Semi prime ideals in Ordered Meet Hyperlattices

D. Ameena Beave

Thassim Beevi Abdul Kader College for Women, Kilakarai.

Abstract- In this article we discuss about the semi prime ideals in ordered meet hyperlattices.

I. INTRODUCTION

In this paper, we consider order relation \leq as $x \leq y$ if and only if $y = x$ V y for all x, $y \in L$, and we introduce semi-prime ideals in ordered meet hyperlattices. Here, we give some results about them.

I. Preliminaries

Definition 1.1:

Let H be a non-empty set. A Hyperoperation on H is a map \circ from H×H to P*(H), the family of non-empty subsets of H. The Couple (H, \circ) is called a hypergroupoid. For any two non-empty subsets A and B of H and $x \in H$, we define $A \circ B = \bigcup_{a \in A, b \in B} a \circ b;$

 ${x} \circ B$

A Hypergroupoid (H, \circ) is called a Semihypergroup if for all a, b, c of H we have $(a \circ b) \circ c = a \circ (b \circ c)$. Moreover, if for any element $a \in H$ equalities

 $A \circ H = H \circ a = H$ holds, then (H, \circ)

 $A \circ x = A \circ \{x\}$ and $x \circ B =$

is called a Hypergroup.

Definition 1.2:

Let L be a non-empty set, $\Lambda: L \times L \rightarrow p^*(L)$ be a hyperoperation and V : $L \times L \rightarrow L$ be an operation. Then (L, V, Λ) is a Meet Hyperlattice if for all x, y, z ϵ L. The following conditions are satisfied:

- 1) $x \in x \wedge x$ and $x = x \vee x$
- 2) x V (y V z) = (x V y) V z and x Λ (y Λ z) = (x Λ y) Λ z 3) $x \vee y = v \vee x$ and $x \wedge y = v \wedge x$

3)
$$
x \vee y = y \vee x
$$
 and $x \wedge y = y \wedge x$
4) $x \in x \wedge (x \vee y) \cap x \vee (x \wedge y)$

Definition 1.3:

An Ideal [1] P of a meet hyperlattice L is Prime [2] if for all x, $y \in L$ and x V $y \in P$, we have $x \in P$ and $y \in P$.

Proposition 1.4:

Let L be a meet hyperlattice. A subset P of a hyperlattice L is prime if an only if $L \backslash P$ is a subhyperlattice of L.

Definition 1.5:

Let (L, V, Λ , \leq) be an ordered meet hyperlattice and I \subset L be an ideal and F be a filter of L. We call I is a semiprime ideal if for every x, y, z \in L, $(x \vee y) \in I$ or $(x \vee z) \in I$ implies that x V (y \triangle z) \angle I. Also, we call F is a semiprime filter if x \triangle y \angle F or $x \wedge z \subseteq F$ implies that $x \wedge (y \vee z) \subseteq F$.

II. Properties of semi prime ideals in ordered meet hyperlattices [4]

Every Prime ideal I is semi prime [3]. Since if $(x \vee y) \in I$ or $(x \vee z) \in I$, we have $x \in I$ and $y \in I$ or $x \in I$ and $z \in I$. If x ∈I, by x V (y Λ z) \leq x we have, x V (y Λ z) \subset I Otherwise, we have y, $z \in I$.

So,
$$
y \wedge z \subseteq I
$$
 and $x \vee (y \wedge z) \subseteq I$.

Proposition 2.1:

Let (L, V, A, \leq) be an ordered meet hyperlattce and I be a semiprime ideal of L. Also, for any A, B \underline{C} L, A \leq B \underline{C} I implies that A \underline{C} I. Then, $I_1 = \{J \in Id(L); J \underline{C}\}$ I} is a semiprime ideal of L. If L is a finite hyperlattice, $I_2 = \cup$ ${J; J \subseteq I}$ is a semiprime ideal of L.

Proof:

Let $J_1, J_2 \subseteq I$, then $J_1 \wedge J_2 \subseteq I \wedge I$. Since, I is an ideal of L, we have $I \wedge I \subseteq I$. Therefore, $J_1 \wedge J_2 \subseteq I$. Let $J_1 \vee J_2 \subseteq I_1, J_1 \vee J_3 \subseteq I_1$ for any $J_1, J_2, J_3 \in$ Id (L). Then, let $x' \in J_1 \vee (J_2 \wedge J_3)$. $x' = x \vee y$ for $x \in J_1, y \in J_2 \wedge J_3$. Therefore, $y = y' \wedge y''$ for some $y' \in J_2$ or $y'' \in J_3$. We have x V y' \in $J_1VJ_2 \subseteq$ I or x V y'' \in $J_1VJ_3 \subseteq$ I. Since I is semiprime, we have $X V(y' \land y'') \subseteq I$ and $J_1 V(J_2 \land J_3) \subseteq I$. If L is finite, we prove that I_2 is a semi prime ideal. Let x, $y \in I_2$. Thus, $x \in J_1 \subseteq I$ or $y \in J_2 \subseteq I$. Therefore, $x \wedge y \subseteq J_1 \wedge J_2 \subseteq I$. Let $x \le y \in J_1 \subseteq I$. Since, I is an ideal, we have $x \in I$ or $x \in I_2$.

Since L I finite, I_2 is a semiprime ideal of L.

Theorem 2.2:

Let L be a s-good $(x \wedge 0 = x)$ bounded ordered meet hyperlattice and I be an ideal and F be a filter of L such that

I∩F = \emptyset and for any A \subseteq F. If F is a semiprime filter, there exists a semiprime ideal J such that $I \subseteq J$ and $J \cap F = \emptyset$.

Proof:

Let F be a semiprime filter and θ be a congruence on L which is defined as a θ b if and only if F:a = F:b where F:a = $\{x \in L; a \wedge x \subseteq F\}.$ Then, θ is an equivalence relation. Now, we show that θ is compatible with Λ and V. Let a θ b, since F is a semiprime filter, we have F:a V c = (F:a) ∪ (F:c) $=$ (F:b) \cup (F:c) $=$ F:b V c. Thus, a V c θ b V c. Let $y \in F$:a ∧ c. Thus, y Λ a Λ c \subseteq F and therefore, $y \wedge c \subseteq F$:a = F:b. $y \wedge c \wedge b \subseteq F$ and $y \in F$: $c \wedge b$. Therefore, θ is compatible with Λ . Clearly, $θ$ is a strongly regular relation and therefore $L/θ$ is a lattice. Now, we claim that L/θ is a distributive lattice. Let s θ x \vee (y \wedge z) and $u \in F$:s = F:x \vee (y \wedge z). $A = u \wedge (x \vee (y \wedge z)) \subseteq F$. Since L is bounded, we have $A \le u \wedge (1 \vee (y \wedge 1)) \le u \wedge (y \wedge 1)$ 1). So, we have u Λ y \subseteq F or u Λ x ⊆ F. By semi prime property of F, we have $u \wedge (x \vee y) \subseteq F$ and since $u \wedge (x \vee y) \leq u \wedge (x \vee y) \wedge (x \vee z).$ Therefore, $u \in F:(x \vee y) \wedge (x \vee z)$ and L/θ is a distributive lattice. Also, in L/ θ , we have I $\theta \cap F\theta = \varphi$. If there exists $y \in H\theta \cap F\theta$, we have I θ F. Thus, $F:I = F:F$ and since $0 \wedge F = 0 \subseteq F$, we have $0 \in F$:I. $0 \wedge I = 0 \subseteq F$ which is a contradiction to $I \cap F =$ φ. So I $\theta \cap F\theta = \varphi$. Since I $\cap F = \varphi$, there exists P $\theta \in L/\theta$ such that $I\theta \subseteq P\theta$ where $P\theta$ is a prime ideal. Let us consider a canonical map h: $L \rightarrow L/\theta$ by h(a) = θ (a). Therefore, we have $I \subseteq h - 1$ (P θ) = P, $P \cap F = \varphi$ and P is a prime ideal of L.

Theorem 2.3:

Let (L, V , Λ , \leq) be an ordered meet hyperlattice. L is a distributive hyperlattice if and only if for every ideal I and filter F of L such that $I \cap F = \varphi$, there exist ideal J and filter G

Proof:

Let L be a distributive hyperlattice. We know that, if (L, V, Λ) is a distributive hyperlattice if I and F are ideal and filter, respectively then I \cap F = φ , then there exist ideal J and filter G of L such that $I \subseteq J$, $F \subseteq G$, then $J \cap G = \varphi$. Now, we show that L is distributive. Let x, y, $z \in L$ and I be the ideal which is generated by $(x \vee y)$ \wedge $(x \vee z)$ and F be a filter which is generated by x \vee (y ∧ z). Let, $x \vee (y \wedge z) \nleq (x \vee y) \wedge (x \vee z)$. Therefore I \cap F = φ . Then, there exist ideal J and filter G such that $I \subseteq J$ and $F \subseteq G$, $J \cap G = \varphi$. If J is semi prime ideal, since $x \vee y \in J$ or $x \vee z \in J$, we have $x \vee (y \wedge z) \subseteq J$. Since x \vee (y \wedge z) \subseteq G, we have $J \cap G \neq \varphi$ which is a contradiction. If G is semi prime, we have $x \in G$ or $y \land z \subseteq G$. If $y \in G$, since $x \in G$, we have $x \vee y \in G$, and if $z \in G$, we have $x \vee z \in G$, which is a contradiction to $J \cap G = \varphi$. So neither y nor z are not in G. If both y, $z \in J$, $y \wedge z \subseteq J$. This is contradiction with $J \cap G = \varphi$. So both y, $z \in J$ is impossible. Let y not belongs to J and $z \in J$. We have $x \vee z \in J$. Since, $x \vee y \leq (x \vee y) \wedge (x \vee z) \in J$, we have $x \vee y \in J$. But $x \vee y \in G$, and this is contradiction. Then, we have x $V(y \wedge z) \leq (x \vee y) \wedge (x \vee z)$. Let $(x \vee y) \wedge (x \vee z) \nleq x \vee (y \wedge z)$ and I is an ideal which is generated by $x \vee (y \wedge z)$, F is a filter which is generated by $(x \wedge z)$ ∨ y) ∧ (x ∨ z). Similarly, we arrive at the contradiction and the proof is completed.

II. CONCLUSION

In this paper we have discussed about the semi prime ideals and their properties in ordered meet hyperlattices.

REFERENCES

- [1] http://mathworld.wolfram.com/Ideal.html
- [2] https://en.wikipedia.org/wiki/Prime_ideal

IJSART - *Volume 5 Issue 3 –MARCH 2019 ISSN* **[ONLINE]: 2395-1052**

- [3] http://mathworld.wolfram.com/SemiprimeIdeal.html
- [4] https://www.researchgate.net/publication/317743259_Ord ered_join_hyperlattices