Semi prime ideals in Ordered Meet Hyperlattices

D. Ameena Beave

Thassim Beevi Abdul Kader College for Women, Kilakarai.

Abstract- In this article we discuss about the semi prime ideals in ordered meet hyperlattices.

I. INTRODUCTION

In this paper, we consider order relation \leq as $x \leq y$ if and only if y = x V y for all x, y C L, and we introduce semi prime ideals in ordered meet hyperlattices. Here, we give some results about them.

I. Preliminaries

Definition 1.1:

Let H be a non-empty set. A Hyperoperation on H is a map \circ from H×H to P*(H), the family of non-empty subsets of H. The Couple (H, \circ) is called a hypergroupoid . For any two non-empty subsets A and B of H and x \in H, we define A \circ B = $\bigcup_{a \in A, b \in B} a \circ b$;

 $A \circ x = A \circ \{x\}$

 $\{x\} \circ B$

A Hypergroupoid (H, \circ) is called a Semihypergroup if for all a, b, c of H we have (a \circ b) \circ c = a \circ (b \circ c). Moreover, if for any element a \in H equalities

 $A \circ H = H \circ a = H$ holds, then (H, \circ)

and

 $\mathbf{x} \circ \mathbf{B} =$

is called a Hypergroup.

Definition 1.2:

Let L be a non-empty set, $\Lambda: L \times L \rightarrow p^*(L)$ be a hyperoperation and $V: L \times L \rightarrow L$ be an operation. Then (L, V, Λ) is a Meet Hyperlattice if for all x, y, z \in L. The following conditions are satisfied:

1)
$$x \in x \land x$$
 and $x = x \lor x$

2) x V (y V z) = (x V y) V z and x \wedge (y \wedge z) = (x \wedge y) \wedge z

3)
$$x V y = y V x$$
 and $x \land y = y \land x$

4)
$$x \in x \land (x \lor y) \cap x \lor (x \land y)$$

Definition 1.3:

An Ideal [1] P of a meet hyperlattice L is Prime [2] if for all x, $y \in L$ and x V $y \in P$, we have $x \in P$ and $y \in P$.

Proposition 1.4:

Let L be a meet hyperlattice. A subset P of a hyperlattice L is prime if an only if $L \ P$ is a subhyperlattice of L.

Definition 1.5:

Let (L, V, Λ, \leq) be an ordered meet hyperlattice and I \underline{C} L be an ideal and F be a filter of L. We call I is a semiprime ideal if for every x, y, z \in L, $(x V y) \in$ I or $(x V z) \in$ I implies that x V $(y \Lambda z) \underline{C}$ I. Also, we call F is a semiprime filter if x $\Lambda y \underline{C}$ F or x $\Lambda z \underline{C}$ F implies that x $\Lambda (y V z) \underline{C}$ F.

II. Properties of semi prime ideals in ordered meet hyperlattices [4]

Every Prime ideal I is semi prime [3]. Since if $(x \lor y) \in I$ or $(x \lor z) \in I$, we have $x \in I$ and $y \in I$ or $x \in I$ and $z \in I$. If $x \in I$, by $x \lor (y \land z) \le x$ we have, $x \lor (y \land z) \subseteq I$ Otherwise, we have $y, z \in I$.

So, $y \land z \underline{C} I$ and $x \lor (y \land z) \underline{C} I$.

Proposition 2.1:

Let (L, V, Λ, \leq) be an ordered meet hyperlattce and I be a semiprime ideal of L. Also, for any A, B <u>C</u> L, A \leq B <u>C</u> I implies that A <u>C</u> I. Then, $I_1 = \{J \in Id(L); J \underline{C} \}$ I} is a semiprime ideal of L. If L is a finite hyperlattice, $I_2 = \bigcup \{J; J \underline{C} \}$ is a semiprime ideal of L.

Proof:

Let $J_1, J_2 \subseteq I$, then $J_1 \wedge J_2 \subseteq I \wedge I$. Since, I is an ideal of L, we have $I \land I C I$. Therefore, $J_1 \wedge J_2 \underline{C} I$. Let $J_1 \vee J_2 \underline{C} I_1$, $J_1 \vee J_3 \underline{C} I_1$ for any J_1 , J_2 , $J_3 \in Id$ (L). Then, let $x' \in J_1 \vee (J_2 \wedge J_3)$. x' = x V y for $x \in J_1$, $y \in J_2 \land J_3$. Therefore, $y = y' \land y''$ for some $y' \in J_2$ or $y'' \in J_3$. We have $x \vee y' \in J_1 \vee J_2 \subseteq I$ or $x \vee y'' \in J_1 \vee J_3 \subseteq I$. Since I is semiprime, we have $x V (y' \land y'') \subseteq I \text{ and } J_1 V (J_2 \land J_3) \subseteq I.$ If L is finite, we prove that I_2 is a semi prime ideal. Let x, y $\in I_2$. Thus, $x \in J_1 \subseteq I$ or $y \in J_2 \subseteq I$. Therefore, $x \land y \subseteq J_1 \land J_2 \subseteq I$. Let $x \leq y \in J_1 \subseteq I$. Since, I is an ideal, we have $\mathbf{x} \in \mathbf{I}$ or $\mathbf{x} \in I_2$.

Since L I finite, I_2 is a semiprime ideal of L.

Theorem 2.2:

Let L be a s-good (x $\land 0 = x$) bounded ordered meet hyperlattice and I be an ideal and F be a filter of L such that $I \cap F = \emptyset$ and for any $A \subseteq F$. If F is a semiprime filter, there exists a semiprime ideal J such that $I \subseteq J$ and $J \cap F = \emptyset$.

Proof:

Let F be a semiprime filter and θ be a congruence on L which is defined as a θ b if and only if F:a = F:b where F:a = { $x \in L$; a $\land x \subseteq F$ }. Then, θ is an equivalence relation. Now, we show that θ is compatible with Λ and V. Let a θ b, since F is a semiprime filter, we have F:a V c = (F:a) \cup (F:c) = (F:b) U (F:c) = F:b V c. Thus, a V c θ b V c. Let $y \in F$:a \land c. Thus, $y \land a \land c \subseteq F$ and therefore, $y \land c \subseteq F:a = F:b.$ $y \land c \land b \subseteq F$ and $y \in F:c \land b$. Therefore, θ is compatible with Λ . Clearly, θ is a strongly regular relation and therefore L/ θ is a lattice. Now, we claim that L/θ is a distributive lattice. Let s θ x V (y \wedge z) and $u \in F:s = F:x \lor (y \land z).$ $A = u \land (x \lor (y \land z)) \subseteq F.$ Since L is bounded, we have $A \le u \land (1 \lor (y \land 1)) \le u \land (y \land$ 1). So, we have $u \land y \subseteq F$ or $u \wedge x \subseteq F.$ By semi prime property of F, we have $u \land (x \lor y) \subseteq F$ and since $u \wedge (x \vee y) \leq u \wedge (x \vee y) \wedge (x \vee z).$ Therefore, $u \in F:(x \lor y) \land (x \lor z)$ and L/θ is a distributive lattice. Also, in L/ θ , we have I $\theta \cap F\theta = \phi$. If there exists $y \in H\theta \cap F\theta$, we have $I \theta F$. Thus, F:I = F:F and since $0 \land F = 0 \subseteq F$, we have $0 \in F:I$. $0 \land I = 0 \subseteq F$ which is a contradiction to $I \cap F =$ Φ. So $I\theta \cap F\theta = \varphi$. Since $I \cap F = \varphi$, there exists $P\theta \in L/\theta$ such that $I\theta \subseteq P\theta$ where $P\theta$ is a prime ideal. Let us consider a canonical map h: $L \rightarrow L/\theta$ by h(a) = $\theta(a)$. Therefore, we have $I \subseteq h - 1$ (P θ) = P, $P \cap F = \phi$ and P is a prime ideal of L.

Theorem 2.3:

Let (L, V, Λ, \leq) be an ordered meet hyperlattice. L is a distributive hyperlattice if and only if for every ideal I and filter F of L such that $I \cap F = \varphi$, there exist ideal J and filter G

of L such that $I \subseteq J$, $F \subseteq G$, $J \cap G = \varphi$, J or G is semi prime and for every $x \in L$, we have $x \in J \cup G$

Proof:

Let L be a distributive hyperlattice. We know that, if (L, V, Λ) is a distributive hyperlattice if I and F are ideal and filter, respectively then $I \cap F = \varphi$, then there exist ideal J and filter G of L such that $I \subseteq J, F \subseteq G$, then $J \cap G = \varphi$. Now, we show that L is distributive. Let x, y, $z \in L$ and I be the ideal which is generated by $(x \lor y) \land (x \lor z)$ and F be a filter which is generated by $x \lor (y \lor z)$ Λz). Let, $x \lor (y \land z) \leq (x \lor y) \land (x \lor z)$. Therefore $I \cap F = \phi$. Then, there exist ideal J and filter G such that $I \subseteq J$ and $F \subseteq G$, $J \cap G = \varphi$. If J is semi prime ideal, since $x \lor y \in J \text{ or } x \lor z \in J$, we have $x \lor (y \land z) \subseteq J$. Since $x \lor (y \land z) \subseteq G$, we have $J \cap G \neq \varphi$ which is a contradiction. If G is semi prime, we have $x \in G$ or $y \land z \subseteq G$. If $y \in G$, since $x \in G$, we have $x \lor y \in G$, and if $z \in G$, we have $x \lor z \in G$, which is a contradiction to $J \cap G = \varphi$. So neither y nor z are not in G. If both y, $z \in J$, y $\land z \subseteq J$. This is contradiction with $J \cap G = \varphi$. So both y, $z \in J$ is impossible. Let y not belongs to J and $z \in J$. We have $x \lor z \in J$. Since, $x \lor y \le (x \lor y) \land (x \lor z) \in J$, we have $x \lor y \in J$. But $x \lor y \in G$, and this is contradiction. Then, we have $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$. Let $(x \lor y) \land (x \lor z) \leq x \lor (y \land z)$ and I is an ideal which is generated by $x \vee (y \wedge z)$, F is a filter which is generated by (x $\forall y \rangle \land (x \lor z).$ Similarly, we arrive at the contradiction and the proof is completed.

II. CONCLUSION

In this paper we have discussed about the semi prime ideals and their properties in ordered meet hyperlattices.

REFERENCES

- [1] http://mathworld.wolfram.com/Ideal.html
- [2] https://en.wikipedia.org/wiki/Prime_ideal

IJSART - Volume 5 Issue 3 –MARCH 2019

- [3] http://mathworld.wolfram.com/SemiprimeIdeal.html
- [4] https://www.researchgate.net/publication/317743259_Ord ered_join_hyperlattices