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Abstract- Due to the increased use of field programmable gate 
arrays (FPGAs) in production circuits with high reliability 
requirements, the design-specific testing of FPGAs has 
become an important topic for research. Path delay testing of 
FPGAs is especially important since path delay faults can 
render an otherwise fault-free FPGA unusable for a given 
design layout. This paper presents a new approach for FPGA 
path delay testing which partitions target paths into subsets 
that are tested in the same test configuration. Each path is 
tested for all combinations of signal inversions along the path 
length. Each configuration consists of a sequence generator, 
response analyzer and circuitry for controlling inversions 
along tested paths, all of which are formed from FPGA 
resources not currently under test. Two algorithms are 
presented for target path partitioning to determine the number 
of required test configurations. Test circuitry associated with 
these methods is also described. The results of applying the 
methods indicate that our path delay testing approach 
requires seconds per design to cover all paths with delay 
within 10% of the critical path delay. The approach has been 
validated using Xilinx Virtex devices. 
 

I. INTRODUCTION 
 

This paper is concerned with testing paths in lookup-
table (LUT) based FPGAs after they have been routed. While 
this may be regarded as user testing , we are considering an 
environment in which a large number of manufactured FPGA 
devices implementing a specific design are to be tested to 
ensure correct operation at the specified clock speed. It is thus 
akin to manufacturing tests in that the time needed for testing 
is important. Ideally, we would like to verify that the actual 
delay of every path between flip-flops is less than the design 
clock period. Since the number of paths in most practical 
circuits is very large, testing must be limited to a smaller set of 
paths. Testing a set of paths whose computed delay is within a 
small percentage of the clock period may be sufficient in most 
cases. Thus, our goal is to determine by testing whether the 
delay along any of the paths in the set exceeds the clock 
period. 
 
 
 
 

II. BASIC APPROACH 
 
The goal of this work is to test a set of paths, called 

target paths, to determine whether the maximum delay along 
any of  them exceeds the clock period of the circuit. These 
paths are selected based on static timing analysis using 
nominal delay values and actual routing information. Circuitry 
for applying test patterns and observing results is configured 
using parts of the FPGA that are not under test. 

 
III. INTRODUCTION TO APPROACH 

 
The delay of a path segment usually depends on the 

direction of signal transition in it. The direction of the signal 
transition in any segment is determined by that of the 
transition at the source and the inversions along the partial 
path leading to the particular segment. A test to determine 
whether the maximum delay along a path is greater than the 
clock period must propagate a transition along the path and 
produce a combination of side-input values that maximizes the 
path delay. This approach is not usually feasible because of 
the difficulty of determining the inversions that maximize the 
path delay and the necessary primary input values to produce 
them. Instead, we propose to test each target path for all 
combinations of inversions along it, guaranteeing that the 
worst case will also be included. 

    
 Although the number of combinations is exponential 

in the number of LUTs along the path, the method is feasible 
because application of each test requires only a few cycles of 
the rated clock. However, the results may be pessimistic in 
that a path that fails a test may operate correctly in the actual 
circuit, because the combination of inversions in the failing 
test may not occur during normal operation. 

                 
We shall first explain our method of testing a single 

path in a circuit and describe a test circuit for implementing it. 
Application of this method to test a number of paths 
simultaneously is discussed in the next section. 

                 
Our approach, first suggested in a recent paper [19], 

reprograms the FPGA to isolate each target path from the rest 
of the circuit and make inversions along the path controllable 



IJSART - Volume 5 Issue 3 –MARCH 2019                                                                                          ISSN [ONLINE]: 2395-1052 
   

Page | 264                                                                                                                                                                     www.ijsart.com 
 

by an on-chip test controller. Every LUT along the path is re-
programmed based on its original function. If it is positive 
unate in the on-path input, the LUT output is made equal to 
the on-path input independent of its side inputs. Similarly, 
negative unate functions are replaced by inverters. If the 
original function is binate in the on-path input, the LUT is re-
programmed to implement the exclusive-OR (XOR) of the on-
path input and one of its side-inputs, which we shall call its 
controlling side input. As mentioned   

   
 

  
   
Mentioned earlier, this change of functionality does 

not affect the delay of the path under test because the delay 
through an LUT is unaffected by the function implemented. 
Inversions along the path are controlled by the signal values 
on the controlling side inputs. For each combination of values 
on the controlling side inputs we apply a signal transition at 
the source of the path and observe the signal value at the 
destination after one clock period. The absence of a signal 
transition will indicate that the delay along the tested path 
exceeds the clock period for the particular combination of 
inversions. 

       
The basic method described above can be 

implemented by the circuitry shown in Fig. 1, consisting of a 
sequence generator, a response analyzer and a counter, that 

generates all combinations of values in some arbitrary order. 
A linear feedback shift register modified to include the all-0’s 
output [20], [21] may   be used as the counter. The controller 
and the circuitry for applying tests and observing results are 
also formed during configuration in parts of the FPGA that do 
not affect the behavior of the path(s) under test. 

    
The sequence generator produces a sequence of 

alternating zeros and ones, with period equal to 6T,where T is 
the operational clock period. The response analyzer checks for 
an output transition for every test, and sets an error flip-flop if 
no transition is observed at the end of a test. The flip-flop is 
reset only at the beginning of the test session , and will 
indicate an error if and only if no transition is produced in 
some test. The counter has as many bits as the number of 
binate LUTs along the tested path. 

      
The test for a path for each direction of signal 

direction consists of two parts, an initialization part and a 
propagation part, each of duration 3T.A paths is tested in time 
6T by overlapping the initialization part of each test with the 
propagation part of the preceding test. In addition the change 
of counter state for testing a path for a new combination of 
inversions is also done during the initialization phase of rising 
transition tests. 

  
Fig.2 shows the timing of the signals during the 

application of a test sequence. It can be seen from the figure 
that the source s of the test path toggles every three clock 
cycles. For correct operation, the input transition occurring at 
3T must reach the destination within time T(i.e., before 
3T+T).On the following clock edge at 3T+T,the result of the 
transition is clocked into the destination flip-flop at d.A 
change must be observed at the destination for every test, 
otherwise a flip-flop is set to indicate an error. In Fig.2, a test 
for the rising edge starts at time 3T, with the s steady at zero 
for the preceding three clock cycles. A test for the falling 
transition starts at 6T, with the input steady at one for the 
preceding three clock cycles. Results are sampled at d at time 
4T (for rising edge s transition)and 7T (for falling edge s 
transition),respectively.Thus,both rising and falling transitions 
are applied at the source for each combination of inversions in 
time 6T. 

       
 As the falling transition is applied at 6T,the enable 

input E of the counter is set to 1.This action starts a state 
(counter)change at 7T to test the path for the next combination 
of inversions .A counter change at this time point allows2T of 
settling time before the following transition occurs at the 
sources. By ensuring that the counter reaches its final value 
within T and propagates to the path destination d within an 
additional T, d is ensured to be stable before the following 
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source transition. Thus, the destination will reach the correct 
stable value corresponding to the new combination of 
inversions if no path from the counter to the destination has a 
delay greater than 2T.This delay explains the need for a 3T 
period betweens transitions (1T to perform the test, 1T for 
possible counter state changes ,and 1T for subsequent 
propagation of the counter changes to d). 

 
IV. TEST STRATEGY 

 
The method described in the preceding section 

requires the test control circuitry to be reconfigured for every 
path to bet tested. The total time for testing a set of target 
paths in a circuit consists of the test application time and the 
reconfiguration time. Our goal is to reduce both components 
of the total time for testing a specified set of pahs.Since the 
time needed for configuring the test structure is usually larger 
than that for applying test patterns generated on chip we shall 
focus on reducing the number of test configurations needed by 
testing as many paths as possible in each configuration. 

.          
Two approaches to maximize the number of paths 

tested in a test configuration suggest themselves. First, we can 
try to select a set of target paths that can be tested 
simultaneously. This will also have the effect of reducing test 
application time. Secondly, we can try to select a set of 
simultaneously testable sets that can be tested in sequence 
with the same configuration. In this case, the number of 
simultaneously tested paths may have to be reduced so as to 
maximize the total number of paths tested with the 
configuration. These two approaches will be elaborated in the 
next two sections, but first we define a few terms.. 

             
The simultaneous application of a single rising or 

falling transition at the sources of one or more paths and 
observing the response at their destinations is called a test. The 
set of tests for both rising and falling transitions for all 
combinations of inversions along each path is called a test 
phase, or simply, a phase. As mentioned earlier, a single path 
with k binate LUTs will have 2 ・ 2k tests in a test phase. The 
application of all test phases for all target paths in a 
configuration is called a test session. 
 
A. Single Phase Method 

 
This method, first presented in [19], attempts to 

maximize the number of simultaneously tested paths. A set of 
paths may be tested in parallel if it satisfies the following 
conditions: 
1) No two paths in the set have a common destination. 
2) No fan out from a path reaches another path in the set. 

 

The above conditions guarantee that signals 
propagating along paths in the set do not interfere with one 
another. Moreover, if the same input is applied to all paths in 
the set, two or more paths with a common initial segment will 
not interact if they do not re-converge after fan out.  

        
All LUTs on paths to be tested in a session are 

reprogrammed to implement inverters, direct connections or 
XORs as discussed in the preceding section. The LUTs with 
control inputs are levelized, and all control inputs at the same 
level are connected to the same counter output. The source flip 
flops of all paths to be tested in the session are connected to 
the same sequence generator, but a separate transition detector 
is used for each path. The transition detectors of all paths are 
then ORed together to produce an error indication if any of the 
paths is faulty. Alternatively, a separate error flip-flop can be 
used for each tested path, connected to form a scan chain and 
scanned out to identify the faulty path(s). 

 
B. Multi-phase Method 
 

The single phase method described above requires 
that all paths tested in a session be disjoint. The number of test 
sessions needed for a large target set is therefore likely to be 
very large. The multi-phase method attempts to reduce the 
number of test sessions needed by relaxing the requirement 
that all paths tested in a session be disjoint. This, however, 
increases the test and cannot be tested simultaneously. 

            
Consider sets of target paths S1, S2, Sp such that all 

paths in each set are disjoint except for common sources. 
Clearly, all paths in each set Si can be tested simultaneously, 
as in the single phase method, if each set can be selected and 
logically isolated from all other paths. This allows the testing 
of the sets Si in sequence, and is the basis of our multi-phase 
method. We also restrict the target paths for each session to 
simplify the control circuitry needed. 

        
We assume that the LUTs in the FPGA are 4-input 

LUTs, but the method can be easily modified to allow a larger 
number of inputs. Since each LUT may need up to two control 
inputs, one for path selection and the other for inversion 
control, at most two target paths may pass through any LUT. 
Target paths satisfying the following conditions can be tested 
in a single session. 
 
1) There is a path to each target path destination, called the 

main path to the destination. 
2) Main paths may not intersect, but they may have a 

common initial section. 
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3) Additional paths to each destination, called its side paths, 
must meet only the main path and continue to the 
destination along the main path. 

4) Main and side paths may not intersect any other path 
except that two or more paths may have a common 
source. 

1. 5)No more than two target paths may pass through any 
LUT. 

2. 6)The number of target paths to all destinations must be 
the same. 

 
 The above conditions allow us to select one path to 

each output and test all of them in parallel. The first two 
conditions guarantee that the signal propagating along main 
paths to different destinations will not interact. The main paths 
can therefore be tested in parallel. The restriction that a side 
path can meet only the main path to the same destination 
[condition 3)] allows a simple mechanism for propagating a 
signal through the main path or one of its side paths. Together 
with Condition 4, it guarantees that a set of main paths or a set 
of side paths, one to each destination, can be tested in parallel. 
Condition 5 allows for two control signals to each LUT, one 
for controlling inversion, and the other for selecting the path 
for signal propagation. A single binary signal is sufficient for 
selecting one of the target paths that may pass through an 
LUT. The last condition is required to produce a signal change 
at every destination for every test, simplifying the error 
detection logic. 

         
With the above restrictions, LUTs on target paths will 

have one or two target paths through them. These LUTs are 
called 1-path LUTs and 2-path LUTs, respectively. The inputs 
that are not on target paths will be called free inputs. 

          
The following procedure selects a set of target paths 

satisfying the conditions for multi-phase testing by selecting 
appropriate target paths for each set Si from the set of all 
target paths in the circuit. The union of these sets is the set of 
paths targeted in a test session. The procedure is then repeated 
for the remaining paths to obtain the target paths for 
subsequent test sessions until all paths are covered. 

 
Procedure 1 
 
1) Select a path that does not intersect any already selected 

path, as the main path to each destination. 
2) For each main path, select a side path such that 

a. It meets the main path and shares the rest of the 
path with it. 

b. No other path meets the main path at the same 
LUT. 

c. It does not intersect any already selected target 
path (except for segments overlapping the main 
path). 

3) Repeat Step 2 until no new side path can be found for any 
main path. 

4) Find the number, n, of paths such that 
a. There are n target paths to each destination. 
b. The total number of paths is a maximum. 

5) Select the main path and n − 1 side paths to each 
destination as the target paths for the session. 

 
 
Example 1: Figure 3 shows all the target paths in a 

circuit. The source and destination flip-flops are omitted for 
the sake of clarity. We start Procedure 1 by (arbitrarily) 
selecting dAEJLy and hCGKMz as the main paths to the 
destinations y and z. Adding paths eAEJLy, cEJLy and 
fBFJLy to the first path, and jCGKMz, nDGKMz and qHKMz 
to the second, we get the set of target paths shown in heavy 
lines. Since there are four paths to each destination, the eight 
target paths shown can be tested in a single four-phase session. 

        
The procedure can be repeated with the remaining 

paths to select sets of target paths for subsequent sessions. One 
possible set of test sessions is given in the following table, 
where the path(s) in the first row of each sessions were those 
chosen as the main path(s). 

                
Destination: y  Destination: z 
 
Session 1   dAEJLy            hCGKMz 
                  eAEJLy           jCGKMz 
                  cEJLy              nDGKMz 
                  fBFJLy           qHKMz 
Session 2  gBEJLy          gHKMz 
                  gFJLy           kDGKMz 
Session 3  gBFJLy          mDGKMz 
Session 4   hCFJLy 
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                  jCFJL 
                  kDGLy 
Session 5   nDGLy 
Session 6   mDGLy 
 
The set of sessions may not be unique and depends 

on the choices made. Also note that not all sessions obtained 
are multiphase sessions. Session 3, for example, became a 
single-phase session because no path qualified as a side path 
of mDGKMz, which was arbitrarily chosen as the main path. 
No paths could be concurrently tested with those in Sessions 
4, 5, and 6 because all paths to z had already been targeted. 
The sets of target paths obtained by Procedure 1 are such that 
each 2-path LUT has a main path and a side path through it. 
Thus, a single binary signal is sufficient to select the input 
through which the signal is to be propagated. Since the side 
path continues along the main path, selecting the appropriate 
input at the 2-path LUT where it meets the main path is 
sufficient for selecting the side path for testing. By using the 
same path selection signal, one side path to each destination 
can be selected simultaneously and tested in parallel. 

    
The FPGA configuration for a test session is obtained 

by the following procedure: 
 
Procedure 2 
 
1) Configure a sequence generator and connect its 

output to the sources of all target paths of the 
session. 

2) Configure a counter to control inversion parity, 
with the number of bits equal to the largest 
number of binate LUTs along any target path for 
the test session. 

3) Configure a path selector to select the set of paths 
tested in each test phase, with the number of bits 
equal to the number of side paths to a destination. 

4) Designate a free input of each LUT as its 
inversion control input p, and connect it to the 
counter output corresponding to its level. 

5) Designate another free input of each 2-path LUT 
as its selector input s, and connect it to the path 
selector. 

6) Modify the LUT of each 1-path LUT with on-path 
input a to implement f = a ⊕ p, if the original 
function is binate in a; otherwise f = a if it is 
positive or a if it is negative in a. 

7) Modify the LUT of each 2-path LUT to 

implement f =   
where a and b are on the main path and a side path, 
respectively. 

       
 The above modification for 2-path LUTs assumes 

that they are binate in both on-path inputs. If the output of a 2-
path LUT is unate in a or b or both, a slightly different 
function f is needed. For example, if the LUT output is binate 
in a and negative in b, the modified LUT must implement 

   
 
Example 2: 
 

Figure 4 shows the test structure for the circuit of Fig. 
3.Only target paths that were selected for the first test session 
are shown, and all LUT functions are assumed to be binate in 
their inputs. The test circuitry consists of a sequence generator 
that produces a sequence of alternating 1’s and 0’s, a four-bit 
counter for inversion control and a path selector. The path 
selector is a shift register that produces an output sequence, 
000, 100, 010, 001 for the 4-phase test of the first session in 
our example. 

   
It can be verified from the figure that the main paths 

are selected when all selector outputs are 0. When any output 
is 1, exactly one side path to each destination is selected. Input 
transitions are applied to all paths simultaneously, but 
propagate only up to the first 2-path  

  

 
  
 
 LUT on all paths except the selected ones. Thus, 

only one path to each destination will have transitions along 
its entire length. since these paths are disjoint ,no interaction 
can occur among them. 

 
V.  CONCLUSION 
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In this paper, we have presented a new approach to 
testing selected sets of paths in FPGA-based circuits. Our 
approach tests these paths for all combinations of inversions 
along them to guarantee that the maximum delays along the 
tested paths will not exceed the clock period during normal 
operation. While the test method requires reconfiguring the 
FPGA for testing, the tested paths use the same connection 
wires, multiplexers and internal logic connections as the 
original circuit, ensuring the validity of the tests. Following 
testing, the test circuitry is removed from the device and the 
original user circuit is programmed into the FPGA. 

        
 Two methods have been presented for reducing the 

number of test configurations needed for a given set of paths. 
In one method, called the single-phase method, paths are 
selected so that all paths in each configuration can be tested in 
parallel. The second method, called the multi-phase method, 
attempts to test the paths in a configuration with a sequence of 
test phases, each of which tests a set of paths in parallel. Our 
experimental results with benchmark circuits show that these 
methods are viable, but the preferable method depends on the 
circuit structure. While our approach has been shown to be 
feasible, the algorithms presented are greedy algorithms that 
simply maximize the number of target paths tested in each 
configuration. They are by no means optimal and may not 
result in the smallest number of configurations or total test 
time. The use of other criteria, such as the total time for 
configuration and test application for each configuration, or 
better heuristics may lead to more efficient testing with the 
proposed approach. 
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