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Abstract- The proposed system is going to deal with a very 
challenging task of automatically generating presentation 
slides for academic papers. The wide availability of web 
documents in electronic forms requires an automatic 
technique to label the documents with a predefined set of 
topics, what is known as automatic Text Categorization (TC). 
Over the past decades, it has been witnessed a large number 
of advanced machine learning algorithms to address this 
challenging task. The generated presentation slides can be 
used as drafts to help the presenters prepare their formal 
slides in a quicker way.Documents are usually represented by 
the “bag-of-words”: namely, each word or phrase occurs in 
documents once or more times is considered as a feature.It 
first employs the regression method to learn the importance 
scores of the sentences in an academic paper, and then an 
effective algorithm is developed for multi-label classification 
with utilizing those data that are relevant to the targets. The 
key is the construction of a coefficient-based mapping between 
training and test instances, where the mapping relationship 
exploits the correlations among the instances, rather than the 
explicit relationship between the variables and the class labels 
of data and manufactures the multilevel classifier on the 
adapted low-dimensional information portrayals at the same 
time. It initially utilizes the relapse technique to take in the 
significance scores of the sentences in a scholastic paper, and 
after that adventures the Latent Dirichlet Allocation (LDA) 
strategy to create very much organized slides by choosing and 
adjusting key expressions and sentences to a point for the 
slide. We prepare a sentence scoring model in light of naïve 
Bayes classifier and utilize the LDA technique to adjust and 
remove key expressions and sentences for producing the 
slides. Exploratory outcomes demonstrate that our strategy 
can produce much preferred slides over conventional 
strategies. 
 

I. INTRODUCTION 
 

Traditional supervised learning is one of the mostly-
studied machine learning paradigms, where each real-world 
object is represented by a single instance and associated with a 
single label. Although traditional supervised learning is 
prevailing and successful, there are many learning tasks where 

the above simplifying assumption does not fit well, as real-
world objects might be complicated and have multiple 
semantic meanings simultaneously. In contrast to traditional 
supervised learning, in multi-label learning each object is also 
represented by a single instance while associated with a set of 
labels instead of a single label. The task is to learn a function 
which can predict  the proper label sets for unseen instances. 
The emerging area of multi-label learning, fundamentals on 
multi-label learning including formal definition and evaluation 
metrics are given. Technical details of up to eight 
representative multi-label algorithms are scrutinized under 
common notations with necessary analyses and discussions. 
Several related learning settings are briefly summarized. 
Online resources and possible lines of future researches on 
multi-label learning are discussed. However, the generality of 
multi-label learning inevitably makes the corresponding 
learning task much more difficult to solve. Actually, the key 
challenge of learning from multi-label data lies in the 
overwhelming size of output space, i.e. the number of label 
sets grows exponentially as the number of class labels 
increases.  Effective exploitation of the label correlations 
information is deemed to be crucial for the success of multi-
label learning techniques. Existing strategies to label 
correlations exploitation could among others be roughly 
categorized into three families, based on the order of 
correlations that the learning techniques have considered. The 
task of multi-label learning is tackled in a label-by-label style 
and thus ignoring co-existence of the other labels, such as 
decomposing the multi-label learning problem into a number 
of independent binary classification problems. The task of 
multi-label learning is tackled by considering pairwise 
relations between labels, such as the ranking between relevant 
label and irrelevant label or interaction between any pair of 
labels. As label correlations are exploited to some extent by 
second-order strategy, the resulting approaches can achieve 
good generalization performance. The task of multi-label 
learning is tackled by considering high-order relations among 
labels such as imposing all other labels’ influences on each 
label  or addressing connections among random subsets of 
labels. Apparently high-order strategy has stronger 
correlation-modeling capabilities than first-order and second-
order strategies, while on the other hand is computationally 



IJSART - Volume 5 Issue 3 –MARCH 2019                                                                                      ISSN [ONLINE]: 2395-1052 
   

Page | 377                                                                                                                                                                   www.ijsart.com 
 

more demanding and less scalable. In traditional supervised 
learning, generalization performance of the learning system is 
evaluated with conventional metrics such as accuracy. Recent 
researches indicate that correlations among labels might be 
asymmetric, i.e.the influence of one label to the other one is 
not necessarily be the same in the inverse direction, or local, 
i.e. different instances share different label correlations with 
few correlations being globally applicable. 

 
II. RELATED WORK 

 
Implementation is the most crucial state in achieving 

a successful system and giving the user’s confidence that the 
new system is workable and effective. Implementation of a 
modification application is to replace an existing one. This 
type of conversion is relatively easy to handle, provided there 
are no major changes in the system. Each program is tested 
individually at the time of development using the data and has 
verified that this program linked together in the way specified 
in the programs specification, the computer system and its 
environment is tested to the satisfaction of the user. A simple 
operating procedure is included so that the user can understand 
the different functions clearly and quickly. Initially at a first 
step, the executable form of the application is to be created 
and loaded in the common server machine which is accessible 
to the entire user and the server is to be connected to a 
network. The final stage is to document the entire system 
which provides components and the operating procedures of 
the system. Implementation is the stage of the project when 
the theoretical design is turned out into a working system. The 
implementation stage involves careful planning, investigation 
of the existing system and it’s constraints on implementation, 
designing of methods to achieve change over and evaluation 
of change over methods, implementation is the process of 
converting a new system design into operations. It is the phase 
that focuses on user training, site preparation and file 
conversion for installing a candidate system. 

 
Clustering is a useful statistical tool in computer 

vision and machine learning. It is generally accepted that 
introducing supervised information brings remarkable 
performance improvement to clustering.However, assigning 
accurate labels is expensive when the amount of training data 
is huge.In order to alleviate the labeling burden, semi-
supervised clustering algorithms are proposed [13]. Only a 
part of the training descriptors are labeled and the rest of the 
descriptors are unlabeled. Although the semi-supervised 
framework requires less labeling operations than the fully 
supervised one, the labeling work is intolerable for big data-
based applications. Another shortcoming of the semi-
supervised framework is that the performance is sensitive to 
labeled data. This leads to unstable clustering performance. It 

is worth noticing a previous work titled “kernel methods for 
weakly supervised mean shift clustering.To successfully avoid 
instance-level labeling burden, bag level labeling has been 
proposed [18]. It assumes a bag of descriptors share one and 
only one label. Thus, labels are provided for bags instead of 
the individual instance-level descriptors. a weakly supervised 
clustering algorithm for image semantic segmentation with 
image-level labels, i.e., collaboratively performing image 
segmentation and tag alignment with those regions is 
proposed. The approach is motivated by the observation that 
super pixels belonging to an object class usually exist across 
multiple images and hence can be gathered via clustering. 
Noticeably, this approach cannot preserve the locality and 
discriminative of samples in each bag. Besides, this algorithm 
is specifically designed for semantic image segmentation. It 
cannot be applied to the various computer vision applications 
directly. 

 
C Multi-label learning refers to problems where an 

instance an be assigned to multiple classes. This differs from 
multi-class learning where every instance can be assigned to 
only one class even though the number of classes is more than 
two. The essential difference between multi-class learning and 
multi-label learning is that classes in multiclass learning are 
assumed to be mutually exclusive while classes in multi-label 
learning are often correlated. A serious problem with existing 
approaches is that they are unable to exploit correlations 
between class labels. A serious problem with existing 
approaches is that they are unable to exploit correlations 
between class labels framework is proposed. The proposed 
framework takes into account the simultaneous propagation of 
multiple labels.  Multi-label learning approaches learn a 
ranking function of class labels from the labeled examples and 
apply it to order the class labels for the given test examples.  
The main idea is to propagate the labels from training 
examples to test examples through their similarities. The label 
information propagated from different training examples are 
then accumulated and used as the basis for scoring the class 
labels of test examples. a linear programming problem with an 
exponential number of constraints that cannot be practically 
solved using standard techniques is also formulated. Based on 
properties of submodular functions an algorithm is formulated 
that can solve this problem exactly and efficiently. Correlated 
label propagation is more effective than the statistical 
translation model for automatic image annotation is also 
shown. 

 
III. PROPOSED SYSTEM 

 
The generated presentation slides can be used as 

drafts to help the presenters prepare their formal slides in a 
quicker way. 



IJSART - Volume 5 Issue 3 –MARCH 2019                                                                                      ISSN [ONLINE]: 2395-1052 
   

Page | 378                                                                                                                                                                   www.ijsart.com 
 

A novel system is proposed to address this task. It 
first employs the regression method to learn the importance 
scores of the sentences in an academic paper, and then exploits 
the LDA method to generate well-structured slides by 
selecting and aligning key phrases and sentences.We train a 
sentence scoring model based on naïve Bayes classifier and 
use the LDA method to align and extract key phrases and 
sentences for generating the slides. Experimental results show 
that our method can generate much better slides than 
traditional methods Each sentence in a paper is learned by 
using the support vector regression (SVR) model. 

 
The presentation slides for the paper are generated by 

using the integer linear programming (ILP) model.The slides 
are generated automatically from the academic papers.The 
generated slides for the presentation will have only important 
points and all necessary figures, tables and graphs. 

 
IV. ARCHITECTURE 

 
In this section, we present the main components of 

multilabel learning has been analysed and then th e steps 
involved in converting pdf document to presentation slides has 
been discussed. 

 
 

FiFig. 1a 
   
The generated presentation slides can be used as 

drafts to help the presenters prepare their formal slides in a 
quicker way. 

 
A novel system is proposed to address this task. It 

first employs the regression method to learn the importance 
scores of the sentences in an academic paper, and then exploits 
the LDA method to generate well-structured slides by 
selecting and aligning key phrases and sentences. 

We train a sentence scoring model based on naïve 
Bayes classifier and use the LDA method to align and extract 
key phrases and sentences for generating the slides. 
Experimental results show that our method can generate much 
better slides than traditional methods 

 
V.SUPERVISED LEARNING ALGORITHMS 

 
Let Y = {1,...,K} denote the label set and B = 

{Bi}i=1,...,n denote the training bags. Each bag Bi contains 
multiple descriptor instances Bi = {xij}j=1...ni . On one hand, 
each bag Bi is associated with multiple human-specified bag-
level labels Yi = {yk i }k=1,...,K, where yk i is either 0 or 1. 
We call a label valued one as legal label and illegal label if the 
label is not one. We denote the set of all the instances as X = 
{xij}i=1,...,n,j=1,...,ni . Note that the instance-level labels 
{yij} are unavailable at the training stage. Our goal is to 
cluster the instances into discriminative codebooks without 
violating the bag-level constraints. Aiming at this, we learn the 
clustering function C(·) which returns the cluster that an 
instance belongs to. C(·) preserves the locality of data such 
that if pairwise instances are in the same cluster, they should 
be neighbors in a certain metric. Based on C(·), we can 
assume a matching function F(·) between an instance and a 
class. F(x0, k) is the probability that the instance x0 matches 
the kth class. It is straightforward to define F(x0, k) as the 
density of class labels of the cluster x0 belonging to F(x0, k) = 
xij∈C(x0) yij = k  |C(x0)| . (1) Based on the definition of F(·), 
we further define L(·) as the discrimination that predicts the 
label of an instance L(x0, y0) = F(x0, y0) − arg max k∈Y,k 
=y0 F(x0, k). (2) In weakly supervised clustering 
circumstance, the groundtruth instance-level labels are 
unknown. Thus, the clustering procedure leads to the 
following objective function:  y∗ ij, C(·) ∗  = arg min yij,C(·) 
n i=1 ni j=1 −L  xij, yij s.t. ∀y j i = 1, ni j=1 [yij = k] > 0 ∀y j i 
= 0, ni j=1 [yij = k] = 0. (3) A graphical illustration of the two 
constraints in (3) is shown in Fig. 1. Based on the bag-level 
labels, we can divide the entire sample into K partitions, each 
of which contains ni samples. The first constraint means that if 
any bag-level label k from {1, 2,...,K} corresponding to the ith 
bag is legal, then there is at least one sample in this bag 
belonging to label k ∈ {1, 2,...,K}. The second constraint 
means that if any bag-level label from {1, 2,...,K} 
corresponding to the ith bag is illegal, then there is definitely 
no sample in this bag belonging to label k ∈ {1, 2,...,K}. The 
optimization procedure of (3) aims to minimize the global loss 
[the first term of (3)] in discrimination by considering the 
weakly supervised constraints [the second and the third terms 
of (3)]. The optimization extends the multiple instance 
constraints in two aspects: 1) multiple (instead of single) 
labels are associate with a bag and 2) positive and This article 
has been accepted for inclusion in a future issue of this 
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journal. Content is final as presented, with the exception of 
pagination. Clustering is an indispensable component in 
machine learning and computer vision. In this paper, we 
propose a WSRF that allows semantic clustering under bag-
level supervision. We first formulate the weakly supervised 
clustering into a constrained objective function minimization 
problem. Thereby, a discriminative codebooks can be 
achieved without violating the bag-level labels. Then, a WSRF 
is proposed that formulates the weakly supervised clustering 
into a constrained margin maximization problem. And a DA 
algorithm is employed to solve the margin maximization 
problem. Finally, the instances are clustered with guidance of 
the given bag-level labels. The experimental results 
demonstrate that the resulted clusters preserve data locality 
and semantic discrimination. Moreover, our clustering 
algorithm can facilitate three real-world computer vision task 
remarkably.instead of the weakly supervised clustering 
problem. 

 
VI. EFFICIENT LEARNING ALGORITHMS 

 
Efficient Learning Algorithm  section, we show that 

when the label kernel function Ω(x) is a concave function, 
there is a simple and greedy algorithm for finding the optimal 
solution to the problem in Equation 8. Furthermore, the 
solution only depends on the relative order of weights {αk}m 
k=1, and is independent of their exact values. The algorithm 
for estimating label confidence scores z is summarized in 
Figure 2. This greedy algorithm is based on the following 
theorem from discrete optimization [16]: Input • xt: the test 
example • α1 ≥ α2 ≥ ... ≥ αm > 0 Output: optimal label scores 
(zt,1,...,zt,m) for xt For k = 1,. . . ,m • Let class label set Tk = 
{1, 2,...,k}. • f(Tk) = n i=1 K(xi, xt)Ω(tT (Tk)t(Si)) • zt,k = 
f(Tk) − f(Tk−1) Figure 2. Algorithm for finding the optimal 
solution to Equation 8 Given: (1) a finite set N , (2) a set 
function f : 2N → R with f(φ) ≥ 0, and (3) a weight vector w ∈ 
R|N |. Then, the linear programming problem: max w∈R|N | 
wT x s. t. ∀A ⊆ N , e∈A x(e) ≤ f(A) ∀e ∈ N , x(e) ≥ 0 can be 
solved by the following greedy algorithm if the set function f 
is submodular: • Sort elements of N as w(e1) ≥ w(e2) ≥ ... ≥ 
w(en) • Let V0 = φ For i =1,. . . ,n, let Vi = Vi−1 + ei, and 
x(ei) = f(Vi) − f(Vi−1). The validity of applying the above 
theorem to our problem defined in Equation 8 relies on the 
fact that the function f in our algorithm, i.e., f(u) = n i=1 K(xt, 
xi)Ω(uT ti) is interesting that the kernel-based k Nearest-
Neighbor is a special case of the algorithm  given by setting 
Ω(x) = x. 1 This is because zt,k = f(Tk) − f(Tk−1) = n i=1 
K(xt, xi)  t(Tk) − t(Tk−1))T t(Si))  = n i=1 K(xt, xi)  eT k 
t(Si))  = n i=1 K(xt, xi)I(k ∈ Si) 

 
 
 

VII. EXPERIMENTAL STUDY 
 
Experimental Settings  
 
1) Datasets: We carried out the comparison experiments on 
eight multilabel datasets with different types and sizes. They 
are Arts, Education, Entertainment, Health, Recreation, 
Reference, Science, and Social. These datasets were 
frequently used to validate performance of multilabel 
classification models in the literature one may observe that the 
multilabel datasets vary from the quantities of labels and differ 
greatly in the sizes of variables.  
 
2) Evaluation Criteria: For the traditional learning algorithms, 
their effectiveness or performance is often evaluated by the 
criterion of precision or accuracy, which simply denotes the 
number of correctly predicted instances relative to the total 
number of instances in a test dataset. However, it is not 
appropriate to the case of multilabel learning, because the 
output of a multilabel classifier involves multiple class labels 
at the same time. In our experiments, we adopted four 
different criteria to evaluate the performance of the multilabel 
learning methods. They are Hamming loss (HL), ranking loss 
(RL), one error (OE), and average precision (AP) [1]. 1) 
Hamming Loss: This criterion is defined as the percentage of 
labels which are classified incorrectly by the multilabel 
classifiers. The misclassified labels include the relevant labels 
that have not been predicted and the irrelevant labels that have 
been predicted. 2) Ranking Loss: Ranking the predicted labels 
is important in multilabel learning, especially for the label 
ranking learning methods, because we always expect the 
relevant labels would be outputted first and their ranks should 
be higher then those irrelevant ones. RL is such a criterion, 
which refers to the mis-ordered degree that the irrelevant 
labels are ranked higher than the relevant ones in the predicted 
results. 
 
3) One Error: Like the criterion of accuracy in the traditional 
learning tasks, OE also simply summarizes the ratio of how 
many times the most relevant label (i.e., the top-ranked label 
in each predicted results) is irrelevant to the true labels of the 
instances. 4) Average Precision: This evaluation measurement 
places more emphasis on the relevant labels. It refers to the 
percentage of relevant labels among all labels that are ranked 
above. 3) Comparison Methods: To make a comparison 
roundly, we carried out three different groups of experiments. 
The first group compared SWIM to the statistical multilabel 
learning algorithms. The statistical learning techniques 
recently have been extensively studied in multilabel learning. 
Typical examples include PLS and CCA. Both of them are 
good at measuring the correlations of two sets of variables. 
We took PLS [44], sPLS [16], PPLS-MD [10], CCA [31], and 
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sCCA [15] as our comparing methods. In the second group 
experiment, SWIM is used to compare with the instance-based 
learning methods. As mentioned above, kNN has been 
extensively studied in multilabel learning. SWIM is a general 
framework of the instance-based learning methods. Thus, this 
group aims at showing the effectiveness of SWIM in 
comparing with the kNN-based ones, including LPkNN [17], 
BRkNN [6], and MLkNN [5]. The third group made a 
comparison of our method to classical multilabel learning 
ones, such as BP-MLL [18], AdaBoost.MH [4], HOMER [49], 
MLStacking [3], pruned problem transformation [50], and 
ClassifierChain [51]. These learning algorithms stand for 
different learning techniques and have relatively better 
performance. For instance, BP-MLL [18] and AdaBoost.MH 
[4] extend the traditional neural network and AdaBoost 
learning algorithms to fit the multilabel cases, while the rest 
ones belong to the problem transformation kind of multilabel 
learning. More details of these learning methods are provided 
in the related work section or references therein. The proposed 
algorithm and the statistical ones were implemented with 
MATLAB. For the rest multilabel classifiers, i.e., the instance-
based and classical ones, we compared them under the 
MULAN package [52], where the off-the-shelf learning 
algorithms are contained. All experiments were conducted on 
a Pentium IV, with a CPU clock rate of 1.7 GHz, 1 GB main 
memory. During the whole experiments, the tenfold 
crossvalidation was adopted, and the final results were the 
average values over the ten rounds.  Experimental Results and 
Discussion  
 
1) Comparing to the Statistical Learning Methods: Since 
SWIM exploits the penalized PLS to construct models, in the 
first group experiment we made a comparison of SWIM to the 
statistical learning methods, including PLS, sPLS, PPLS-MD, 
CCA, and sCCA. The reason of choosing CCA and its variants 
is that they can also be used to obtain a common and latent 
space between two sets of variables. The difference of CCA to 
PLS is that the variables in the latent space identified by CCA 
have maximal correlations, rather than the covariances for 
PLS. It should be pointed out that the statistical learning 
methods explore the correlations between the variable space 
and the label space while SWIM extracts the mapping function 
g from the instances.During the whole experimental 
procedures, the parameters involved within the learning 
algorithms were assigned to the same values for the sake of 
impartial comparison. For example, in the sparse variants of 
CCA and PLS (i.e., SWIM, sCCA, PPLS-MD, and sPLS), the 
regularization parameters λw and λc were equal to 0.1. In 
addition, all learning algorithms chose the same number of 
latent variables (i.e., m = 25) to build classification models. 
The experimental results on the evaluation criteria  where the 
notation “↓” (or “↑”) indicates that the lower (higher) of the 

curve, the better performance of the classifier.We know that 
SWIM surpassed the statistical learning algorithms, except 
PPLS-MD, in most cases. For example, SWIM had the lowest 
HL on the datasets. Besides, SWIM achieved the best 
performance of RL, OE, and AP on seven datasets in 
comparing to other statistical learning methods. For the 
evaluation criterion of RL (OE), SWIM was slightly worse 
than sPLS on Education (Arts). Even so, the differences 
between them were very small, and they were not significantly 
different to each other if a statistical t-test was considered. 
Comparing to PPLS-MD, SWIM achieved slightly poor 
performance. For example, the AP of PPLS-MD was higher 
than SWIM on five datasets. Similarly, PPLS-MD 
outperformed SWIM for the criteria of OE and RL in several 
cases. Even so, SWIM had lower HL than PPLS-MD on six 
over eight datasets. The underlying reason is that PPLS-MD 
exploits the sparse property of the label space to explore the 
mapping relationship f , while SWIM does not consider the 
sparse property of the label space. It just models the mapping 
relationship g of the instances in the variable space, and then 
applies g to the label space directly. Intuitively, SWIM, PPLS-
MD, and sPLS have similar properties, because they are the 
sparse variants of PLS, notwithstanding their purposes are 
different. This assertion was demonstrated by the experiments. 
SWIM and sPLS exhibited analogous behaviors. For instance, 
both SWIM and sPLS achieved better or worse performance 
on the evaluation criteria in most cases. Comparing with PLS, 
sPLS performed relatively worse on the Entertainment dataset. 
This is reasonable because sPLS may lose some information 
when making the model sparse. An interesting fact is that 
CCA and sCCA had relatively poor performance in comparing 
with PLS and its variants. The underlying reason is that CCA 
and its variants aim at identifying the latent variables such that 
their correlations are maximal, while PLS tries to discover the 
latent variables with maximal covariances. Indeed, the 
maximal correlations do not stand for good discriminant 
capabilities in classification and prediction.  
 
2) Comparing to the kNN-Based Learning Methods: As 
mentioned above, SWIM takes the weights of instances into 
account when predicting the class labels. It is a general 
framework of the instance-based learning methods to some 
extent. 

 
VIII. CONCLUSION 

 
We train a sentence scoring model based on naïve 

Bayes classifier and use the Latent Dirichlet Allocation 
method to align and extract key phrases and sentences for 
generating the slides. Experimental results show that our 
method can generate much better slides than traditional 
methods. We only consider one typical style of slides that 
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beginners usually use. In the future, we will consider more 
complicated styles of slides such as styles that slides are not 
aligned sequentially with the paper and styles that slides have 
more hierarchies. We will also try to extract the slide skeletons 
from the human-written slides and apply these slide skeletons 
to the automatic generated slides. Furthermore, our system 
generates slides based on only one given paper. Additional 
information such as other relevant papers and the citation 
information can be used to improve the generated slides. We 
will consider this issue in the future. 
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