Some Graphs on 3-Modulo Difference Cordial Labelling

S.S.Sabarina Subi¹ , Dr.S.Pasunkilipandian² ^{1, 2} Dept of MATHEMATICS

^{1, 2} Aditanar College of Arts and Science, Tiruchendur-Tamil Nadu

Abstract- Let G = (V,E) be a simple graph with p vertices and q edges. G is said to have 3 – modulo difference cordial labeling if there is a injective map $f: V(G) \rightarrow \{0, 1, 2, 3, \ldots \ldots \ldots, 3p\}$ _{such that for} *every edge* $uv_{,the}$ induced labeling f^* isdefined asf*(uv) = $\sum_{i} |f(u) - f(v)| \equiv \sum_{0 \pmod{3}}$ and 0 elsewhere with *the condition that* $|e_f(0) - e_f(1)| \leq 1$, *where* $e_f(0)$ *is the number of edges with label 0 and* $e_f(1)$ *is the number of edges with label 1.If G admits 3-modulo difference cordial labeling then G is a 3-modulo difference cordial graph. In this paper,* we proved that the graphs $Path({P_n})$ $\binom{P_n^+}{Comb}$, Cycle(C_n) $C_{n,arc}^+$

3-modulo difference cordial graphs.

Keywords- 3-modulo difference cordial graph,3-modulo difference cordial labeling

I. INTRODUCTION

A graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges. Each pair $e = \{u, v\}$ of vertices in E is called edges or a line of G.In this paper,we proved that the graphs $P_{\text{ath}}(P_n)_{\text{,Comb}}(P_n^+)$, Cycle(C_n) $C_{n \text{ are } 3}^+$ modulo difference cordial graphs*.*For graph theoretic terminology we follow [2].

II. PRELIMINARIES

Let $G = (V, E)$ be a simple graph with p vertices and q edges. G is said to have 3 – modulo difference cordial labeling if there is a injective map such that for every edge $\mathbf{u}\mathbf{v}$, the induced labeling f^* is defined as $f^*(uv)$ $=$ 1 if $|f(u) - f(v)| \equiv 0 \pmod{3}$ and 0 elsewhere with the condition that $|e_f(0) - e_f(1)| \leq 1$ _{where} $e_f(0)$

is the number of edges with label 0 and $\mathbf{e}_f(1)$ is the number of edges with label 1.If G admits 3-modulo difference cordial labeling then G is a 3-modulo difference cordial graph. In this paper, we proved that the graphs Path($\frac{\ln 1}{\text{Comb}}$, $\frac{\ln 1}{\text{Cov}}$, $\frac{\ln 1}{\text{Cov}}$ are 3-modulo difference cordial graphs.

DEFINITION 2.1:

Path is a graph whose vertices can be listed in the order $(u_1, u_2, u_3, \dots, u_n)$ such that the edges are ${u_i, u_{i+1}}$ _{where} $i = 1, 2, 3, ... n-1$

DEFINITION 2.2:

 P_n^+ is a graph obtained from path of length n by attaching a pendant vertex from each vertex of the path. **DEFINITION 2.3:**

A closed path is called a cycle and a cycle of length n is denoted by C_n .

DEFINITION 2.4:

 \mathcal{C}_n^+ is a graph obtained from cycle of length n by attaching a pendant vertex from each vertex of the cycle

III. MAIN RESULT

Theorem 3.1:

Path
$$
(P_n)
$$
 is a 3-module difference cordial graph.

Proof:

Let G be a graph

When n is odd, $n = 2k + 1$ and when n is even, $n = 2k$.

Let
$$
V(G) = \{u_1, u_2, u_3, \dots, u_n\}
$$

\n $E(G) = \{u_i u_{i+1} / 1 \le i \le n - 1\}$

Then $|V(G)| = n$ and $|E(G)| = n - 1$ Define $f: V(G) \to \{0,1,2,3,......,3n\}$

Case (i): $\frac{n}{s}$ is even

Subcase (i):
$$
\frac{k}{}
$$
 is not a multiple of 3.

The vertex labels are,

$$
f(u_i) = \begin{cases} 2i & 1 \le i \le k \\ 3i & k+1 \le i \le n \end{cases}
$$

The induced edge labels are,

For $1 \leq i \leq k-1$ $f^*(u_iu_{i+1}) = 2$

$$
For k + 1 ≤ i ≤ n - 1
$$

f*(u_iu_{i+1}) = 3 ≡ 0(mod 3)
f*(u_ku_{k+1}) = k + 3 ≠ 0(mod 3)

It is observed as

 $e_f(0) = k$ $e_f(1) = k - 1$

Subcase (ii): \vec{k} is a multiple of 3.

The vertex labels are,

$$
f(u_i) = \begin{cases} 2i & 1 \le i \le k \\ 3i & k+1 \le i \le n \end{cases}
$$

The induced edge labels are,

For $1 \le i \le k - 1$
 $f^*(u_i u_{i+1}) = 2$

$$
\begin{aligned} \n\text{For } k+1 &\le i \le n-1\\ \nf^*(u_i u_{i+1}) &= 3 \equiv 0 \pmod{3} \\ \nf^*(u_k u_{k+1}) &= k+3 \equiv 0 \pmod{3} \n\end{aligned}
$$

It is observed as

$$
e_f(0) = k - 1
$$

$$
e_f(1) = k
$$

Case (ii): $\frac{n}{s}$ is odd

Subcase (i): \vec{k} is not a multiple of 3

The vertex labels are,
 $f(u_i) = \begin{cases} 2i & 1 \le i \le k \\ 3i & k+1 \le i \le n \end{cases}$

The induced edge labels are,

$$
\begin{aligned} \n\text{For } 1 &\le i \le k - 1\\ \nf^*(u_i u_{i+1}) &= 2 \n\end{aligned}
$$

For
$$
k + 1 \le i \le n - 1
$$

\n $f^*(u_i u_{i+1}) = 3 \equiv 0 \pmod{3}$
\n $f^*(u_k u_{k+1}) = k + 3 \equiv 0 \pmod{3}$

It is observed as

$$
e_f(0) = k
$$

$$
e_f(1) = k
$$

Subcase (ii): \vec{k} is a multiple of 3

The vertex labels are,

$$
f(u_i) = \begin{cases} 2i & 1 \le i \le k \\ 3ik + 1 \le i \le n - 1 \end{cases}
$$

$$
f(u_n) = 3n - 1
$$

The induced edge labels are,

$$
\begin{aligned} \n\text{For } 1 &\le i \le k - 1\\ \nf^*(u_i u_{i+1}) &= 2 \n\end{aligned}
$$

For $k + 1 \le i \le n - 2$
 $f^*(u_i u_{i+1}) = 3 \equiv 0 \pmod{3}$ $f^*(u_k u_{k+1}) = k + 3 \equiv 0 \pmod{3}$ $f^*(u_{n-1}u_n) = 2$

It is observed as

$$
e_f(0) = k
$$

\n
$$
e_f(1) = k
$$

\n2 4 9 12 15
\n
$$
P_5
$$

\n2 4 6 12 15 18 20
\n
$$
P_7
$$

Clearly $|e_f(0)-e_f(1)| \leq 1$

Then *f* is a 3 – modulo difference cordial labeling. Hence P_n is a 3 – modulo difference cordial graph. **Theorem 3.2:**

Comb $(R_n^+$ or $P_n \odot K_1)$ is a 3-modulo differene cordial graph. **Proof:**

Let G be a graph

When n is odd, $n = 2k + 1$ and when n is even, $n = 2k$.

Let
$$
V(G) = \{u_1, u_2, u_3, \dots u_n, v_1, v_2, v_3 \dots v_n\}
$$

E(G) =
\n
$$
u_i u_{i+1} / 1 \le i \le n - 1
$$
} ∪ { $u_i v_i / 1 \le i \le n$ }
\n n }

Then $|V(G)| = 2n_{and}$
 $|E(G)| = 2n - 1$

$$
_{\text{Define }}f \colon V(G) \rightarrow \{0,1,2,3,\ldots \ldots \ldots .,6n\}
$$

The vertex labels are,

$$
f(u_i) = 3i \qquad , \quad 1 \le i \le n
$$

$$
f(v_i) = 3i - 1 \qquad , \quad 1 \le i \le n
$$

The induced edge labels are,

$$
\begin{aligned} \n\text{For } 1 &\leq i \leq n-1, \\ \nf^*(u_i u_{i+1}) &= 3 \equiv 0 \pmod{3} \n\end{aligned}
$$

 $F_{\text{or }l} \leq i \leq n$, $f^*(u_i v_i) = 1$

It is observed that

Hence P_n^+ is a 3-modulo difference cordial graph.

Theorem 3.3:

Cycle(C_n) is a 3-modulo difference cordial graph.

Proof:

Let G be a graph

When n is odd, $n = 2k + 1$ and when n is even, $n = 2k$.

Let
$$
V(G) = \{u_1, u_2, u_3, \dots, u_n\}
$$

\n $E(G) = \{u_iu_{i+1}/1 \le i \le n-1\} \cup \{u_nu_1\}$
\nThen $|V(G)| = n$ and $|E(G)| = n$
\nDefine $f: V(G) \rightarrow \{0,1,2,3, \dots, 3n\}$
\nCase (i):ⁿ is odd

Subcase (i): \vec{k} is a multiple of 3.

The vertex labels are,

$$
f(u_i) = \begin{cases} 2i & 1 \le i \le k \\ 3i & k+1 \le i \le n \end{cases}
$$

The induced edge labels are,

$$
\begin{aligned} \n\operatorname{For} \, & 1 \le i \le k - 1\\ \nf^*(u_i u_{i+1}) &= 2 \n\end{aligned}
$$

For $k + 1 \le i \le n - 1$
 $f^*(u_i u_{i+1}) = 3 \equiv 0 \pmod{3}$ $f^*(u_k u_{k+1}) = k + 3 \equiv 0 \pmod{3}$ $f^*(u_nu_1) = 3n - 2 \equiv 1 \pmod{3}$ It is observed as

 $e_f(0) = k$ $e_f(1) = k + 1$

Page | 1028 www.ijsart.com

$$
f(u_i) = \begin{cases} 2i & 1 \le i \le k \\ 3i & k+1 \le i \le n \end{cases}
$$

The induced edge labels are

The induced edge labels are,

$$
\begin{aligned} \n\text{For } 1 &\le i \le k - 1\\ \nf^*(u_i u_{i+1}) &= 2 \n\end{aligned}
$$

 $F_{\text{For}} k + 1 \leq i \leq n - 1$

$$
f^*(u_i u_{i+1}) = 3 \equiv 0 \pmod{3}
$$

$$
f^*(u_k u_{k+1}) = k + 3 \not\equiv 0 \pmod{3}
$$

$$
f^*(u_n u_1) = 3n - 2 \equiv 1 \pmod{3}
$$

It is observed as

$$
e_f(0) = k + 1
$$

$$
e_f(1) = k
$$

Case (ii): $\frac{n}{s}$ is even

Subcase (i): k is not a multiple of 3

The vertex labels are,

$$
f(u_i) = \begin{cases} 2i & 2 \le i \le k \\ 3i & k+1 \le i \le n-1 \end{cases}
$$

f(u₁) = 1
f(u_n) = 3i + 1

The induced edge labels are,

$$
f^*(u_1u_2) = 3 \equiv 0 \pmod{3}
$$

$$
2 \le i \le k - 1
$$

 $_{\text{For}}$ $2 \leq i \leq k-1$ $f^*(u_iu_{i+1})=2$

$$
\begin{aligned} \n\text{For } k+1 &\le i \le n-2\\ \nf^*(u_i u_{i+1}) &= 3 \equiv 0 \pmod{3} \\ \nf^*(u_k u_{k+1}) &= k+3 \not\equiv 0 \pmod{3} \\ \nf^*(u_{n-1} u_n) &= 4 \equiv 1 \pmod{3} \\ \nf^*(u_n u_1) &= 3n \equiv 0 \pmod{3} \n\end{aligned}
$$

It is observed as

$$
e_f(0) = k
$$

$$
e_f(1) = k
$$

Subcase (ii): \vec{k} is a multiple of 3

The vertex labels are,

$$
f(u_i) = \begin{cases} 2i & 1 \le i \le k \\ 3i & k+1 \le i \le n \end{cases}
$$

The induced edge labels are,

For $1 \le i \le k-1$
 $f^*(u_i u_{i+1}) = 2$

 $F_{\text{For}} k + 1 \leq i \leq n - 1$

$$
f^*(u_i u_{i+1}) = 3 \equiv 0 \pmod{3}
$$

$$
f^*(u_k u_{k+1}) = k + 3 \equiv 0 \pmod{3}
$$

 $f^*(u_n u_1) = 6k - 2 \equiv 1 \pmod{3}$ It is observed as

$$
e_f(0) = k
$$

$$
e_f(1) = k
$$

 $_{\text{Clearly}} |e_f(0) - e_f(1)| \leq 1$

Then *f* is a 3 – modulo difference cordial labeling.

Hence C_n is a 3 – modulo difference cordial graph.

Theorem3.4:

 C_n^+ is a 3-modulo differene cordial graph.

Proof:

Let G be a graph

When n is odd, $n = 2k + 1$ and when n is even, $n = 2k$. Let $V(G) = u_1, u_2, u_3, \dots, u_n, v_1, v_2, v_3, \dots, u_n$ { $\begin{array}{l} \mathbf{E}(\mathbf{G}) \hspace{1.5cm} = \\ \mathbf{u}_i \mathbf{u}_{i+1} / \; 1 \leq i \leq n-1 \} \cup \; \{ \, u_i v_i / \; 1 \leq i \leq n \end{array}$ $n\} \cup \{u_n u_1\}$ $_{\text{Then}} |V(G)| = 2n_{\text{and}} |E(G)| = 2n$ Define $f: V(G) \to \{0,1,2,3,... \ldots . . . , 6n\}$

The vertex labels are,

$$
f(u_i) = 3i \qquad , \quad 1 \le i \le n
$$

$$
f(v_i) = 3i - 1 \qquad , \quad 1 \le i \le n
$$

The induced edge labels are,

$$
\begin{aligned} \n\text{For } 1 &\le i \le n-1, \\ \nf^*(u_i u_{i+1}) &= 3 \equiv 0 \pmod{3} \\ \nf^*(u_n u_1) &= n-3 \equiv 0 \pmod{3} \\ \n\text{For } 1 &\le i \le n, \\ \nf^*(u_i v_i) &= 1 \n\end{aligned}
$$

It is observed that

$$
e_f(0) = n
$$

$$
e_f(1) = n
$$

 C_7^+

$$
23\n\n24\n\n18\n\n15\n\n16\n\n18\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15\n\n16\n\n17\n\n18\n\n19\n\n10\n\n11\n\n12\n\n13\n\n14\n\n15
$$

 $_{\text{Clearly}} |e_f(0) - e_f(1)| \leq 1$

Then *f* is a 3 – modulo differene cordial labeling Hence C_n^+ is a 3-modulo difference cordial graph.

REFERENCES

- [1] Gallian J.A,A Dynamic Survey of Graph Labelling,The Electronic Journal of Combinatorics,6(2001)#DS6
- [2] Harray.F Graph Theory,Adadison-Wesley Publishing Company inc,USA,1969