,

$$f^{*}(u_{i}v_{i}) = \begin{cases} 1 & if |f(u_{i}) - f(v_{i})| \equiv 0 \pmod{\frac{2}{0}} & if|f(u_{i}) - f(u_{i+1})| \equiv 0 \pmod{2} \\ & elsewhere & 0 & elsewhere \end{cases}$$

are.

_{Here,} $e_f(0) = n - 1_{and} e_f(1) = n$

Therefore, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, f is a near difference mean cordial labeling.

Thus, comb $P_n \odot K_{1is}$ a near difference mean cordial graph.

Example: The Near difference mean cordial labeling of $P_7 \odot K_{1 \text{ is shown in fig 4}}$

Theorem 3.3: Broken Br(n) Comb is a near difference mean cordial graph.

$$f^*(u_{i+1}v_i) = \begin{cases} 1 & if |f(u_{i+1}) - f(v_i)| \equiv 0 \pmod{2} \\ 0 & elsewhere \end{cases}$$

Here, $e_f(0) = n - 2_{and} e_f(1) = n - 1_{and}$
Therefore, it satisfies the condition
 $|e_f(0) - e_f(1)| \leq 1_{and}$

Hence, f is a near difference mean cordial labeling.

Thus, broken comb Br(n) is a near difference mean cordial graph.

Example:The Near difference mean cordial labeling of $Br(8)_{is \text{ shown in fig}}$

Theorem 3.4:Star $K_{1,n}$ is a near difference mean cordial graph.

Proof:Let $G = K_{1,n}$.

Let
$$V(G) = \{u, u_i : 1 \le i \le n\}$$

 $E(G) = \{uu_i : 1 \le i \le n - 1\}$

We define a labeling

$$f: V(G) \rightarrow \{1, 2, \dots, p-1, p+1\} as follows:$$

$$f(u_i) = i, \qquad 1 \le i \le n$$

$$f(u) = n+2$$

The induced edge labeling are,

$$f^{*}(uu_{i}) = \begin{cases} 1 & if |f(u) - f(u_{i})| \equiv 0 \pmod{2} \\ 0 & elsewhere \end{cases}$$

Here, $e_f(0) = \frac{n-1}{2}_{\text{and}} e_f(1) = \frac{n+1}{2}_{\text{, when}} n_{\text{ is odd.}}$ $e_f(0) = \frac{n}{2} = e_f(1)_{\text{, when}} n_{\text{ is even.}}$

Therefore, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, f is a near difference mean cordial labeling.

Thus, star $K_{1,n}$ is a near difference mean cordial graph.

Example: The Near difference mean cordial labeling of $K_{1,5}$ is shown in figure 6

Figure 6

The Near difference mean cordial labeling of $K_{1,6}$ is shown in figure 7

Theorem 3.5: Globe Gl(n) is a near difference mean cordial graph.

Proof:Let
$$G = Gl(n)$$

and

Let
$$V(G) = \{u, v, u_i : 1 \le i \le n\}$$
 and
 $E(G) = \{uu_i, vu_i : 1 \le i \le n\}$.

We define a labeling $f: V(G) \rightarrow \{1, 2, ..., p-1, p+1\}$ as follows:

$$f(u) = 1 f(v) = 2$$

$$f(u_i) = i + 2, \quad 1 \le i \le n - 1$$

$$f(u_n) = n + 3$$

The induced edge labeling are,

$$f^{*}(uu_{i}) = \begin{cases} 1 & if |f(u) - f(u_{i})| \equiv 0 \pmod{2} \\ 0 & elsewhere \\ = \begin{cases} 1 & if |f(v) - f(u_{i})| \equiv 0 \pmod{2} \\ 0 & elsewhere \end{cases}$$

 $_{\text{Here, }} e_f(0) = n = e_f(1)$

Therefore, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$

IJSART - Volume 5 Issue 4 – APRIL 2019

Hence, f is a near difference mean cordial labeling.

Thus, star $K_{1,n}$ is a near difference mean cordial graph.

Example:The Near difference mean cordial labeling of $Gl(6)_{is shown in fig 8}$

REFERENCES

- [1] G.J. Gallian, A Dynamic survey of graph labeling, The electronic journal of combinotorics, 16(2009), #D S6.
- [2] S.W. Golomb, How to number a graph in graph theory and computing, R.C. Read, ed., Academic Press, New York(1972), 23-37.
- [3] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (International Symposium, Rome), July(1966).
- [4] R. Sridevi, S. Navaneethakrishnan, Some New Graph Labeling Problems and Related Topics(Thesis).
- [5] Frank Harary, graph Theory, Narosa Publishing house pvt. Ltd., 10th reprint 2001.
- [6] A. NellaiMurugan, and G. Esther, Some Results On Mean Cordial Graphs International journal of Mathematics Trends and Technology, volume 11 No.2-Jul 2004.