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Abstract- Embedded system that are employed in safety 

critical application requires highest reliability. External 

watchdog timers are used in such systems to automatically 

handle and recover from operation time related failures. Most 

of the available external watchdog timers use additional 

circuitry to adjust their time out periods and limited features 

in terms of their functionality. This project describes the 

architecture and design of an improved configurable 

watchdog timer that can be employed in real time 

applications. The functionality and operations are general and 

it is mainly used to monitor any process based on real time 

systems. This is allows the design to be easily adaptable to 

different applications while reducing the overall system cost.     

 

I. INTRODUCTION 

 

 Very Large Scale Integration is used in real time 

applications which increases the performance of any system. It 

is the process of creating an integrated circuits by combining 

hundreds of transistors or device into a single chip.   

         

The Simple logic gates might be considered as SSI 

devices and multiplexers and parity encoders as MSI, the 

world of VLSI is much more diverse. Generally, the entire 

design procedure follows a step by step approach in which 

each design step is followed by simulation before actually 

being put onto the hardware or moving on to the next step. 

The major design steps are different levels of abstractions of 

the device as a whole: 

            

 It is more of a high level representation of the 

system. The major parameters considered at this level are 

performance, functionality, physical dimensions, fabrication 

technology and design techniques. It has to be a tradeoff 

between market requirements, the available technology and 

the economical viability of the design. The end specifications 

include the size, speed, power and functionality of the VLSI 

system Basic specifications like Floating point units, which 

system to use, like RISC (Reduced Instruction Set Computer) 

or CISC (Complex Instruction Set Computer), number of 

ALU’s cache size etc. Defines the major functional units of 

the system and hence facilitates the identification of 

interconnect requirements between units, the physical and 

electrical specifications of each unit. A sort of block diagram 

is decided upon with the number of inputs, outputs and timing 

decided upon without any details of the internal structure. 

  

Boolean expressions, control flow, word width, 

register allocation etc. are developed and the outcome is called 

as Register Transfer Level (RTL) . This part is implemented 

either with Hardware Descriptive Languages like VHDL 

(VHSIC Hardware Description Language) and/or Verilog. 

Gate minimization techniques are employed to find the 

simplest, or rather the smallest most effective implementation 

of the logic. 

   

Choosing the best layout for each block from 

partitioning step and the overall chip, considering the 

interconnect area between the blocks, the exact positioning on 

the chip in order to minimize the area arrangement while 

meeting the performance constraints through iterative 

approach are the major design steps taken care of in this step. 

The quality of placement becomes evident only after this step 

is completed. Routing involves the completion of the 

interconnections between modules. This is completed in two 

steps. First connections are completed between blocks without 

taking into consideration the exact geometric details of each 

wire and pin. Then, a detailed routing step completes point to 

point connections between pins on the blocks. The quality of 

placement becomes evident only after this step is completed.       

Routing involves the completion of the interconnections 

between modules. This is completed in two steps. First 

connections are completed between blocks without taking into 

consideration the exact geometric details of each wire and pin. 

Then, a detailed routing step completes point to point 

connections between pins on the blocks. The chips are put 

together on a Printed Circuit Board or a Multi Chip Module to 

obtain the final finished product. 

           

 Initially, design can be done with three different 

methodologies which provide different levels of freedom of 

customization to the programmers. The design methods, in 

increasing order of customization support, which also means 

increased amount of overhead on the part of the programmer, 

are FPGA and PLDs, Standard Cell (Semi Custom) and Full 

Custom Design. 

           

http://www.engineersgarage.com/articles/risc-and-cisc-architecture
http://www.engineersgarage.com/articles/risc-and-cisc-architecture
http://www.engineersgarage.com/articles/fpga-tutorial-basics
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While FPGAs have inbuilt libraries and a board 

already built with interconnections and blocks already in 

place; Semi Custom design can allow the placement of blocks 

in user defined custom fashion with some independence, while 

most libraries are still available for program development. Full 

Custom Design adopts a start from scratch approach where the 

programmer is required to write the whole set of libraries and 

also has full control over the block development, placement 

and routing. This also is the same sequence from entry level 

designing to professional designing. 

          

Xilinx ISE (Integrated Synthesis Environment) is a 

software tool produced by Xilinx for synthesis and analysis of 

HDL designs, enabling the developer to synthesize 

("compile") their designs, perform timing analysis, examine 

RTL diagrams, simulate a design's reaction to different 

stimuli, and  configure the target device with the programmer. 

           

 Xilinx ISE is a design environment for FPGA 

products from Xilinx, and is tightly-coupled to the architecture 

of such chips, and cannot be used with FPGA products from 

other vendors. The Xilinx ISE is primarily used for circuit 

synthesis and design, while ISIM or the ModelSim logic 

simulator is used for system-level testing. Other components 

shipped with the Xilinx ISE include the Embedded 

Development Kit (EDK), a Software Development Kit (SDK) 

and Chip scope. 

           

Xilinx released the last version of ISE in October 

2013 (version 14.7), and states that "ISE has moved into the 

sustaining phase of its product life cycle, and there are no 

more planned ISE releases." Hardware description languages 

such as Verilog are similar to software programming 

languages because they include ways of describing the 

propagation time and signal strengths (sensitivity). There are 

two types of assignment operators; a blocking assignment (=), 

and a non-blocking (<=) assignment. The non-blocking 

assignment allows designers to describe a state-machine 

update without needing to declare and use temporary storage 

variables. 

 

At the time of Verilog introduction (1984), Verilog 

represented a tremendous productivity improvement for circuit 

designers who were already using graphical schematic capture 

software and specially written software programs to document 

and simulate electronic circuits. Since these concepts are part  

of  Verilog language semantics, designers could quickly write 

descriptions of large circuits in a relatively compact and 

concise form. 

 

The designers of   Verilog wanted a language with 

syntax similar to the C programming language, which was 

already widely used in engineering software development. 

Like C programming, Verilog is case-sensitive and has a basic 

preprocessor (though less sophisticated than that of ANSI 

C/C++). Its control flow keyword (if/else, for, while, case, 

etc.) are equivalent, and its operator precedence is compatible 

with C. 

 

Syntactic differences include: required bit-widths for 

variable declarations, demarcation of procedural blocks 

(Virology uses begin/end instead of curly braces {}), and 

many other minor differences. Virology requires that variables 

be given a definite size. In C these sizes are assumed from the 

'type' of the variable (for instance an integer type may be 8 

bits). 

   

A Virology design consists of a hierarchy of 

modules. Modules encapsulate and communicate with other 

modules through a set of declared input, output, and 

bidirectional ports. Internally, a module can contain any 

combination of the following: net/variable declarations (wire, 

register, integer, etc.), concurrent and sequential statement 

blocks, and instances of other modules (sub-hierarchies). 

Sequential statements are placed inside a begin/end block and 

executed in sequential order within the block. 

 

The blocks themselves are executed concurrently, 

making Verilog a dataflow language. Verilog concept of 'wire' 

consists of both signal values (4-state: "1, 0, floating, 

undefined") and signal strengths (strong, weak, etc.). This 

system allows abstract modeling of shared signal lines, where 

multiple sources drive common net. When a wire has multiple 

drivers, the wire's (readable) value is resolved by a function of 

the source drivers and their strengths. A subset of statements 

in the Verilog language is synthesizable. 

 

Verilog modules that conform to a synthesizable 

coding style, known as RTL (register-transfer level), can be 

physically realized by synthesis software. Synthesis software 

algorithmically transforms the (abstract) Verilog source into a 

net list, a logically equivalent description consisting only of 

elementary logic primitives (AND, OR, NOT, flip-flops, etc.) 

that are available in a specific FPGA or VLSI technology. 

Manipulations to the net list ultimately lead to a circuit 

fabrication blueprint (such as a photo mask set for an ASIC or 

a bit stream file for an FPGA). 

 

II. RELATED WORK 

            

A watchdog timer (sometimes called a computer 

operating properly or COP timer, or simply a watchdog) is an 

electronic timer that is used to detect and recover from 

computer malfunctions. During normal operation, the 

http://www.engineersgarage.com/articles/fpga-tutorial-basics
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Assignment_operator
https://en.wikipedia.org/wiki/Temporary_storage_variable
https://en.wikipedia.org/wiki/Temporary_storage_variable
https://en.wikipedia.org/wiki/Timer
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computer regularly resets the watchdog timer to prevent it 

from elapsing, or "timing out". If, due to a hardware fault or 

program error, the computer fails to reset the watchdog, the 

timer will elapse and generate a timeout signal. The timeout 

signal is used to initiate corrective action or actions. The 

corrective actions typically include placing the computer 

system in a safe state and restoring normal system operation.   

Watchdog timers are commonly found in embedded 

systems and other computer-controlled equipment where 

humans cannot easily access the equipment or would be 

unable to react to faults in a timely manner. In such systems, 

the computer cannot depend on a human to invoke a reboot if 

it hangs; it must be self-reliant. For example, remote 

embedded systems such as space probes are not physically 

accessible to human operators; these could become 

permanently disabled if they were unable to autonomously 

recover from faults. A watchdog timer is usually employed in 

cases like these. Watchdog timers may also be used when 

running un-trusted code in a sandbox, to limit the CPU time 

available to the code and thus prevent some types of denial-of-

service attacks. 

   

Real-time computer systems are defined as systems 

that are in any conditions able to guarantee their response 

time. Such systems are used mostly in various embedded 

devices to guarantee their usability, for example to ensure 

smooth video playback, and in various industrial control 

applications. Their utilization in industrial application is often 

connected with the mission-critical tasks that need to be 

accomplished in time to prevent system malfunction or 

damage. 

    

The real-time computer system is usually 

implemented on specific hardware aimed for such purposes. It 

can run a simple application that takes care of the whole 

controlled system or an operating system with several 

applications of which each one has its own task and response 

deadline defined. One of the methods to recover such systems 

from error states and ensure their further functionality and 

responsiveness is utilization of watchdog timers. Watchdog 

timer is a hardware device usually realized by a counter with 

match register and specific system connections.   The timer 

can be set to measure any amount of time within some 

reasonable boundaries. This initialization value is, with a 

small reserve, equal to the maximum execution time defined 

for the process or the whole system. When the timer is left to 

overflow, it automatically signalizes that an error has occurred 

in the program flow or that the program didn’t meet the 

response time deadline. Thus, when the timer expires, it takes 

certain action to recover the system from such error state.    

The action could be as simple as restarting the system or as 

complex as running a system diagnostic test. A watchdog 

timer is said to have fired if it has not been reset within a 

programmable period. It is the role of the particular watched 

task or process to configure the watchdog timer and to 

periodically reset the timer before it expires. 

                

The commonly used systems are usually equipped 

with one hardware watchdog timer that is capable of resetting 

the whole system and few hardware counters which can 

provide the system with timing information. In real-time 

operating systems, when there are a number of independent 

processes to be secured, we usually utilize one of the hardware 

timers to provide the time base for creating virtual watchdog 

timers. These virtual timers are then assigned to each system 

process that has to be monitored. This way, each hardware 

timer is utilized for the implementation of orders of tens to 

hundreds of software watchdog timers for the concurrent 

processes. As the virtual watchdog timers share one driver for 

hardware timer, an individual fault in a process or the driver 

can possibly manipulate the hardware timer in such way that it 

is no longer usable and thus blocks the control for all the 

processes assigned to this hardware timer.   

  

The act of restarting a watchdog timer is commonly 

referred to as "kicking the dog" or other similar term, this is 

typically done by writing to a watchdog control port. 

Alternatively, in microcontrollers that have an integrated 

watchdog timer. The watchdog is sometimes kicked by 

executing a special machine language instruction. An example 

of this is the CLRWDT (clear watchdog timer) instruction 

found in the instruction set of some PIC microcontrollers. 

           

 In computers that are running operating systems, 

watchdog resets are usually invoked through a device driver. 

For example, in the Linux operating system, a user space 

program will kick the watchdog by interacting with the 

watchdog device driver, typically by writing a zero character 

to /dev/watchdog. The device driver, which serves to abstract 

the watchdog hardware from user space programs, is also used 

to configure the time-out period and start and stop the timer. 

Watchdog timers come in many configurations, and many 

allow their configurations to be altered. Microcontrollers often 

include an integrated, on-chip watchdog. In other computers 

the watchdog may reside in a nearby chip that connects 

directly to the CPU, or it may be located on an external 

expansion card in the computer's chassis. The watchdog and 

CPU may share a common clock signal, as shown in the figure 

1.1 below, or they may have independent clock signals. 

https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Hang_(computing)
https://en.wikipedia.org/wiki/Space_probe
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
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Figure 1.1 

 

 Two or more timers are sometimes cascaded to form 

a multistage watchdog timer, where each timer is referred to as 

a timer stage, or simply a stage. Figure 1.2 below shows a 

three-stage watchdog timer. In a multistage watchdog, only 

the first stage is kicked by the processor. Upon first stage 

timeout, a corrective action is initiated and the next stage in 

the cascade is started. As each subsequent stage times out, it 

triggers a corrective action and starts the next stage.  

           

Upon final stage timeout, a corrective action is 

initiated, but no other stage is started because the end of the 

cascade has been reached. Typically, single-stage watchdog 

timers are used to simply restart the computer, whereas 

multistage watchdog timers will sequentially trigger a series of 

corrective actions, with the final stage triggering a computer 

restart.   

 

 
Figure 1.2 

 

 Watchdog timers may have either fixed or 

programmable time intervals. Some watchdog timers allow the 

time interval to be programmed by selecting from among a 

few selectable, discrete values. In others, the interval can be 

programmed to arbitrary values. Typically, watchdog time 

intervals range from ten milliseconds to a minute or more. In a 

multistage watchdog, each timer may have its own, unique 

time interval. A watchdog timer may initiate any of several 

types of corrective action, including processor reset, non-

maskable interrupt, maskable interrupt, power cycling, fail-

safe state activation, or combinations of these. Depending on 

its architecture, the type of corrective action or actions that a 

watchdog can trigger may be fixed or programmable. Some 

computers require a pulsed signal to invoke a processor reset. 

In such cases, the watchdog typically triggers a processor reset 

by activating an internal or external pulse generator, which in 

turn creates the required reset pulses.   

           

In embedded systems and control systems, watchdog 

timers are often used to activate fail-safe circuitry. When 

activated, the fail-safe circuitry forces all control outputs to 

safe states (e.g., turns off motors, heaters, and high-voltages) 

to prevent injuries and equipment damage while the fault 

persists. In a two-stage watchdog, the first timer is often used 

to activate fail-safe outputs and start the second timer stage; 

the second stage will reset the computer if the fault cannot be 

corrected before the timer elapses.  

            

Watchdog timers are sometimes used to trigger the 

recording of system state information—which may be useful 

during fault recovery—or debug information (which may be 

useful for determining the cause of the fault) onto a persistent 

medium. In such cases, a second timer—which is started when 

the first timer elapses—is typically used to reset the computer 

later, after allowing sufficient time for data recording to 

complete. This allows time for the information to be saved, 

but ensures that the computer will be reset even if the 

recording process fails. 

           

For example, in a two-stage watchdog timer, during 

normal operation the computer regularly kicks Stage1 to 

prevent a timeout. If the computer fails to kick Stage1 (e.g., 

due to a hardware fault or programming error), Stage1 will 

eventually timeout. This event will start the Stage2 timer and, 

simultaneously, notify the computer (by means of a non-

maskable interrupt) that a reset is imminent. Until Stage2 

times out, the computer may attempt to record state 

information, debug information, or both. The computer will be 

reset upon Stage2 timeout.  

 

III. METHODS 

 

 In the proposed system           an effective watchdog 

should be able to detect all abnormal software modes and 

bring the system back to a known state. It should have its own 

clock and should be capable of providing a hardware reset on 

timeout to all the peripheral. The watchdog timer proposed in 

this paper operates independently of the processor and uses a 

dedicated clock for its functions.  

           

The architecture follows a windowed watchdog 

implementation, where the window periods can be configured 

by the software during initialization. A fail flag is raised when 

the watchdog timer expires and after a fixed amount of time 

from raising the flag, a reset is triggered. The time in-between 
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can be used by the software to store valuable debugging 

information to anon-volatile medium. 

            

A standard watchdog timer can catch problems in the 

system such as hanging because of endless loops in code 

execution. However, the main disadvantage of this watchdog 

is that if the system enters a fault state in which it continually 

resets the timer, the error state will never be detected. In other 

words, a standard watchdog timer can detect slow faults, but 

cannot detect fast faults which occur within the watchdog 

timer period. However, a windowed architecture can handle 

this properly. Here the watchdog defines a small time window 

within which the watchdog must be reset in order to avoid a 

timeout. This provides protection against systems from 

running too fast and too slow, thus increasing the error 

recognition coverage. 

  

The watchdog has two outputs, namely the watchdog 

fail output (WDFAIL) and the reset output (RSTOUT). When 

the SYSRESET input is low, the WDFAIL output remains 

asserted and the RSTOUT output stays de asserted. 

  

The register enables adjustments to the watchdog 

parameters and also provides status information.  The WDRST 

and WDSRVC fields are used respectively for resetting and 

servicing the watchdog. The state of the INIT input and the 

WDFAIL output are automatically updated in the 

configuration register. The SWSTAT field holds the state of 

the service window and the FLSTAT field logs the watchdog 

failure mode, if any.   

         

 The control inputs to the watchdog timer, ENABLE 

and RD/WR, permit the read and write to the configuration 

register.  The ABUS and DBUS signals in the figure indicate 

address bus and data bus, respectively. The length of the two 

windows can be programmed by the software after power-up 

by writing to the bit fields, SWLEN and FWLEN, in the 

configuration register.  

           

Once the window periods are configured after power-

up, modifying the values is disabled by design. If needed, the 

software will have to go through a stringent unlock procedure 

in order to be able to once again write to the configuration 

register.    

  

This prevents any accidental modification of the 

watchdog window parameters by a runaway code. The INIT 

input to the watchdog timer initializes the service window. A 

high-to-low transition on this input will start the service 

window, provided the fail flag (WDFAIL) is not active. The 

processor is required to service the watchdog within the 

service window, in order to prevent a timeout. 

           The watchdog timer is serviced using the watchdog 

service (WDSRVC) field in the configuration register. A 

rising edge on this bit inside the service window will 

immediately close the window and start the frame window. 

The frame window defines how periodically the watchdog 

should be serviced. Typically, the duration of this window is 

kept slightly more than the main loop of the embedded control 

system and the watchdog is serviced once in every cycle. 

  

Initialization of watchdog timer 

 

 On power-up or reset the watchdog wakes up in a 

failed state, i.e., the WDFAIL output will be asserted high. It 

is the responsibility of the software to initialize the watchdog 

and keep it running. The waveform for watchdog reset 

initialization and general operation. In order to bring the 

watchdog to a working state, first the watchdog reset 

(WDRST) field in the configuration register must be toggled 

from low-to-high.  

 

          This, followed by servicing the watchdog inside the 

service window, will de-assert the WDFAIL flag and make it 

operational. Since the frame window is kept larger than the 

system frame time, another service window will start before 

the current frame window expires. When the watchdog is 

again properly serviced, the frame window will be 

reinitialized. As long as the frame window counters keep 

running, no failures will be flagged by the watchdog. 

 

 
Figure 1.3 

 

A watchdog fail will occur when the software 

services the watchdog outside the service window. It can be 

seen that the invalid service operation instantly terminates the 

frame window and asserts the WDFAIL signal. 

   

 
Figure 1.4 
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 A favourable consequence of this feature is that two 

successive service operations will also lead to a watchdog fail. 

Here, the first service operation will immediately close the 

service window and the next one will invariably occur outside 

the window. This becomes equivalent to servicing the 

watchdog outside the service window and leads to a watchdog 

failure. 

 

 
Figure 1.4 

 

 A scenario where the WDSRVC falling edge is 

occurring inside the service window. This is also considered 

as an illegal service operation and the watchdog fail signal is 

asserted. This implies that, after servicing the watchdog, the 

software is required to de-assert the WDSRVC signal before 

the start of the next service window. All of these fault 

detection mechanisms ensure that a software running haywire 

will not go undetected by the proposed watchdog timer. 

 

Implementation of Watchdog timer 

 

 The design is clocked by its SYSCLK input, which is 

independent of the processor clock. The possible sets of 

window lengths are arrived based on the application and hard-

coded in the design. These values can be selected by writing to 

the appropriate bits in the configuration register - SWLEN for 

the service window and FWLEN for the frame window - after 

power-on.  

 

In order to change the window lengths, the software 

will have to perform two successive writes to this register with 

data 0xAAAA and 0x5555.  Subsequent to writing the first 

pattern the second one must be written within 10μs, after 

which the software gets a 10 μs period to modify the length 

configuration fields. If these timings are not strictly met, 

writes to these bits will remain disabled.  

 

 
Figure 1.5 

The service window is started when a high-to-low 

transition is detected on the INIT signal. The service window 

uses a derived clock (SWCLK) that is much slower than the 

SYSCLK. The slower clock helps in reducing the number of 

comparators required, thus minimizing the resource utilization 

in FPGA. The service window has an offset up/down counter 

that are clocked by the SYSCLK, and a main counter that runs 

at SWCLK.  

           

When the watchdog is correctly serviced, the 

counters in the service window stop immediately and the 

frame window starts. The frame window also uses a derived 

slower clock (FWCLK) for its operations. It has an offset 

up/down counter and a main counter with functionalities 

similar to that of the service window. The offset up counter 

here finds the offset between the termination of the service 

window and the next rising edge of the FWCLK. The frame 

window counters reset when a watchdog service operation 

occurs within the next service window duration, before the 

frame window expires. 

 

Reset initialization and fault detection 

 

On power-up the WDFAIL output is asserted, 

indicating a watchdog failure.  A rising edge on the WDRST 

bit prepares the watchdog timer for initialization. When the 

service window opens, a rising edge on the WDSRVC bit de 

asserts the WDFAIL output and the window counters start 

running. However, if the watchdog is serviced incorrectly, the 

whole initialization process is discarded and the software will 

have to repeat the entire procedure. Fault detection and 

initialization process is clearly explained. 

           

The WDFAIL signal gets de-asserted only when the 

watchdog is properly initialized. Assertion of the watchdog 

fail also triggers a reset counter that runs for a predefined 

amount of time. The duration of the counter can be determined 

by considering the amount of debug information that needs to 

be stored. On the expiry of the counter, the WDT asserts its 

RSTOUT output high. The reset counter will be nonfunctional 

during power-up and the RSTOUT output will be set to low at 

this point. When the watchdog is initialized for the first time, 

the counter gets automatically enabled. 

 

IV. CONCLUSION 

  

An efficient windowed watchdog timer is proposed. 

This windowed watchdog timer runs completely independent 

of the processor and permit adjusting the timer parameters 

according to the applications. It has the capability to identify 

the failure type which can become valuable while debugging. 

The same design can also be implemented in different 
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processors and applications with minor modifications which is 

one of the advantages of the proposed system. 
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