
IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 644 www.ijsart.com

Windowed Watchdog Timer For Real Time

Application

Ashwini. V.B.N.
1
, Divya. S

2
, Dr. K.K. Senthil Kumar

3

1, 2, 3 Prince Shri Venkateshwara Padmavathy Engineering College, Ponmar

Abstract- Embedded system that are employed in safety

critical application requires highest reliability. External

watchdog timers are used in such systems to automatically

handle and recover from operation time related failures. Most

of the available external watchdog timers use additional

circuitry to adjust their time out periods and limited features

in terms of their functionality. This project describes the

architecture and design of an improved configurable

watchdog timer that can be employed in real time

applications. The functionality and operations are general and

it is mainly used to monitor any process based on real time

systems. This is allows the design to be easily adaptable to

different applications while reducing the overall system cost.

I. INTRODUCTION

 Very Large Scale Integration is used in real time

applications which increases the performance of any system. It

is the process of creating an integrated circuits by combining

hundreds of transistors or device into a single chip.

The Simple logic gates might be considered as SSI

devices and multiplexers and parity encoders as MSI, the

world of VLSI is much more diverse. Generally, the entire

design procedure follows a step by step approach in which

each design step is followed by simulation before actually

being put onto the hardware or moving on to the next step.

The major design steps are different levels of abstractions of

the device as a whole:

 It is more of a high level representation of the

system. The major parameters considered at this level are

performance, functionality, physical dimensions, fabrication

technology and design techniques. It has to be a tradeoff

between market requirements, the available technology and

the economical viability of the design. The end specifications

include the size, speed, power and functionality of the VLSI

system Basic specifications like Floating point units, which

system to use, like RISC (Reduced Instruction Set Computer)

or CISC (Complex Instruction Set Computer), number of

ALU’s cache size etc. Defines the major functional units of

the system and hence facilitates the identification of

interconnect requirements between units, the physical and

electrical specifications of each unit. A sort of block diagram

is decided upon with the number of inputs, outputs and timing

decided upon without any details of the internal structure.

Boolean expressions, control flow, word width,

register allocation etc. are developed and the outcome is called

as Register Transfer Level (RTL) . This part is implemented

either with Hardware Descriptive Languages like VHDL

(VHSIC Hardware Description Language) and/or Verilog.

Gate minimization techniques are employed to find the

simplest, or rather the smallest most effective implementation

of the logic.

Choosing the best layout for each block from

partitioning step and the overall chip, considering the

interconnect area between the blocks, the exact positioning on

the chip in order to minimize the area arrangement while

meeting the performance constraints through iterative

approach are the major design steps taken care of in this step.

The quality of placement becomes evident only after this step

is completed. Routing involves the completion of the

interconnections between modules. This is completed in two

steps. First connections are completed between blocks without

taking into consideration the exact geometric details of each

wire and pin. Then, a detailed routing step completes point to

point connections between pins on the blocks. The quality of

placement becomes evident only after this step is completed.

Routing involves the completion of the interconnections

between modules. This is completed in two steps. First

connections are completed between blocks without taking into

consideration the exact geometric details of each wire and pin.

Then, a detailed routing step completes point to point

connections between pins on the blocks. The chips are put

together on a Printed Circuit Board or a Multi Chip Module to

obtain the final finished product.

 Initially, design can be done with three different

methodologies which provide different levels of freedom of

customization to the programmers. The design methods, in

increasing order of customization support, which also means

increased amount of overhead on the part of the programmer,

are FPGA and PLDs, Standard Cell (Semi Custom) and Full

Custom Design.

http://www.engineersgarage.com/articles/risc-and-cisc-architecture
http://www.engineersgarage.com/articles/risc-and-cisc-architecture
http://www.engineersgarage.com/articles/fpga-tutorial-basics

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 645 www.ijsart.com

While FPGAs have inbuilt libraries and a board

already built with interconnections and blocks already in

place; Semi Custom design can allow the placement of blocks

in user defined custom fashion with some independence, while

most libraries are still available for program development. Full

Custom Design adopts a start from scratch approach where the

programmer is required to write the whole set of libraries and

also has full control over the block development, placement

and routing. This also is the same sequence from entry level

designing to professional designing.

Xilinx ISE (Integrated Synthesis Environment) is a

software tool produced by Xilinx for synthesis and analysis of

HDL designs, enabling the developer to synthesize

("compile") their designs, perform timing analysis, examine

RTL diagrams, simulate a design's reaction to different

stimuli, and configure the target device with the programmer.

 Xilinx ISE is a design environment for FPGA

products from Xilinx, and is tightly-coupled to the architecture

of such chips, and cannot be used with FPGA products from

other vendors. The Xilinx ISE is primarily used for circuit

synthesis and design, while ISIM or the ModelSim logic

simulator is used for system-level testing. Other components

shipped with the Xilinx ISE include the Embedded

Development Kit (EDK), a Software Development Kit (SDK)

and Chip scope.

Xilinx released the last version of ISE in October

2013 (version 14.7), and states that "ISE has moved into the

sustaining phase of its product life cycle, and there are no

more planned ISE releases." Hardware description languages

such as Verilog are similar to software programming

languages because they include ways of describing the

propagation time and signal strengths (sensitivity). There are

two types of assignment operators; a blocking assignment (=),

and a non-blocking (<=) assignment. The non-blocking

assignment allows designers to describe a state-machine

update without needing to declare and use temporary storage

variables.

At the time of Verilog introduction (1984), Verilog

represented a tremendous productivity improvement for circuit

designers who were already using graphical schematic capture

software and specially written software programs to document

and simulate electronic circuits. Since these concepts are part

of Verilog language semantics, designers could quickly write

descriptions of large circuits in a relatively compact and

concise form.

The designers of Verilog wanted a language with

syntax similar to the C programming language, which was

already widely used in engineering software development.

Like C programming, Verilog is case-sensitive and has a basic

preprocessor (though less sophisticated than that of ANSI

C/C++). Its control flow keyword (if/else, for, while, case,

etc.) are equivalent, and its operator precedence is compatible

with C.

Syntactic differences include: required bit-widths for

variable declarations, demarcation of procedural blocks

(Virology uses begin/end instead of curly braces {}), and

many other minor differences. Virology requires that variables

be given a definite size. In C these sizes are assumed from the

'type' of the variable (for instance an integer type may be 8

bits).

A Virology design consists of a hierarchy of

modules. Modules encapsulate and communicate with other

modules through a set of declared input, output, and

bidirectional ports. Internally, a module can contain any

combination of the following: net/variable declarations (wire,

register, integer, etc.), concurrent and sequential statement

blocks, and instances of other modules (sub-hierarchies).

Sequential statements are placed inside a begin/end block and

executed in sequential order within the block.

The blocks themselves are executed concurrently,

making Verilog a dataflow language. Verilog concept of 'wire'

consists of both signal values (4-state: "1, 0, floating,

undefined") and signal strengths (strong, weak, etc.). This

system allows abstract modeling of shared signal lines, where

multiple sources drive common net. When a wire has multiple

drivers, the wire's (readable) value is resolved by a function of

the source drivers and their strengths. A subset of statements

in the Verilog language is synthesizable.

Verilog modules that conform to a synthesizable

coding style, known as RTL (register-transfer level), can be

physically realized by synthesis software. Synthesis software

algorithmically transforms the (abstract) Verilog source into a

net list, a logically equivalent description consisting only of

elementary logic primitives (AND, OR, NOT, flip-flops, etc.)

that are available in a specific FPGA or VLSI technology.

Manipulations to the net list ultimately lead to a circuit

fabrication blueprint (such as a photo mask set for an ASIC or

a bit stream file for an FPGA).

II. RELATED WORK

A watchdog timer (sometimes called a computer

operating properly or COP timer, or simply a watchdog) is an

electronic timer that is used to detect and recover from

computer malfunctions. During normal operation, the

http://www.engineersgarage.com/articles/fpga-tutorial-basics
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Assignment_operator
https://en.wikipedia.org/wiki/Temporary_storage_variable
https://en.wikipedia.org/wiki/Temporary_storage_variable
https://en.wikipedia.org/wiki/Timer

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 646 www.ijsart.com

computer regularly resets the watchdog timer to prevent it

from elapsing, or "timing out". If, due to a hardware fault or

program error, the computer fails to reset the watchdog, the

timer will elapse and generate a timeout signal. The timeout

signal is used to initiate corrective action or actions. The

corrective actions typically include placing the computer

system in a safe state and restoring normal system operation.

Watchdog timers are commonly found in embedded

systems and other computer-controlled equipment where

humans cannot easily access the equipment or would be

unable to react to faults in a timely manner. In such systems,

the computer cannot depend on a human to invoke a reboot if

it hangs; it must be self-reliant. For example, remote

embedded systems such as space probes are not physically

accessible to human operators; these could become

permanently disabled if they were unable to autonomously

recover from faults. A watchdog timer is usually employed in

cases like these. Watchdog timers may also be used when

running un-trusted code in a sandbox, to limit the CPU time

available to the code and thus prevent some types of denial-of-

service attacks.

Real-time computer systems are defined as systems

that are in any conditions able to guarantee their response

time. Such systems are used mostly in various embedded

devices to guarantee their usability, for example to ensure

smooth video playback, and in various industrial control

applications. Their utilization in industrial application is often

connected with the mission-critical tasks that need to be

accomplished in time to prevent system malfunction or

damage.

The real-time computer system is usually

implemented on specific hardware aimed for such purposes. It

can run a simple application that takes care of the whole

controlled system or an operating system with several

applications of which each one has its own task and response

deadline defined. One of the methods to recover such systems

from error states and ensure their further functionality and

responsiveness is utilization of watchdog timers. Watchdog

timer is a hardware device usually realized by a counter with

match register and specific system connections. The timer

can be set to measure any amount of time within some

reasonable boundaries. This initialization value is, with a

small reserve, equal to the maximum execution time defined

for the process or the whole system. When the timer is left to

overflow, it automatically signalizes that an error has occurred

in the program flow or that the program didn’t meet the

response time deadline. Thus, when the timer expires, it takes

certain action to recover the system from such error state.

The action could be as simple as restarting the system or as

complex as running a system diagnostic test. A watchdog

timer is said to have fired if it has not been reset within a

programmable period. It is the role of the particular watched

task or process to configure the watchdog timer and to

periodically reset the timer before it expires.

The commonly used systems are usually equipped

with one hardware watchdog timer that is capable of resetting

the whole system and few hardware counters which can

provide the system with timing information. In real-time

operating systems, when there are a number of independent

processes to be secured, we usually utilize one of the hardware

timers to provide the time base for creating virtual watchdog

timers. These virtual timers are then assigned to each system

process that has to be monitored. This way, each hardware

timer is utilized for the implementation of orders of tens to

hundreds of software watchdog timers for the concurrent

processes. As the virtual watchdog timers share one driver for

hardware timer, an individual fault in a process or the driver

can possibly manipulate the hardware timer in such way that it

is no longer usable and thus blocks the control for all the

processes assigned to this hardware timer.

The act of restarting a watchdog timer is commonly

referred to as "kicking the dog" or other similar term, this is

typically done by writing to a watchdog control port.

Alternatively, in microcontrollers that have an integrated

watchdog timer. The watchdog is sometimes kicked by

executing a special machine language instruction. An example

of this is the CLRWDT (clear watchdog timer) instruction

found in the instruction set of some PIC microcontrollers.

 In computers that are running operating systems,

watchdog resets are usually invoked through a device driver.

For example, in the Linux operating system, a user space

program will kick the watchdog by interacting with the

watchdog device driver, typically by writing a zero character

to /dev/watchdog. The device driver, which serves to abstract

the watchdog hardware from user space programs, is also used

to configure the time-out period and start and stop the timer.

Watchdog timers come in many configurations, and many

allow their configurations to be altered. Microcontrollers often

include an integrated, on-chip watchdog. In other computers

the watchdog may reside in a nearby chip that connects

directly to the CPU, or it may be located on an external

expansion card in the computer's chassis. The watchdog and

CPU may share a common clock signal, as shown in the figure

1.1 below, or they may have independent clock signals.

https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Hang_(computing)
https://en.wikipedia.org/wiki/Space_probe
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 647 www.ijsart.com

Figure 1.1

 Two or more timers are sometimes cascaded to form

a multistage watchdog timer, where each timer is referred to as

a timer stage, or simply a stage. Figure 1.2 below shows a

three-stage watchdog timer. In a multistage watchdog, only

the first stage is kicked by the processor. Upon first stage

timeout, a corrective action is initiated and the next stage in

the cascade is started. As each subsequent stage times out, it

triggers a corrective action and starts the next stage.

Upon final stage timeout, a corrective action is

initiated, but no other stage is started because the end of the

cascade has been reached. Typically, single-stage watchdog

timers are used to simply restart the computer, whereas

multistage watchdog timers will sequentially trigger a series of

corrective actions, with the final stage triggering a computer

restart.

Figure 1.2

 Watchdog timers may have either fixed or

programmable time intervals. Some watchdog timers allow the

time interval to be programmed by selecting from among a

few selectable, discrete values. In others, the interval can be

programmed to arbitrary values. Typically, watchdog time

intervals range from ten milliseconds to a minute or more. In a

multistage watchdog, each timer may have its own, unique

time interval. A watchdog timer may initiate any of several

types of corrective action, including processor reset, non-

maskable interrupt, maskable interrupt, power cycling, fail-

safe state activation, or combinations of these. Depending on

its architecture, the type of corrective action or actions that a

watchdog can trigger may be fixed or programmable. Some

computers require a pulsed signal to invoke a processor reset.

In such cases, the watchdog typically triggers a processor reset

by activating an internal or external pulse generator, which in

turn creates the required reset pulses.

In embedded systems and control systems, watchdog

timers are often used to activate fail-safe circuitry. When

activated, the fail-safe circuitry forces all control outputs to

safe states (e.g., turns off motors, heaters, and high-voltages)

to prevent injuries and equipment damage while the fault

persists. In a two-stage watchdog, the first timer is often used

to activate fail-safe outputs and start the second timer stage;

the second stage will reset the computer if the fault cannot be

corrected before the timer elapses.

Watchdog timers are sometimes used to trigger the

recording of system state information—which may be useful

during fault recovery—or debug information (which may be

useful for determining the cause of the fault) onto a persistent

medium. In such cases, a second timer—which is started when

the first timer elapses—is typically used to reset the computer

later, after allowing sufficient time for data recording to

complete. This allows time for the information to be saved,

but ensures that the computer will be reset even if the

recording process fails.

For example, in a two-stage watchdog timer, during

normal operation the computer regularly kicks Stage1 to

prevent a timeout. If the computer fails to kick Stage1 (e.g.,

due to a hardware fault or programming error), Stage1 will

eventually timeout. This event will start the Stage2 timer and,

simultaneously, notify the computer (by means of a non-

maskable interrupt) that a reset is imminent. Until Stage2

times out, the computer may attempt to record state

information, debug information, or both. The computer will be

reset upon Stage2 timeout.

III. METHODS

 In the proposed system an effective watchdog

should be able to detect all abnormal software modes and

bring the system back to a known state. It should have its own

clock and should be capable of providing a hardware reset on

timeout to all the peripheral. The watchdog timer proposed in

this paper operates independently of the processor and uses a

dedicated clock for its functions.

The architecture follows a windowed watchdog

implementation, where the window periods can be configured

by the software during initialization. A fail flag is raised when

the watchdog timer expires and after a fixed amount of time

from raising the flag, a reset is triggered. The time in-between

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 648 www.ijsart.com

can be used by the software to store valuable debugging

information to anon-volatile medium.

A standard watchdog timer can catch problems in the

system such as hanging because of endless loops in code

execution. However, the main disadvantage of this watchdog

is that if the system enters a fault state in which it continually

resets the timer, the error state will never be detected. In other

words, a standard watchdog timer can detect slow faults, but

cannot detect fast faults which occur within the watchdog

timer period. However, a windowed architecture can handle

this properly. Here the watchdog defines a small time window

within which the watchdog must be reset in order to avoid a

timeout. This provides protection against systems from

running too fast and too slow, thus increasing the error

recognition coverage.

The watchdog has two outputs, namely the watchdog

fail output (WDFAIL) and the reset output (RSTOUT). When

the SYSRESET input is low, the WDFAIL output remains

asserted and the RSTOUT output stays de asserted.

The register enables adjustments to the watchdog

parameters and also provides status information. The WDRST

and WDSRVC fields are used respectively for resetting and

servicing the watchdog. The state of the INIT input and the

WDFAIL output are automatically updated in the

configuration register. The SWSTAT field holds the state of

the service window and the FLSTAT field logs the watchdog

failure mode, if any.

 The control inputs to the watchdog timer, ENABLE

and RD/WR, permit the read and write to the configuration

register. The ABUS and DBUS signals in the figure indicate

address bus and data bus, respectively. The length of the two

windows can be programmed by the software after power-up

by writing to the bit fields, SWLEN and FWLEN, in the

configuration register.

Once the window periods are configured after power-

up, modifying the values is disabled by design. If needed, the

software will have to go through a stringent unlock procedure

in order to be able to once again write to the configuration

register.

This prevents any accidental modification of the

watchdog window parameters by a runaway code. The INIT

input to the watchdog timer initializes the service window. A

high-to-low transition on this input will start the service

window, provided the fail flag (WDFAIL) is not active. The

processor is required to service the watchdog within the

service window, in order to prevent a timeout.

 The watchdog timer is serviced using the watchdog

service (WDSRVC) field in the configuration register. A

rising edge on this bit inside the service window will

immediately close the window and start the frame window.

The frame window defines how periodically the watchdog

should be serviced. Typically, the duration of this window is

kept slightly more than the main loop of the embedded control

system and the watchdog is serviced once in every cycle.

Initialization of watchdog timer

 On power-up or reset the watchdog wakes up in a

failed state, i.e., the WDFAIL output will be asserted high. It

is the responsibility of the software to initialize the watchdog

and keep it running. The waveform for watchdog reset

initialization and general operation. In order to bring the

watchdog to a working state, first the watchdog reset

(WDRST) field in the configuration register must be toggled

from low-to-high.

 This, followed by servicing the watchdog inside the

service window, will de-assert the WDFAIL flag and make it

operational. Since the frame window is kept larger than the

system frame time, another service window will start before

the current frame window expires. When the watchdog is

again properly serviced, the frame window will be

reinitialized. As long as the frame window counters keep

running, no failures will be flagged by the watchdog.

Figure 1.3

A watchdog fail will occur when the software

services the watchdog outside the service window. It can be

seen that the invalid service operation instantly terminates the

frame window and asserts the WDFAIL signal.

Figure 1.4

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 649 www.ijsart.com

 A favourable consequence of this feature is that two

successive service operations will also lead to a watchdog fail.

Here, the first service operation will immediately close the

service window and the next one will invariably occur outside

the window. This becomes equivalent to servicing the

watchdog outside the service window and leads to a watchdog

failure.

Figure 1.4

 A scenario where the WDSRVC falling edge is

occurring inside the service window. This is also considered

as an illegal service operation and the watchdog fail signal is

asserted. This implies that, after servicing the watchdog, the

software is required to de-assert the WDSRVC signal before

the start of the next service window. All of these fault

detection mechanisms ensure that a software running haywire

will not go undetected by the proposed watchdog timer.

Implementation of Watchdog timer

 The design is clocked by its SYSCLK input, which is

independent of the processor clock. The possible sets of

window lengths are arrived based on the application and hard-

coded in the design. These values can be selected by writing to

the appropriate bits in the configuration register - SWLEN for

the service window and FWLEN for the frame window - after

power-on.

In order to change the window lengths, the software

will have to perform two successive writes to this register with

data 0xAAAA and 0x5555. Subsequent to writing the first

pattern the second one must be written within 10μs, after

which the software gets a 10 μs period to modify the length

configuration fields. If these timings are not strictly met,

writes to these bits will remain disabled.

Figure 1.5

The service window is started when a high-to-low

transition is detected on the INIT signal. The service window

uses a derived clock (SWCLK) that is much slower than the

SYSCLK. The slower clock helps in reducing the number of

comparators required, thus minimizing the resource utilization

in FPGA. The service window has an offset up/down counter

that are clocked by the SYSCLK, and a main counter that runs

at SWCLK.

When the watchdog is correctly serviced, the

counters in the service window stop immediately and the

frame window starts. The frame window also uses a derived

slower clock (FWCLK) for its operations. It has an offset

up/down counter and a main counter with functionalities

similar to that of the service window. The offset up counter

here finds the offset between the termination of the service

window and the next rising edge of the FWCLK. The frame

window counters reset when a watchdog service operation

occurs within the next service window duration, before the

frame window expires.

Reset initialization and fault detection

On power-up the WDFAIL output is asserted,

indicating a watchdog failure. A rising edge on the WDRST

bit prepares the watchdog timer for initialization. When the

service window opens, a rising edge on the WDSRVC bit de

asserts the WDFAIL output and the window counters start

running. However, if the watchdog is serviced incorrectly, the

whole initialization process is discarded and the software will

have to repeat the entire procedure. Fault detection and

initialization process is clearly explained.

The WDFAIL signal gets de-asserted only when the

watchdog is properly initialized. Assertion of the watchdog

fail also triggers a reset counter that runs for a predefined

amount of time. The duration of the counter can be determined

by considering the amount of debug information that needs to

be stored. On the expiry of the counter, the WDT asserts its

RSTOUT output high. The reset counter will be nonfunctional

during power-up and the RSTOUT output will be set to low at

this point. When the watchdog is initialized for the first time,

the counter gets automatically enabled.

IV. CONCLUSION

An efficient windowed watchdog timer is proposed.

This windowed watchdog timer runs completely independent

of the processor and permit adjusting the timer parameters

according to the applications. It has the capability to identify

the failure type which can become valuable while debugging.

The same design can also be implemented in different

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 650 www.ijsart.com

processors and applications with minor modifications which is

one of the advantages of the proposed system.

REFERENCES

[1] Blem, E. Compton, K. Gracia, P. Schulte, M. and Fu, W.

(2006) ‘An overview of reconfigurable hardware in

embedded system’, EURASIP journal on embedded

system.

[2] Capponi, G. Di Stefano, A. Giaconia, G.C. (2003)

‘FPGA-bassed concurrent Watchdog for real-time control

systems’ Electronics Letters, Vol.39,no. 10,pp.769-770.

[3] Craig Lee, Ian Foster, Lazzewski, G.V. Kesselman, C.

(1999) ‘A Fault Detection Service for Wide Area

Distributed Computations’ Cluster Computing,v.2

n.2,p.117-128.

[4] Ganssle, G Jack. (2004) ‘Great Watchdog’, V-1.2,

Gaanssel Group, Update.

[5] Hadad, E. Friedman, R. (2002) ‘FTS: A High

Performance CORBA Fault Tolerance Service’

Proc.IEEE Workshop Object Oriented Real-Time

Dependable Systems.

[6] Harrick, M.Vin. Lorenzo Alvisi, Sriram Rao, (1999)

‘Egida: An Extensible ToolKit For Low over head Faut

Tolerance, Fault Tolerant Computing’, Digest of Papers.

29
th

 Annual International Symposium,P.45-55.

[7] Ian Foster and Iamnitchi, A. (2000) ‘A Problem Specific

Fault-Tolerance Mechanism for Asynchorous,

Disturbuted System’, IEEE, p.4-13

[8] Jie Xu and Paul Toenend, (2003) ‘Replication-based

Fault-Tolerance in a Grid Environment’,citeceer.

[9] Konchan, R. Kopylchak, A. and Korkishko, T. (2002)

‘Improved Watchdog timer for Control the IBM Pc based

Autonoums Computer systems, in Modern Problems of

Radio Engineering, Telecommunications and computer

science, pp. 181-182.

[10] Lennon, W.K. and Passino, K.M. (2009) ‘Intelligent

Control for Brake systems’,IEEE Transcations on Control

Systems Technology , vol.7,pp.188-202

[11] Mahmood, A. and McCluskey, E.J. (1998) ‘Concurrent

Error Detection Using Watchdog Processors - a survey’,

IEEE Transcations on Copmuters, vol. 37, no. 2, pp.160-

174.

[12] Pascal Felber. Proya Narasimhan, Member (2004)

‘Experiences, Strategies, and challenges in Building

Fault-Tolerant CORBA Systems’, IEEE Transcations on

Computers, vol.53,no.5.

[13] Pohronska, M. and Krajcovic, T. (2010) ‘Fault-Tolerant

embedded Systems with multiple FPGA implemented

Watchdogs’, proceedings of the International Conference

CYBERNETICS AND INFORMATICS, D.R Stefan

kozak Alena Kozakova,ed., Vydavatelstvo STU,p.37.

[14] Pohronska, M. and Krajcovic, T. (2010) ‘Embedded

Systems with increased reliability using the Multiple

Watchdog Timers Approach’, International conference of

Applied Electronics, proceedings, J. Pinker ed.,

University of West Bohemia in pilsen, pp.273-276.

[15] Stracka, B. (2013) ‘Implementing a microcontroller

Watchdog with a field programmable gate array (FPGA)’.

