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Abstract- The aim of this project is to present a unified 

framework for human action and activity recognition.This is 

used to estimate an intra-prediction mode from a prediction 

unit and to reduce encoding time significantly by avoiding the 

intensive Rate-Distortion optimization of a number of intra-

prediction modes. The proposed technique is High Efficiency 

Video Coding Test Model (HM) video coding standard and 

Joint Exploration Model (JEM) reference software, by 

integrating the random forest trained off-line into the 

codecs.To summarize a set of events and to search for 

particular events because they contain various pieces of 

context information. Police department in every country has 

been trying to decrease crime's number, but in fact, the crime's 

number always grows every year. Instead of catching the 

criminal, we can minimize the crime by lowering the 

opportunity of criminal's action, so we propose the system to 

detect if there is someone crossing (or) ubnormal situation in 

the area of Closed-circuit Television (CCTV) to detect using 

image processing. 
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I. INTRODUCTION 

 

 Ultra high definition (UHD) videos are widely 

available and affordable, and displays of even higher 

resolution such as 8K (i.e., 7680 × 4320) UHD videos are 

emerging with realistic views. However, data volume of the 

high spatial resolution video increases significantly, which 

poses challenges in delivering the contents. The state-of-the-

art video coding standard, High Efficiency Video Coding 

(HEVC) [1] which was developed under the efforts of the 

Joint Collaborative Team on Video Coding (JCT-VC) of the 

ITU-T Video Coding Expert Group (VCEG) and ISO/IEC 

Moving Picture Expert Group (MPEG), has been established 

to encode high definition (HD) or UHD video contents. HEVC 

provides a substantial coding gain, i.e., approximately a half of 

bit-rates saving at the same visual quality, as compared to 

previous video coding standards. Recently, Joint Video 

Exploration Team (JVET) is created to start exploration of 

coding technologies beyond HEVC, based on the Joint 

Exploration Model (JEM) reference software [2], [3]. The 

JEM model incorporates several advanced coding tools [4], [5] 

and shows significantly improved coding efficiency i.e., 

around 24% and 33% BDrate savings, respectively, in HD and 

4K UHD test sequences over HEVC [6]. However, the 

computational complexity of the model is intractable, i.e., 

around 20 times of all-intra encoding measurement time, as 

compared to HEVC reference software [7]. The intensive 

computational complexity increases power consumptions and 

hardware costs, which obstructs deployments of the 

techniques to video coding applications [8].   

 

For an intra-coding, the state-of-the-art video coding 

standards enhance the granularity of spatial intra-prediction. 

HEVC adopts two non-directional prediction modes (mode 0 

for Planar and mode 1 for DC) and 33 angular prediction 

modes, and more fine-granular angular predictions using 65 

modes are offered in the JEM software [4], [5]. However, 

while the increased number of the intra-prediction modes 

improves compression efficiency, it requires expensive 

computational complexity to perform an Rate-Distortion (R-

D) optimization, choosing the best mode among many 

candidates. Thus, many research works are conducted to 

facilitate the optimization process [9]–[21]. Most of the fast 

intra-coding techniques are developed using two approaches. 

In [9]–[15], fast mode decision algorithms determines fewer 

candidate modes chosen by a rough mode decision (RMD) to 

avoid exhaustive search in R-D optimization process. In this 

approach, it is mattered how to elaborately select probable 

modes to the best mode, while minimizing the number of the 

candidates. The proposed technique, which aims to choose an 

angular prediction mode efficiently, also belongs to this 

category. In the other approach [16]–[21], the fast mode 

decisions are jointly combined with other optimizations such 

as recursive quad-tree block partitioning in HEVC and a quad-

tree plus binary tree (QTBT) in JEM. In the second approach, 

the depths of the block partitioning structures are adaptively 

determined; however the two approaches can be complement 

to one another rather than to be exclusively used for a fast 

intra-coding [17]. Our work can be extended to an ingredient 
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of the state-of-the-arts using the joint optimization to provide 

further improvements in the mode decision. 

 

 Machine learning is able to discover effective 

representations of high dimensional multimedia data, widely 

used for computer vision and image processing. Motivated by 

the capability of machine learning, in video coding, several 

research works have been conducted [22]–[25]. Kang et al. 

propose two-layered representations of motion-compensated 

residual signals for a coding [22]. Correa et al. develop a 

transcoder based on a learning process on decoding attributes 

[23]. Classification as a conventional machine learning task is 

applied in speeding up mode decision process. In [18]–[20], 

[26], [27] the quad-tree block structure of a coding unit (CU) 

is configured by classifying textures of sub-blocks, and the 

corresponding sizes of the block partitions are determined. In 

[28], [29], statistical correlation between properties of contents 

in blocks and inter-prediction modes is used for a fast mode 

decision. In [30]–[32], the intra-prediction modes are 

predicted by training previously coded blocks.  

 

In this paper we propose a machine learning-based 

fast intra-prediction mode decision algorithm. Specifically, we 

use a random forest [33], which is an ensemble model of 

randomized decision trees, to infer an appropriate prediction 

mode from a prediction unit. To the best of our knowledge, 

there are very rare fast video coding studies adopting the 

random forest, even though the random forest represents a fast 

and robust machine learning technique, thus widely used for 

computer vision applications [34]–[36]. In this work, we 

develop efficient split functions learning directional 

blockbased features in a randomized tree to infer an intra-

prediction mode. The estimation is very fast because only few 

pixels are used for evaluating a prediction mode. The 

prediction of each randomized tree is combined to make the 

ensemble in the forest and defeat an overfitting problem. To 

integrate the proposed algorithm into the recent video coding 

standard frameworks, the intra-prediction mode derived from 

the proposed technique, called an inferred mode (IM), is used 

to shrink the pool of the candidate modes before carrying out 

the Rate-Distortion (R-D) optimization. The proposed 

technique is implemented into the reference software of the 

state-of-the-art video coding standard, and shows significant 

encoding time reduction with only slight coding loss.  

 

The rest of the paper is organized as follows. In Sec. 

II, we review related works. In Sec. III some preliminary of 

random forest is presented. In Sec. IV, we show the proposed 

technique. Experimental evaluations are carried out in Sec. V. 

We conclude with remarks in Sec. VI.  

 

 

II. RELATED WORKS 

 

We categorize the related works into two approaches, 

1) the fast intra-prediction mode decision scheme and 2) the 

optimization of the block partitioning, respectively shown in 

subsection II-A and subsection II-B. We also show the 

machine-learning based fast coding techniques in subsection 

II-C, followed by the contribution of the paper with random 

forest.  

 

A. Fast Intra-Prediction Mode Decision  

 

HEVC reference software uses a two-step procedure 

to expedite the intra-prediction mode decision [9]. In the first 

step, a lower complexity cost function such as the sum of 

absolute transform difference (SATD) is used to choose the 

best candidates from all the available intra-prediction modes. 

The step is also known as a rough mode decision (RMD). If 

the number of the candidates does not fulfill a pre-defined 

number of RMD, another candidates such as most probable 

modes (MPM) are added into the pool. In the second step, the 

Rate-Distortion (R-D) optimization that requires higher 

computational complexity is applied to accurately choose the 

final intra-prediction mode among the candidates.  

 

There are several fast HEVC intra prediction mode 

decision algorithms. They focus on collecting more feasible 

modes to the best mode while reducing the number of the 

candidates. Shen et al. and Zhao et al. propose neighboring 

block-based intra-prediction mode decision techniques by 

exploiting high spatial correlation between adjacent blocks 

[10], [16]. Jamali et al. apply edge detection to consider 

relevant modes from neighboring blocks [37]. Zhang et al. 

develop progressive rough mode searching technique 

computed with Hadamard cost to check only fewer number of 

modes [17]. Hu et al. propose an outlier-based fast intra-mode 

decision with refining an entropy coding [38]. The candidate 

modes from RMD process are managed before R-D 

optimization. Zhang et al. study statistical correlation between 

the RMD candidates and the best mode as a result of R-D 

optimization [11]. Quanhe et al. adaptively change the order of 

the candidates from MPM and RMD by taking account of a 

texture of a block [14]. Liao et al. utilize a depth of a block 

partition to choose more probable modes and adjust the order 

of MPM and RMD [39]. Jaballah et al. cluster a set of intra 

modes into some clusters and choose the candidate for the R-

D optimization [40].  

 

Block-based texture analysis is used for a fast 

intraprediction mode decision. In [12], edge components of 

blocks are used for restricting available directional prediction 

modes to reduce the encoding time. In [15], a gradient-based 
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fast mode decision algorithm that computes a histogram of 

gradient components is developed for choosing RMD modes. 

In [13], a pixel-gradient statistics is used for speeding up the 

computation, and a chosen mode is refined with mode 

information of neighboring blocks. Furthermore, compressed 

domain block analysis is performed for an early mode 

decision. Kim et al. use correlation between an intra-

prediction mode of a current block and that of a block in a 

lower depth to reuse the mode [41]. Motra et al. employ 

directional components of co-located neighboring blocks in 

previous frames [42]. Binary Robust Independent Elementary 

Feature (BRIEF) descriptor is used for an early decision [43].  

JEM software adopts several advanced intra-prediction tools 

[4], [5], [44], [45] at the expense of computational complexity. 

The number of the directional intra-prediction modes for a 

luma block increases to 65, including 33 HEVC angular 

prediction modes and in-between modes by four-tab 

interpolation filters [4], [5]. The JEM software also uses a 

coarse-tofine mode decision algorithm similar to the HEVC 

reference software while it uses two-step RMD process, 

followed by the R-D optimization. In the first RMD process, 

among the original 33 modes in HEVC, the SATD is 

computed to select the first group of candidates whose size is 

decided by the block size. In the second RMD process, as the 

JEM software involves more angular prediction modes, the in-

between prediction modes that are adjacent to the angular 

modes of the first group are added into the candidates. Then, 

the JEM software computes the SATD to choose the second 

group as in the first RMD. The final candidates are determined 

after adding several MPMs if they are not redundant to the 

second group, and then the R-D optimization is applied.  

 

B. Fast Intra-Coding with Optimized Block Partitioning  

 

Optimization of a block structure such as quad-tree 

based block partitioning in HEVC is also studied. Zhang and 

Ma [17] propose a fast intra-coding algorithm in two levels. In 

a coding unit (CU) level, the R-D cost of sub-CUs is 

compared with R-D cost of current CU to decide whether or 

not to split the CU, and in a prediction unit (PU) level, the 

progressive mode selection algorithm is shown to avoid 

evaluations of all the modes. Shen et al. consider the both CU 

size and the mode decision simultaneously by using R-D costs 

and the correlation of prediction modes in different levels of 

depths in spatially neighboring CUs [16]. The techniques 

show considerable encoding time reduction because of some 

short paths to avoid many recursions in the block partitioning, 

while sometimes significantly degrading a coding gain, 

incurred from unexpected block patterns. 

   

A quad-tree plus binary tree (QTBT) structure applied to the 

JEM software allows for a coding unit to have either a square 

or a rectangular block shape [46]. Specifically, some leaf 

nodes in a quad-tree can be further divided into a binary tree, 

representing a horizontal or vertical splitting. The blocks 

corresponding to the binary tree go through predictions and 

transforms without any extra partitioning. As the QTBT 

supports a more flexible block partitioning, several research 

works are studied for adaptively deciding the depths of the 

trees. In [47], a constrained QTBT structure where its size and 

depth are dynamically limited is proposed to speed up the 

encoding decisions. In addition to the dynamic partition 

parameters, a joint classifier using information gain attribute 

evaluation is further used for speeding up the partitioning 

decision [48].  

 

C. Machine Learning-Based Fast Coding Techniques  

 

Machine learning-based fast coding techniques are 

also actively studied in past years. In [20], Thanuja et al. 

present a content adaptive feature-based CU size prediction 

algorithm for an inter-coding. They use two classifiers, i.e, one 

for motion feature-based CU classification and the other for R-

D cost threshold-based CU classification. In [26], Correa et al. 

develop fast HEVC encoding based decision trees obtained by 

the data mining technique to expedite the partitioning process 

of a coding unit. In [19], Ruiz-Coll et al. develop a fast 

partitioning algorithm for HEVC intra frame coding by using a 

tree-structured classifier. The classifiers go through rule-based 

training of the associated parameters. However, the rule-based 

training is easily over-fitted. Hu et al. use Neyman-

Pearsonbased rule to balance an R-D cost and complexity 

reduction, and find nonparametric density estimation of a 

likelihood function to predict associated parameters [28]. 

 Support vector machine (SVM) usually achieves a fast binary 

classification by obtaining a decision surface in a high 

dimensional space. Zhang et al. propose a fast coding method 

to determine a proper CU depth by using a weighted SVM 

[18]. Mu et al. [21] and Shen et al. [49] develop SVM-based 

classifiers with features combined with the distortion and the 

number of encoded bits to determine the depth of a CU and 

the split of a CU, respectively. In those algorithms, SVM 

requires linearly separable feature models using a kernel-trick 

in a highdimensional space since the nature of video data is 

hardly linear. However, the larger dimension the model has, 

the more parameters it needs to optimize. Non-linear machine 

learning algorithms are also applied to fast encoding 

techniques. In [27] Du et al. use the random forest to make the 

binary decision when a CU is further split or not. Ryu et al. 

employ a randomized tree to save the complexity in a mode 

decision [50]. In [51], Laude and Ostermann apply a deep 

convolutional neural network (CNN) to a mode decision, 

where a block is fed through several learnt filters of 
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convolutional layers and fully connected layers to discriminate 

an intra-prediction mode.  

 

In this paper, we use the random forest for a fast 

intraprediction mode decision efficiently to learn block-based 

directional components for classification and reduce encoder 

complexity. The random forest shows high generalization 

capability, employed in many computer vision and image 

processing research works [34]–[36]. The learning technique 

fits naturally to a fast mode decision problem in a codec as 

well, thus used for the proposed technique. 1) the random 

forest is effective to a multi-class classification problem such 

as estimation of the best mode among several intra-prediction 

modes because the leaf nodes in a tree act as estimators. 2) the 

ensemble of the tree structure allows reliable decisions in 

nonlinear data. The decision is made with traversing 

independently trained trees and aggregating the decisions of 

the individual trees. Thus, the random forest can correct for a 

behavior of each tree that often over-fits to its own training 

set. 3) the decision is computationally efficient because it 

needs only few nodes to be visited in the traverse. Furthermore 

the decisions of trees can be parallelized with multiple 

processors in recent hardware, which using multiple 

instruction multiple data (MIMD) architectures for the speed-

up.  

 

III. PRELIMINARY OF THE STANDARD RANDOM 

FOREST 

 

Random forest F = {Tt} |T| t=1 is an ensemble 

classifier constructed by a set of randomized decision trees. A 

randomized binary decision tree Tt(x) classifies a d-

dimensional sample vector x ∈ X by traversing left or right 

down the tree until a leaf node corresponding to the posterior 

distribution over the classes is reached as shown in Fig. 1. 

Each internal node in a tree operates a weak classifier to 

maximize the classification performance in the traverse, 

recursively. To this aim, a node vi in the tree needs to make an 

optimal binary decision, achieved by a binary split function: 

 

hϕ(x, ϕi) : R d × Φ → {0, 1},   (1) 

 

whereϕi denotes the split function parameters 

associated with the node vi , and Φ is the set of all split 

function parameters. The outputs 0 and 1 correspond to the left 

and the right children nodes to be placed after branching, 

respectively 

The split continues until an input sample arrives at a leaf node 

from the root node. In the classification a sample x is 

associated with a label y ∈ Y. Thus, the output of the tree is a 

prediction of x to a target label y. The posterior probability is 

usually used for measuring the prediction at the leaf node 

reached by x. However, the prediction of an individual tree is 

not quite accurate because the tree sometimes shows high 

variance and suffers from an overfitting problem. Therefore 

the predictions from the multiple independent trees are 

combined into an ensembled output of a random forest to 

provide a more reliable prediction. 

 

 
Fig. 1. A structure of a randomized decision tree. 

 

A. Decision Tree Training  

 

Given with a node vi and its training sample set Si ⊂ 

X × Y, the goal is to obtain parameters ϕi for the split function 

hϕ(x, ϕi) to achieve the best separation of the classes. The best 

separation here is measured by the information gain ∆H 

developed in Information Theory, although more elaborated 

measurements can be used. The gain is defined as the 

reduction of uncertainty when Si would be divided into the 

two subset S L i and S R i in the left and the right child node. 

Then, the information gain ∆H is mathematically defined as 

follows:  

 

∆H = H(Si) − ∑ j∈{L,R} |S j i | |Si | H(S j i ),  (2) 

  

where H(S) is the entropy given as − ∑ y py log(py) 

and py is the probability of samples with a label y in S.  

 

The split process to maximize ∆H is repeated at each 

internal node, where the split parameters are trained by using 

the training samples. Fig. 1 shows an example of the split in a 

node vi . The distributions of the classes are more skewed in 

the children when ∆H increases. Following the branching 

mechanism, a tree keeps growing, but the process is finished 

when a node reaches to a pre-determined depth or it has too 

few training samples.  

 

B. Testing In testing, an unseen sample x ∈ X traverses the 

tree down by using the trained split functions with the 

associated parameters. The prediction is performed when 

the sample is reached to a leaf node, corresponding to the 
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posterior distribution p(x|yk) over the C class (i.e.,k = 

1..C). MaximumA-Posteriori (MAP) is usually used for 

the estimator, defined as  

 

y∗ = arg max yk∈Y p(yk|x).   (3) 

 

Note the final decision is made by collecting the 

results from all the trees such as a majority voting.  

 

IV. THE PROPOSED TECHNIQUE 

 

A. Intra-Prediction Mode Estimation Using Random Forest  

 

We propose a classification technique using a random 

forest to infer an intra-prediction direction of a prediction unit 

(PU) sample. The proposed classifier operates by building 

multiple independent randomized decision trees during off-

line training time and outputting an inferred mode of a block 

in a codec. A tree Tt in a forest F = {Tt} |T| t=1 is constructed 

by training a PU sample denoted by x to predict a label y, 

associated with an intra-prediction mode. 1) Directional 

Block-based Features: We develop a simple yet effective split 

function that exploits a block-based feature, reflecting 

directional characteristics of a block. Fig. 2 shows the four 

points that are randomly selected in a training sample xi (e.g. 

an 8 × 8 PU), managed in vi . We randomly choose a set of 

four points in 2-D coordinates pi = {p 1 i , p 2 i , p 3 i , p 4 i } 

that are respectively located at each quadrant of xi . The index 

increases counter-clockwise from the quadrant including the 

top-left corner of the PU, ranging from 1 to 4. All the three 

color components including the luminance (Y), and the two 

color components (U and V) in a PU can be used for selecting 

the points. However, the luminance component is considered 

solely because its prediction is more important in an 

intraprediction, and the choice helps speed up the feature 

extraction process. 

 

 
Fig. 2. Four-points that are randomly selected in a 8 × 8 

prediction unit, used for directional block-based features. 

 

Our features are the differences between two random 

points among the selected four points, which is very quickly 

evaluated. I(p k i ) denotes the pixel intensity at a coordinate p 

k i . Then, given the two indices α and β of the two 

coordinates, the feature value is defined as  

 

f(xi , p α i , p β i ) = |I(p α i ) − I(p β i )|,   (4) 

 

where p α i and p β i are the coordinates within xi .  

 

The split functions of the random decision trees use 

not only the two indices α and β but also the two other indices 

α ∗ and β ∗ in the remaining two quadrants to complete the 

directional features. It is more robust to estimate underlying 

directional properties of blocks. Accordingly, we define the 

split function incorporating the function parameter set 

including the four coordinates and τ1 and τ2 to be trained, as 

follows:  

 

h(xi , ϕi) = {0, f(xi , p α i , p β i ) < τ1 and f(xi , p α ∗i , p β ∗i ) 

< τ2 

1, otherwise, (5) 

 

where the result 0 refers to the left child node, and 1, 

otherwise. The simple split function can generalize a 

geometric shape of a block because the function is applied to a 

series of nodes that are cascaded as weak classifiers. 2) 

Optimization of a Split Function and Parameters: The 

procedures of training parameters ϕi in a split function are as 

follows. Given with a node i, we use a set of training sample 

Si ⊂ X ×Y, consisting of a prediction unit sample xi ∈ X and a 

label yi∈ Y that corresponds to an intra-prediction mode in a 

codec. We choose the optimal parameters ϕ ∗i to maximize the 

information gain, given as,  

 

ϕ ∗i = arg max ϕi∈Φ {H(Si) − ∑ j∈{L,R} |S j i (ϕi)| |Si | H(S j i 

(ϕi))}, (6) 

 

where H(Si) is the entropy value of Si , and H(S L i 

(ϕi)) and H(S R i (ϕi)) are the entropy values when the 

samples are divided into the two disjoint subsets S L i (ϕi) and 

S R i (ϕi) by the parameter ϕi , defined as,  

 

S L i (ϕi) = {S|f(xi , p α i , p β i ) < τ1 and f(xi , p α ∗i , p β ∗i ) 

< τ2}, (7) 

  

And 

 

S R i (ϕi) = Si\S L i (ϕi), (8) 

 

and a function | . | returns the size of a sample set.  

 

The information gain increases more when a child 

node contains less diversified classes, thus providing more 
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discriminative capability of the tree. Therefore, the parameters 

are determined when solving (6). Specifically for updating the 

threshold parameters τ1 and τ2, we choose the two integer 

values ranging from 0 to 255 to maximize the gain, when the 

four coordinate parameters are randomly given. The procedure 

is conducted four times, and the parameter set to maximize the 

gain are chosen. When measuring the gain, we use the Gini 

entropy H(Si) = ∑ k pk(y)(1 − pk(y)) where pk(y) is the 

proportions of the samples in Si having a label k. The Gini 

entropy can reduce the computations a bit less than the 

conventional entropy. 

 

 The optimization of the parameter selection in a split 

function is recursively done at each internal node, using the 

training prediction units collected in the node. After the 

optimization, the trained parameters are recorded at the node 

for the test later. The split is terminated during the training 

when the depth of the tree exceeds to the pre-determined 

threshold or when the number of the training blocks are too 

small. When generating each leaf node vl , the posterior 

distribution p(y = y ′ |xl) over the set of the prediction mode 

for a label y ′ ∈ Y is saved, so that the distribution can be used 

for the decision. The probability is the ratio of the number of 

samples in class y ′ observed at vl to the total number of 

samples at vl . 

 

3) Training a Prediction Unit with a Random Forest:  

 

M denotes an entire set of directional intra-prediction 

modes, i.e., M = {mk} |M| k=1. The size |M| is 33 in HEVC 

and 65 in Joint Exploration Model (JEM) except for non-

directional prediction modes such as Planar and DC modes. 

As a number of the directional modes increase more, the 

resolution of the prediction is finer, e.g. 1/32 pixel accuracy in 

an intraprediction of HEVC. As compared to precision, the 

resolution of the proposed directional feature is coarse to 

capture all the underlying directional characteristics of the 

modes. In a word, the feature is computed using four integer-

pels in a PU. Meanwhile, an extraction of a sub-pel based 

feature may require much computational complexity. 

Therefore, to resolve the problem, we define a mapping 

function Q : M → Y to categorize the possible modes into the 

feasible output space Y as shown in Table I. In the function, 

several modes in M are quantized into a label y ∈ Y. The 

modes whose directions are similar to one another are grouped 

in y, so that the output spaces are eqi-variant. The modes of a 

group in y have each representative mode yˆ as a median in 

the modes of HEVC, as shown in Table I. In JEM software, 

the adjacent angular prediction modes are further included to 

each class.  

 

 

TABLE I 

THE LABEL y (AND THE REPRESENTATIVE MODE yˆ) 

IN THE GROUP OF INTRA-PREDICTION MODES IN 

HEVC. PLANAR (MODE 0) AND DC (MODE 1) ARE 

EXCLUDED 

 
 

The procedure to train a prediction unit is shown in 

Fig. 3. A training sample (xi ,yi) is generated by a codec. 

Specifically, a decoder produces an intra-prediction mode mi 

of a prediction unit xi . The mode is mapped to a label yi by Q, 

and the label is tagged to xi . Then, the training is conducted in 

a supervised learning manner. For example, the prediction unit 

samples (xi , ma i ), a = 24 ∼ 28 in Fig. 3 choose a label yi = 7 

according to Table I to create training samples (xi , 7). The 

samples traverse into a randomized tree to optimize the 

parameters of the split functions at nodes, as presented in the 

previous subsections. The training samples fall into leaf nodes 

after the traversing. As a result, each leaf node vl presents a 

posterior probability p(yi |xi) to determine the representative 

mode, e.g. yˆ = 26. Once the individual trees are trained, they 

are ensembled by injecting randomness, known as bagging 

[33], to create a random forest.  

 

We use a block-adaptive training technique. In other 

words, different random forests are trained with the sizes of 

their input blocks. HEVC provides 4 × 4, 8 × 8, 16 × 16, and 

32 × 32 block-sized PUs in the intra-prediction, and, therefore 

there are 
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Fig. 3. Training process of a prediction unit using a random 

forest. A prediction unit is first encoded to create a training 

sample (xi, yi). A leaf node has a posterior probability of a 

representative mode yˆi after the training. 

 

 
 

Fig. 4. Training random forests in QTBT partitioning 

structures. 

 

four different random forests stored in a codec to 

predict the prediction representative modes. The JEM software 

adopts a quad-tree plus binary tree (QTBT) block partitioning 

structure of a coding unit (CU) whose width and the height 

can vary from 4 to 32 in the software configuration [2], so the 

blockbased design becomes complicated. To tackle the 

problem, we reduce the number of the random forests by using 

the symmetric properties of the blocks in geometry. We train 

only the blocks whose widths are greater than or equal to the 

heights and apply the same trained classifiers to the other 

blocks in certain prediction directions, obtained from rotations 

and flips of the original directions. Specifically, the directional 

modes are derived from 90-degree clockwise rotation and 

horizontal flip operations as shown in Fig. 4. For instance, the 

random forest trained to predict an index y = 1 in W ×H is also 

used for the classification of H × W blocks with an index y = 

9. 

 

 4) Decision of a Prediction Mode with a Random Forest:  

 

In the decision or classification, a prediction unit 

passes down each independent randomized tree from the root 

node to a leaf node. The prediction unit is evaluated at internal 

nodes by performing a series of the split functions with the 

corresponding trained parameters, and it keeps traversing 

either to the left or the right child. Fig.5 shows an example of 

the decision process for a prediction unit in the proposed 

technique. A prediction unit x falls into leaf nodes presenting 

conditional posterior probabilities of classes after going 

through nodes v with the parameters ϕ. It is highlighted that 

the computational complexity can be significantly reduced in 

the decision process, owing to the tree structures. If having K 

leaf nodes in a tree, the decision requires only the ⌈log2 K⌉ 

nodes to be tested in a balanced tree. Because four points in a 

prediction unit are evaluated at each test and the features are 

extracted using simple mathematical calculations as in (4), the 

overall computational complexity is very low 

 

 
Fig. 5. Decision process of a prediction unit using a random 

forest. A prediction unit falls into leaf nodes representing 

posterior probabilities of representative modes, and the results 

are ensembled. 

 

A random forest yields prediction results by 

aggregating the outputs of a number of decision trees, as 

shown in Fig.5. Specifically, the proposed technique uses the 

sum of the posterior probability obtained from a leaf node of 

each tree to determine the representative mode. Assuming the 

number of the trees is N and the sum in a mode yk is larger 

than N 2 , it will be certainly chosen for the representative 

mode. However, the number of the trees used for the decision 

becomes larger as the probability exceeds the threshold, which 

requires more computational complexities. Therefore, in the 

proposed technique, we use a parameter γ to control the trade-
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off between the confidence level to choose yk in the early 

termination and the complexity. The early termination to 

choose yk is conditioned as follows:  

 

∑ Nci=1 p(y i k |x) ≥ γ N 2 , (9) 

 

where N is the total number of the trees in the forest 

and Nc is the number of the trees that completed the decision. 

In our experiments, γ is set to 0.8, which has been empirically 

found. For example, in Fig.5, the sum of the probabilities of 

the vertical mode (y = 7) becomes dominant in only few trees, 

so the final decision is made to the vertical mode immediately. 

 
Fig. 6. Confusion matrices of (a) 4 × 4 PU, (b) 8 × 8 PU, (c) 

16 × 16 PU, and (d) 32 × 32 PU. 

 

We show detailed procedures in training and testing. 

We use “Vidyio1”, “Vidyo3”, “Vidyo4”, “Kendo”, “Baloon” 

for training videos and “Kimono”, “BasketballDrive”, and 

“Cactus” for test videos. Video frames are randomly chosen in 

a sequence to disallow similar block patterns observed in 

adjacent frames as many as possible. The encoder is 

configured to run with the full R-D optimization, examining 

the entire intra-prediction modes in the optimization, and then 

the decoder collects the PU samples with labels (i.e., the best 

mode chosen by an encoder) as actual classes. Furthermore, 

we apply preprocessing to avoid duplication of data samples 

and make the samples with different block patterns equally 

important in training. For this, we use K-medoids algorithm in 

[40] to cluster the PU samples belonging to the same group in 

Table I, and then choose the same number of training samples 

in each cluster. The number of the clusters is set to the 

prediction modes of each group shown in Table I. K-fold cross 

validation is also applied to training data sets to avoid an 

overfitting problem. In training, we use more than 90,000, 

35,000, 20,000, and 10,000 PU samples, respectively for 4×4, 

8×8, 16×16, and 32×32 block-sizes and, in testing, around 

30% PU samples of the training samples. The testing samples 

are unseen in the training procedure.  

 

The classification accuracy is estimated with 

comparing the actual modes and the inferred modes from the 

random forest. To obtain the classification results, unseen PU 

samples decoded from the test videos go through the trained 

classifier. The test videos are coded with an encoder 

configured with using RMDs, as in the practical scenarios. 

The same test codec is used for evaluating the performance of 

the proposed technique in Section V. The classification 

performance to estimate an intra-prediction mode is 

quantitatively evaluated as shown in Fig 6, where the columns 

and the rows of the matrices represent the instances in a 

predicted class and in an actual class, respectively. The overall 

classification accuracies are 81.0%, 72.1%, 68.6%, and 66.4% 

for 4×4, 8×8, 16×16, and 32 × 32 PUs, respectively. The 

accuracy degrades with a block size because it needs more 

feature points to describe fine-grained directional patterns of 

large blocks. We observe enhanced classification performance 

with more feature coordinates yet higher computational 

complexity. We empirically determine the same number of 

features (i.e. the four points) by observing the trade-off. 

Beside to the classification accuracies, the misclassified 

samples are frequently observed in adjacent prediction angles, 

while small errors are evenly distributed at the distant angles. 

For example, the proposed technique often misclassifies 

samples in class 9 with those in class 1 and class 8 because of 

the similar directions, which might be used for an alternative 

prediction mode.  

 

B. Implementation to a Codec : Fast Intra-Prediction Mode 

Decision Using a Random Forest  

 

We define an inferred mode (IM) as the 

representative mode computed from the proposed technique 

and use it in the conventional mode selection process. The key 

idea is not only to reduce several prediction mode candidates 

after RMD for alleviating the complexity but also to add the 

IM mode for reducing the loss of coding efficiency as much as 

possible. As a result, the total number of the candidate modes 

becomes smaller to decrease the overall encoding time with 

slight coding loss, owing to the IM. We integrate the trained 

classifier into the same codecs that we have used for learning.  

We show more detailed implementation of the proposed 

technique, which is colored with the blue in Fig. 7(a), based 

on a HEVC reference model (HM) [52]. The RMD process 

chooses 3 and 1 prediction mode candidates using the SATD 

costs for 4 × 4 or 8 × 8 PUs and 16 × 16 or 32 × 32 PUs, 

respectively, whereas the numbers are 8 and 3 in the original 

reference software. It is highlighted that the IM is developed 

for inferring angular prediction modes. Furthermore, we 

observe Planar and DC modes tend to be chosen when they 

appear after RMD. Hence, if the prediction mode candidates 

are only the angular modes, we replace the mode with the 
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largest SATD among the candidates with the IM. Otherwise, 

we add both the Planar and DC modes to the candidates. Later, 

we append the MPM to the candidates if they are not 

redundant, as in the HM. Lastly, the final mode is determined 

through the Rate-Distortion optimization. 

   

The proposed technique is used for JEM software 

similar to HM software, as shown in Fig. 7(b). The JEM 

software adopts a coarse-to-fine decision process, extended 

from the HM, where it uses two RMD processes denoted by 

RMD-1 and RMD-2 in Fig. 7(b). The proposed technique sets 

the number of the prediction mode candidates remaining after 

each RMD to 2. When neither DC or Planar modes are after 

the first RMD, the proposed technique adds the IM to the 

candidates. The original HEVC prediction modes are 

considered in RMD-1. However, the additional angular 

prediction modes neighboring with all of the candidates are 

evaluated in RMD-2, so that 

 

 
(a) 

 
(a)  

Fig. 7. Implementations of the proposed technique (a) in the 

HM codec and (b) in the JEM codec. The blocks colored with 

a blue reflect the proposed technique. 

 

the codec tests only the small number of modes among 65 

prediction modes.  

 

V. EXPERIMENTAL RESULTS 

 

A. Coding Configurations and Test Sequences  

The implementations of the proposed technique are 

based on the recent HEVC reference software, i.e., HM 

version 16.6 [52] and the JEM reference software version 5.0 

[2]. The experiments are performed on PCs with 3.40 GHz 

Intel CPU and 8.0 GB RAM. The coding configuration of the 

reference software is set to All-Intra coding, in which all the 

frames are coded as I frames. Experimental conditions are 

aligned with the common test conditions recommended by the 

JCTVC [53] and JVET [54]. Test video sequences used for the 

evaluation of the proposed technique are shown in Table II. 

The sequences have various resolutions with their types such 

as A2 ∼ E, as defined in the test conditions [53], [54].  

 

We build the block-based random forest to classify 

an intraprediction mode from each PU. For this, we use open-

source random forest software implemented with C++ [55], 

integrated to the codecs. The classifiers trained off-line are 

integrated into an encoder. A number of sample blocks are 

used for training to avoid over-fitting problems. The number 

of block samples is 

 

TABLE II TEST SEQUENCES AND PROPERTIES 

 
 

around 150,000. It is noted that the computational 

complexity is of less concern during the off-line training. 
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 B. Coding Performance Evaluation and Analysis  

 

1) Performance Evaluation in HEVC Reference Software:  

literature [12], [13], [15]. Those algorithms try to reduce 

encoding time by carefully choosing the mode candidates 

based on edge and texture information of prediction units 

before carrying out the R-D  optimization. The compared 

algorithms are implemented on the same reference software as 

an anchor. The Bjontegaard-Delta rate (BR) savings (or loss) 

are used for measuring the R-D performance, and the 

encoding time reduction ∆T is calculated as follows:  

 

∆T(%) = Ttest − Tori Tori × 100, (10) 

 

where Tori is the encoding time of the anchor, and 

Ttest is the encoding time of the test algorithm. We repeat the 

same experiments five times and use the averaged 

measurement time to show the results. The positive numbers 

in BR and the negative numbers in ∆T refer to coding loss and 

encoding time reduction, respectively. Table III shows the 

performance of the proposed algorithm and the conventional 

algorithms, as compared to HM 16.6. By comparisons in 

Table III, the proposed technique outperforms the 

conventional algorithms when considering the tradeoff 

between coding loss and encoding time reduction. The 

proposed technique denoted by “PROP” shows the BD-rate 

increment about 0.5% in the luminance component and the 

 

TABLE III 

THE BD-RATE (BR) INCREMENT AND THE ENCODING 

TIME REDUCTION OF THE TEST ALGORITHMS AS 

VERSUS HM16.6 [52] IN AI CODING CONFIGURATION 

 

encoding time saving about 18.3% on average. Slight coding 

loss about 0.2% is observed in chroma components as the 

proposed technique is applied to only the Y-component. 

However, Jiang’s algorithm [15], Da Silva’s algorithm [12], 

Chen’s algorithm [13], and Jaballah’s algorithm [40] show the 

BDrate increments about 1.1%, 2.6%, 0.7%, and 1.2% and the 

encoding time savings about −10.1% , −19.3%, −15.0% and 

−15.2% on average. Jiang’s algorithm and Chen’s algorithm 

yield comparable results in BR with the proposed technique, 

but the encoding time savings are worse than the proposed 

technique. In contrast, Da Silva’s algorithm and Jaballah’s 

algorithm yield comparable encoding time saving, but the 

coding loss is significantly degraded. Jaballah’s algorithm 

chooses a subset of RMDs by using K-medoid clustering, 

while the clustering requires more computational complexity 

than the random forest. Liao’s algorithm [39] show 

comparable results, which are more encoding time reduction 

i.e., about −22% but less coding efficiency about i.e., 0.8% 

than the proposed technique.  

 

We show the robustness of the proposed technique in 

various configurations and test sequences. For this, we present 

the standard derivation of the performance in the last row. As 

shown, the proposed technique provides the lowest standard 

deviation in BR. The results demonstrate the capability of the 

proposed technique to adapt to different test sequences. 

However, the features used for representing edges and 

gradients in the compared algorithms have difficulties in the 

adaptation, so the deviation becomes large among the 

sequences. The proposed technique is also evaluated with 

various resolutions of test sequences A2 ∼ E, and it shows 

fairly reliable performance with the factor. Liao’s algorithm 

provides the lowest standard deviation of the encoding time 

reductions as it reduces the consistent number of the mode 

candidates with a block depth. However, the standard 

deviation of the coding performance is large in various video 

sequences, as compared to the proposed technique  

 

Some commercial HEVC codecs often reduce depths 

of residual quad-tree (RQT) for speed-up. When the RQT 

depth is restricted to 1, we observe the proposed technique 

provides 29.0% encoder time reduction and 1.1% BD-rates 

increment as compared to the anchor. We show the two R-D 

curves of the proposed technique and the anchor to examine 

the R-D performance in different bit-rates and to see the 

efficiency of the proposed technique during the mode 

selection. Higher QPs represent lower bitrates, and vice versa. 

The six sequences such as “Tango,” “PartyScene,” 

“KristenAndSara,” “CatRobot,” “BlowingBubbles,” and 

“BQSquare” yielding less coding efficiency than the other test 

sequences are used for presenting the R-D curves in Fig. 8 to 

see variations, if any. The Y-PSNR values are zoomed in 
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different ranges of bit-rates. However, as can be seen, the 

amount of the loss is likely even in the ranges, and the 

differences are very small. The observation can be explained 

with the behaviors of mode selection in R-D optimization and 

the associated roles of the proposed technique. Typically, the 

prediction modes are differently chosen in various ranges of 

bit-rates, considering the minimization of the Lagrangian cost 

J. The cost J is defined as D + λR where D is the 

 

 
(a)                         (b)                                  (c) 

 
(d)                                     (e)                                (e) 

 

Fig. 8. Rate-Distortion Curves of the proposed technique and 

the HM software in (a) “Tango,” (b) “PartyScene,” (c) 

“KristenAndSara,” (d) “CatRobot,” (e) “BlowingBubbles,” 

and (f) “BQSquare” 

 

distortion and R is the bits to encode a prediction 

unit. λ is the penalizing term that increases exponentially with 

an increment of QP. In lower bit-rates, the modes belonging to 

MPM in the neighboring PUs are preferred since they can save 

the overhead bits. The proposed technique derives a 

directional mode by exploiting a pattern in a block, which can 

be also repeated in the neighbors. In higher bit-rates, λ 

becomes smaller as the corresponding QP decreases, and the 

codec is likely to choose a prediction mode that can faithfully 

represent a pattern of a block to reduce the distortion. Thus, 

the representative candidate chosen by the proposed technique 

is important to support the choice. In sum, even though the 

inferred mode replaces several existing modes to reduce the 

encoding time, the R-D curves show only the slight changes in 

the wide ranges of bit-rates. The results tell the efficiency of 

proposed technique in the mode selection. 

 

 2) Performance Evaluation in JEM software:  

 

We also evaluate the performance of the proposed 

technique as compared to the JEM software. As shown in 

Table IV, the proposed technique provides similar trade-off 

between coding loss and encoding time reduction to that in 

HM software. The proposed technique denoted by “PROP” 

shows the BD-rate increment about 0.5% in the luminance 

component and the encoding time saving about 17.5% on 

average, as compared to the anchor. There are also changes of 

coding gains about −0.2% in chroma components as in HEVC. 

QTBT can affect the JEM software significantly. Thus, we 

examine the performance when disabling the QTBT both in 

the proposed technique and the anchor, respectively denoted 

by “PROP∗ ” and “JEM∗ ” in Table IV. As shown, the 

proposed technique provides the similar coding loss about 

0.5% in the luminance component and encoding time 

reduction about 17.2% as in the other configurations, and there 

are slight coding loss about 0.4% in chroma components. The 

standard deviation in BR is also similar to that in turning on 

the QTBT. The results show that the performance of the 

proposed technique is reliable to the use of the QTBT.  

 

3) Performance Analysis with Proportions of DC/Planar 

Modes:  

 

The proposed technique manages the directional 

prediction modes and DC/Planar modes separately, by using 

the two branches in Fig. 7. It is noted that the encoding 

measurement times are almost same regardless of which 

branch is used for the decision. The size of the initial 

candidates before the RMD is 3 in smaller block sizes and 1 in 

larger block sizes. Therefore, for instance in small block sizes, 

the left branch examines 3 or 4 modes (3 modes when the both 

DC and Planar are originally in the list after RMD and 4 

modes when only one of DC and Planar is originally in the 

list). In the other hand, the right branch always examines 3 

modes. Thus, the number of the modes in the left branch is 

rather greater than that in the right branch on average. 

Actually, we observe the both branches almost equally 

contribute the acceleration or the right branch requires slightly 

increasing complexity because of  
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TABLE IV 

THE BD-RATE INCREMENT AND THE ENCODING 

TIME REDUCTION OF THE TEST ALGORITHMS VS 

JEM5.0 [2] IN AI CODING CONFIGURATION. PROP∗ 

AND JEM∗ REFER TO THE CODEC TURNING OFF THE 

QTBT. 

 
executing the random forest.  

 

Table V presents the BD-rate increments and the 

encoding time reductions of the proposed algorithm with 

proportions of DC and Planar modes observed right after the 

RMD. The ratios of the DC/Planar modes are mostly 

determined with video characteristics, and the natural videos 

used in the common test conditions have 27% ∼ 64% DC and 

Planar modes in the decision. For example, “BasketBallPass,” 

“Drums,” and “PartyScene” show DC/Planar ratios less than 

35%, while “Kimono,” “Tango,” and “ParkScene,” show 

DC/Planar ratios more than 60%. We categorize the test 

sequences into four groups, i.e., G1∼ G4 with the proportions 

of the DC and Planar modes after the RMD. As shown, the 

BD-rates are slightly different as 0.4% ∼ 0.5% in the groups 

whereas the encoding time reductions increase more with the 

larger percentages of the DC and Planar modes, which caused 

by executing the random forest. That is, more angular 

prediction modes, more IM modes. The encoding time varies 

with the groups about 2.2% on average. We observe similar 

behaviors in the JEM software.  

 

4) Performance Analysis with the IM mode:  

 

While the branching mechanism facilitates the mode 

decision process, the IM mode aims to keeps the R-D 

performance in the proposed technique. To examine how the 

IM mode affects the performance, we turn off the derivation 

process of the IM mode and observe the changes of the R-D 

performance. In other words, the replacements of the IM 

modes in Fig.7 (a) is skipped while the original prediction 

modes are maintained in  

 

 
Fig. 9. BD-rate and Complexity comparisons with respect the 

number of the candidates and IM modes. 

 

the candidate list. “No-IM” in Table V shows the 

experimental results of the BD-rate increments and the 

encoding time saving as compared to the anchor. It is shown 

that the encoding time saving is around 20.5% and the BD-rate 

increment is around 0.7% on the average. We also observe the 

IM modes affects more in G3 and G4 than in G1. For 

example, the BD-rates in G4 decreases around 0.1% ∼ 0.3% 

with the extra 3% computational complexity. The IM modes 

affects the performance relatively less in G1 because there are 

more DC/Planar modes.  

 

Fig.9 shows the performance changes of the proposed 

technique when the size of the initial candidates varies with 3, 

5, and 7, referred to as “PROP(3-5-7)”. “No-IM(3-5-7)” refers 

to the same configuration of the size as “PROP(3-5- 7)”, yet 

the derivation of the IM mode is disabled. As can be seen in 

Fig.9, the IM mode increase only slight encoding time when 

the size is equal to 7. However, when the size becomes 

smaller, the IM mode plays an important role in the mode 

decision. For instance, “PROP(5)” provides almost same RD 

performance as No-IM(7), but the encoding time reduces 

about 6%. In our experiments, “PROP(3)” provides the best 

trade-off as reported in Table III. “PROP(3)”, as compared to 

other operating R-D points.  
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C. Performance Evaluation with Various Configurations in 

Random Forest  

 

The performance of the proposed technique can 

depend on several factors of a random forest such as a number 

of the trees consisting of the random forest and a depth of the 

individual trees. The effects of the conditions to the overall 

performance are presented with several test sequences such as 

“BQMall”, “BQSquare”, “Drums”, and “FourPeople”, as 

compared to the HM software as an anchor. In Fig.10, the 

proposed technique shows changes in the BD-rates and the 

encoding time with respect to the number of the trees, i.e., 3, 

5, 7, and 10. The encoding time tends to increase about 1 ∼ 

2% when the number changes from 3 to 10. The increments 

are not rapid because of the fast decision scheme in the 

random forest. Meanwhile, the number of the  

 

TABLE V 

THE BD-RATE INCREMENT AND THE ENCODING 

TIME REDUCTION OF THE PROPOSED ALGORITHM 

WITH THE PROPORTIONS OF THE DC OR PLANAR 

MODES AFTER RMD AND THE EVALUATIONS WHEN 

THE DERIVATION PROCESS OF THE IM-MODE IS 

DISABLED. 

 
 

trees affects the BD-rates slightly. In sum, the 

variations of the performance are relatively small in spite of 

the different number of trees as an hyper-parameter. Based on 

the results, we claim that the robustness of the classifier over 

various conditions and practical advantages because subtle 

changes in the implementation do not affect significant 

changes in the performance.  

 

We also compare the BD-rates and the time with 

respect to the depth of each tree in Fig.11. The loss in BD-

rates tends to decrease when the depth increases from 5. 

However, when the depth increases to e.g. 10, the loss 

becomes large or saturated. This is because of an over-fitting 

problem in the random forest. In other words, the parameters 

to be learned are larger significantly when the tree is deeper. 

Furthermore, the encoding time increases about 7 ∼ 9% with 

the depth because a large number of nodes are visited for the 

decision. Thus, we empirically set the depth to 5 in 

experiments.  

 

VI. CONCLUSION 

 

In this paper, a machine learning-based fast intra-

prediction mode decision algorithm was proposed. The 

random forest was used to estimate an intra-prediction mode 

from a prediction unit. We developed a randomized tree model 

including parameterized split functions at nodes to learn 

directional blockbased features. The feature used only four 

pixels reflecting directional characteristics in a prediction unit, 

and, thus the evaluation was fast and accurate. We defined the 

inferred mode to shrink the size of the candidates before 

carrying out  

 

 
(a) (b) 

 
(c)                                          (d) 

 

Fig. 10. Changes in BD-rates and encoding time when the 

random forest is configured with a different number of trees. 

The number of trees is 3, 5, 7, and 10. Test sequences are (a) 

“BQMall”, (b)“BQSquare”, (c)“Drums”, and 

(d)“FourPeople”. 
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(a) (b) 

\ 

(c)                                     (d) 

Fig. 11. Changes in BD-rates and encoding time when the 

random forest is configured with a different depth of trees. 

The depth is 5, 7, and 10. Test sequences are (a) “BQMall”, 

(b)“BQSquare”, (c)“Drums”, and (d)“FourPeople”. 

 

the Rate-Distortion optimization. It was demonstrated 

with experimental results that the proposed technique achieved 

significant encoding time reduction with only slight coding 

loss as compared to different reference software models as 

anchors, used for the developments of state-of-the-art video 

coding standards. 
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