
IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 263 www.ijsart.com

Design-Specific Path Delay Testing in Lookup-Table-
Based FPGAs

S. Sulochana

Department of ECE
 Assistant Professor, Dr.Sivanthi Aditanar College of Engineering

Abstract- Due to the increased use of field programmable gate
arrays (FPGAs) in production circuits with high reliability
requirements, the design-specific testing of FPGAs has
become an important topic for research. Path delay testing of
FPGAs is especially important since path delay faults can
render an otherwise fault-free FPGA unusable for a given
design layout. This paper presents a new approach for FPGA
path delay testing which partitions target paths into subsets
that are tested in the same test configuration. Each path is
tested for all combinations of signal inversions along the path
length. Each configuration consists of a sequence generator,
response analyzer and circuitry for controlling inversions
along tested paths, all of which are formed from FPGA
resources not currently under test. Two algorithms are
presented for target path partitioning to determine the number
of required test configurations. Test circuitry associated with
these methods is also described. The results of applying the
methods indicate that our path delay testing approach
requires seconds per design to cover all paths with delay
within 10% of the critical path delay. The approach has been
validated using Xilinx Virtex devices.

I. INTRODUCTION

This paper is concerned with testing paths in lookup-
table (LUT) based FPGAs after they have been routed. While
this may be regarded as user testing , we are considering an
environment in which a large number of manufactured FPGA
devices implementing a specific design are to be tested to
ensure correct operation at the specified clock speed. It is thus
akin to manufacturing tests in that the time needed for testing
is important. Ideally, we would like to verify that the actual
delay of every path between flip-flops is less than the design
clock period. Since the number of paths in most practical
circuits is very large, testing must be limited to a smaller set of
paths. Testing a set of paths whose computed delay is within a
small percentage of the clock period may be sufficient in most
cases. Thus, our goal is to determine by testing whether the
delay along any of the paths in the set exceeds the clock
period.

II. BASIC APPROACH

The goal of this work is to test a set of paths, called

target paths, to determine whether the maximum delay along
any of them exceeds the clock period of the circuit. These
paths are selected based on static timing analysis using
nominal delay values and actual routing information. Circuitry
for applying test patterns and observing results is configured
using parts of the FPGA that are not under test.

III. INTRODUCTION TO APPROACH

The delay of a path segment usually depends on the

direction of signal transition in it. The direction of the signal
transition in any segment is determined by that of the
transition at the source and the inversions along the partial
path leading to the particular segment. A test to determine
whether the maximum delay along a path is greater than the
clock period must propagate a transition along the path and
produce a combination of side-input values that maximizes the
path delay. This approach is not usually feasible because of
the difficulty of determining the inversions that maximize the
path delay and the necessary primary input values to produce
them. Instead, we propose to test each target path for all
combinations of inversions along it, guaranteeing that the
worst case will also be included.

 Although the number of combinations is exponential

in the number of LUTs along the path, the method is feasible
because application of each test requires only a few cycles of
the rated clock. However, the results may be pessimistic in
that a path that fails a test may operate correctly in the actual
circuit, because the combination of inversions in the failing
test may not occur during normal operation.

We shall first explain our method of testing a single

path in a circuit and describe a test circuit for implementing it.
Application of this method to test a number of paths
simultaneously is discussed in the next section.

Our approach, first suggested in a recent paper [19],

reprograms the FPGA to isolate each target path from the rest
of the circuit and make inversions along the path controllable

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 264 www.ijsart.com

by an on-chip test controller. Every LUT along the path is re-
programmed based on its original function. If it is positive
unate in the on-path input, the LUT output is made equal to
the on-path input independent of its side inputs. Similarly,
negative unate functions are replaced by inverters. If the
original function is binate in the on-path input, the LUT is re-
programmed to implement the exclusive-OR (XOR) of the on-
path input and one of its side-inputs, which we shall call its
controlling side input. As mentioned

Mentioned earlier, this change of functionality does

not affect the delay of the path under test because the delay
through an LUT is unaffected by the function implemented.
Inversions along the path are controlled by the signal values
on the controlling side inputs. For each combination of values
on the controlling side inputs we apply a signal transition at
the source of the path and observe the signal value at the
destination after one clock period. The absence of a signal
transition will indicate that the delay along the tested path
exceeds the clock period for the particular combination of
inversions.

The basic method described above can be

implemented by the circuitry shown in Fig. 1, consisting of a
sequence generator, a response analyzer and a counter, that

generates all combinations of values in some arbitrary order.
A linear feedback shift register modified to include the all-0’s
output [20], [21] may be used as the counter. The controller
and the circuitry for applying tests and observing results are
also formed during configuration in parts of the FPGA that do
not affect the behavior of the path(s) under test.

The sequence generator produces a sequence of

alternating zeros and ones, with period equal to 6T,where T is
the operational clock period. The response analyzer checks for
an output transition for every test, and sets an error flip-flop if
no transition is observed at the end of a test. The flip-flop is
reset only at the beginning of the test session , and will
indicate an error if and only if no transition is produced in
some test. The counter has as many bits as the number of
binate LUTs along the tested path.

The test for a path for each direction of signal

direction consists of two parts, an initialization part and a
propagation part, each of duration 3T.A paths is tested in time
6T by overlapping the initialization part of each test with the
propagation part of the preceding test. In addition the change
of counter state for testing a path for a new combination of
inversions is also done during the initialization phase of rising
transition tests.

Fig.2 shows the timing of the signals during the

application of a test sequence. It can be seen from the figure
that the source s of the test path toggles every three clock
cycles. For correct operation, the input transition occurring at
3T must reach the destination within time T(i.e., before
3T+T).On the following clock edge at 3T+T,the result of the
transition is clocked into the destination flip-flop at d.A
change must be observed at the destination for every test,
otherwise a flip-flop is set to indicate an error. In Fig.2, a test
for the rising edge starts at time 3T, with the s steady at zero
for the preceding three clock cycles. A test for the falling
transition starts at 6T, with the input steady at one for the
preceding three clock cycles. Results are sampled at d at time
4T (for rising edge s transition)and 7T (for falling edge s
transition),respectively.Thus,both rising and falling transitions
are applied at the source for each combination of inversions in
time 6T.

 As the falling transition is applied at 6T,the enable

input E of the counter is set to 1.This action starts a state
(counter)change at 7T to test the path for the next combination
of inversions .A counter change at this time point allows2T of
settling time before the following transition occurs at the
sources. By ensuring that the counter reaches its final value
within T and propagates to the path destination d within an
additional T, d is ensured to be stable before the following

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 265 www.ijsart.com

source transition. Thus, the destination will reach the correct
stable value corresponding to the new combination of
inversions if no path from the counter to the destination has a
delay greater than 2T.This delay explains the need for a 3T
period betweens transitions (1T to perform the test, 1T for
possible counter state changes ,and 1T for subsequent
propagation of the counter changes to d).

IV. TEST STRATEGY

The method described in the preceding section

requires the test control circuitry to be reconfigured for every
path to bet tested. The total time for testing a set of target
paths in a circuit consists of the test application time and the
reconfiguration time. Our goal is to reduce both components
of the total time for testing a specified set of pahs.Since the
time needed for configuring the test structure is usually larger
than that for applying test patterns generated on chip we shall
focus on reducing the number of test configurations needed by
testing as many paths as possible in each configuration.

.
Two approaches to maximize the number of paths

tested in a test configuration suggest themselves. First, we can
try to select a set of target paths that can be tested
simultaneously. This will also have the effect of reducing test
application time. Secondly, we can try to select a set of
simultaneously testable sets that can be tested in sequence
with the same configuration. In this case, the number of
simultaneously tested paths may have to be reduced so as to
maximize the total number of paths tested with the
configuration. These two approaches will be elaborated in the
next two sections, but first we define a few terms..

The simultaneous application of a single rising or

falling transition at the sources of one or more paths and
observing the response at their destinations is called a test. The
set of tests for both rising and falling transitions for all
combinations of inversions along each path is called a test
phase, or simply, a phase. As mentioned earlier, a single path
with k binate LUTs will have 2 ・ 2k tests in a test phase. The
application of all test phases for all target paths in a
configuration is called a test session.

A. Single Phase Method

This method, first presented in [19], attempts to

maximize the number of simultaneously tested paths. A set of
paths may be tested in parallel if it satisfies the following
conditions:
1) No two paths in the set have a common destination.
2) No fan out from a path reaches another path in the set.

The above conditions guarantee that signals
propagating along paths in the set do not interfere with one
another. Moreover, if the same input is applied to all paths in
the set, two or more paths with a common initial segment will
not interact if they do not re-converge after fan out.

All LUTs on paths to be tested in a session are

reprogrammed to implement inverters, direct connections or
XORs as discussed in the preceding section. The LUTs with
control inputs are levelized, and all control inputs at the same
level are connected to the same counter output. The source flip
flops of all paths to be tested in the session are connected to
the same sequence generator, but a separate transition detector
is used for each path. The transition detectors of all paths are
then ORed together to produce an error indication if any of the
paths is faulty. Alternatively, a separate error flip-flop can be
used for each tested path, connected to form a scan chain and
scanned out to identify the faulty path(s).

B. Multi-phase Method

The single phase method described above requires
that all paths tested in a session be disjoint. The number of test
sessions needed for a large target set is therefore likely to be
very large. The multi-phase method attempts to reduce the
number of test sessions needed by relaxing the requirement
that all paths tested in a session be disjoint. This, however,
increases the test and cannot be tested simultaneously.

Consider sets of target paths S1, S2, Sp such that all

paths in each set are disjoint except for common sources.
Clearly, all paths in each set Si can be tested simultaneously,
as in the single phase method, if each set can be selected and
logically isolated from all other paths. This allows the testing
of the sets Si in sequence, and is the basis of our multi-phase
method. We also restrict the target paths for each session to
simplify the control circuitry needed.

We assume that the LUTs in the FPGA are 4-input

LUTs, but the method can be easily modified to allow a larger
number of inputs. Since each LUT may need up to two control
inputs, one for path selection and the other for inversion
control, at most two target paths may pass through any LUT.
Target paths satisfying the following conditions can be tested
in a single session.

1) There is a path to each target path destination, called the

main path to the destination.
2) Main paths may not intersect, but they may have a

common initial section.

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 266 www.ijsart.com

3) Additional paths to each destination, called its side paths,
must meet only the main path and continue to the
destination along the main path.

4) Main and side paths may not intersect any other path
except that two or more paths may have a common
source.

1. 5)No more than two target paths may pass through any
LUT.

2. 6)The number of target paths to all destinations must be
the same.

 The above conditions allow us to select one path to

each output and test all of them in parallel. The first two
conditions guarantee that the signal propagating along main
paths to different destinations will not interact. The main paths
can therefore be tested in parallel. The restriction that a side
path can meet only the main path to the same destination
[condition 3)] allows a simple mechanism for propagating a
signal through the main path or one of its side paths. Together
with Condition 4, it guarantees that a set of main paths or a set
of side paths, one to each destination, can be tested in parallel.
Condition 5 allows for two control signals to each LUT, one
for controlling inversion, and the other for selecting the path
for signal propagation. A single binary signal is sufficient for
selecting one of the target paths that may pass through an
LUT. The last condition is required to produce a signal change
at every destination for every test, simplifying the error
detection logic.

With the above restrictions, LUTs on target paths will

have one or two target paths through them. These LUTs are
called 1-path LUTs and 2-path LUTs, respectively. The inputs
that are not on target paths will be called free inputs.

The following procedure selects a set of target paths

satisfying the conditions for multi-phase testing by selecting
appropriate target paths for each set Si from the set of all
target paths in the circuit. The union of these sets is the set of
paths targeted in a test session. The procedure is then repeated
for the remaining paths to obtain the target paths for
subsequent test sessions until all paths are covered.

Procedure 1

1) Select a path that does not intersect any already selected

path, as the main path to each destination.
2) For each main path, select a side path such that

a. It meets the main path and shares the rest of the
path with it.

b. No other path meets the main path at the same
LUT.

c. It does not intersect any already selected target
path (except for segments overlapping the main
path).

3) Repeat Step 2 until no new side path can be found for any
main path.

4) Find the number, n, of paths such that
a. There are n target paths to each destination.
b. The total number of paths is a maximum.

5) Select the main path and n − 1 side paths to each
destination as the target paths for the session.

Example 1: Figure 3 shows all the target paths in a

circuit. The source and destination flip-flops are omitted for
the sake of clarity. We start Procedure 1 by (arbitrarily)
selecting dAEJLy and hCGKMz as the main paths to the
destinations y and z. Adding paths eAEJLy, cEJLy and
fBFJLy to the first path, and jCGKMz, nDGKMz and qHKMz
to the second, we get the set of target paths shown in heavy
lines. Since there are four paths to each destination, the eight
target paths shown can be tested in a single four-phase session.

The procedure can be repeated with the remaining

paths to select sets of target paths for subsequent sessions. One
possible set of test sessions is given in the following table,
where the path(s) in the first row of each sessions were those
chosen as the main path(s).

Destination: y Destination: z

Session 1 dAEJLy hCGKMz
 eAEJLy jCGKMz
 cEJLy nDGKMz
 fBFJLy qHKMz
Session 2 gBEJLy gHKMz
 gFJLy kDGKMz
Session 3 gBFJLy mDGKMz
Session 4 hCFJLy

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 267 www.ijsart.com

 jCFJL
 kDGLy
Session 5 nDGLy
Session 6 mDGLy

The set of sessions may not be unique and depends

on the choices made. Also note that not all sessions obtained
are multiphase sessions. Session 3, for example, became a
single-phase session because no path qualified as a side path
of mDGKMz, which was arbitrarily chosen as the main path.
No paths could be concurrently tested with those in Sessions
4, 5, and 6 because all paths to z had already been targeted.
The sets of target paths obtained by Procedure 1 are such that
each 2-path LUT has a main path and a side path through it.
Thus, a single binary signal is sufficient to select the input
through which the signal is to be propagated. Since the side
path continues along the main path, selecting the appropriate
input at the 2-path LUT where it meets the main path is
sufficient for selecting the side path for testing. By using the
same path selection signal, one side path to each destination
can be selected simultaneously and tested in parallel.

The FPGA configuration for a test session is obtained

by the following procedure:

Procedure 2

1) Configure a sequence generator and connect its

output to the sources of all target paths of the
session.

2) Configure a counter to control inversion parity,
with the number of bits equal to the largest
number of binate LUTs along any target path for
the test session.

3) Configure a path selector to select the set of paths
tested in each test phase, with the number of bits
equal to the number of side paths to a destination.

4) Designate a free input of each LUT as its
inversion control input p, and connect it to the
counter output corresponding to its level.

5) Designate another free input of each 2-path LUT
as its selector input s, and connect it to the path
selector.

6) Modify the LUT of each 1-path LUT with on-path
input a to implement f = a ⊕ p, if the original
function is binate in a; otherwise f = a if it is
positive or a if it is negative in a.

7) Modify the LUT of each 2-path LUT to

implement f =
where a and b are on the main path and a side path,
respectively.

 The above modification for 2-path LUTs assumes

that they are binate in both on-path inputs. If the output of a 2-
path LUT is unate in a or b or both, a slightly different
function f is needed. For example, if the LUT output is binate
in a and negative in b, the modified LUT must implement

Example 2:

Figure 4 shows the test structure for the circuit of Fig.
3.Only target paths that were selected for the first test session
are shown, and all LUT functions are assumed to be binate in
their inputs. The test circuitry consists of a sequence generator
that produces a sequence of alternating 1’s and 0’s, a four-bit
counter for inversion control and a path selector. The path
selector is a shift register that produces an output sequence,
000, 100, 010, 001 for the 4-phase test of the first session in
our example.

It can be verified from the figure that the main paths

are selected when all selector outputs are 0. When any output
is 1, exactly one side path to each destination is selected. Input
transitions are applied to all paths simultaneously, but
propagate only up to the first 2-path

 LUT on all paths except the selected ones. Thus,

only one path to each destination will have transitions along
its entire length. since these paths are disjoint ,no interaction
can occur among them.

V. CONCLUSION

IJSART - Volume 5 Issue 3 –MARCH 2019 ISSN [ONLINE]: 2395-1052

Page | 268 www.ijsart.com

In this paper, we have presented a new approach to
testing selected sets of paths in FPGA-based circuits. Our
approach tests these paths for all combinations of inversions
along them to guarantee that the maximum delays along the
tested paths will not exceed the clock period during normal
operation. While the test method requires reconfiguring the
FPGA for testing, the tested paths use the same connection
wires, multiplexers and internal logic connections as the
original circuit, ensuring the validity of the tests. Following
testing, the test circuitry is removed from the device and the
original user circuit is programmed into the FPGA.

 Two methods have been presented for reducing the

number of test configurations needed for a given set of paths.
In one method, called the single-phase method, paths are
selected so that all paths in each configuration can be tested in
parallel. The second method, called the multi-phase method,
attempts to test the paths in a configuration with a sequence of
test phases, each of which tests a set of paths in parallel. Our
experimental results with benchmark circuits show that these
methods are viable, but the preferable method depends on the
circuit structure. While our approach has been shown to be
feasible, the algorithms presented are greedy algorithms that
simply maximize the number of target paths tested in each
configuration. They are by no means optimal and may not
result in the smallest number of configurations or total test
time. The use of other criteria, such as the total time for
configuration and test application for each configuration, or
better heuristics may lead to more efficient testing with the
proposed approach.

REFERENCES

[1] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya,

and V. Verma, “Using roving STARs for on-line testing
and diagnosis of FPGAs in faulttolerant applications,” in
IEEE Int. Test Conf., Atlantic City, NJ, Sept. 1999, pp.
28–30.

[2] M. Abramovici, C. Stroud, and J. Emmert, “Online BIST
and BIST-based diagnosis of FPGA logic blocks,” IEEE
Trans. on VLSI Systems, vol. 12, no. 12, pp. 1284–1294,
Dec. 2004.

[3] I. G. Harris and R. Tessier, “Interconnect testing in
cluster-base FPGA architectures,” in ACM/IEEE Design
Automation Conf., Los Angeles, CA, June 2000, pp. 49–
54.

[4] I. G. Harris and R. Tessier, “Testing and diagnosis of
interconnect faults in cluster-based FPGA architectures,”
IEEE Trans. on CAD, vol. 21, no. 11, pp. 1337–1343,
Nov. 2002.

[5] W.K. Huang, F.J. Meyer, X-T. Chen, and F. Lombardi,
“Testing configurable LUT-based FPGAs,” IEEE Trans.
on VLSI Systems, vol. 6, no. 2, pp. 276–283, June 1998.

[6] C. Stroud, S. Konala, P. Chen, and M. Abramovici,
“Built-in self-test of logic blocks in FPGAs (Finally, a
free lunch),” in IEEE VLSI Test Symp., Princeton, NJ,
Apr. 1996, pp. 387–392.

[7] C. Stroud, S.Wijesuriya, C. Hamilton, and M.
Abramovici, “Built-in selftest of FPGA interconnect,” in
IEEE Int. Test Conf., Washington, D.C., Oct. 1998, pp.
404–411.

[8] L. Zhao, D.M.H. Walker, and F. Lombardi, “IDDQ
testing of bridging faults in logic resources of
reprogrammable field programmable gate arrays,” IEEE
Trans. on Computers, vol. 47, no. 10, pp. 1136–1152, Oct.
1998.

[9] M. Renovell, J. Figuras, and Y. Zorian, “Test of RAM-
based FPGA: Methodology and application to the
interconnect,” in IEEE VLSI Test Symp., Monterey,
California, Apr. 1997, pp. 230–237.

[10] C-A. Chen and S.K. Gupta, “Design of efficient BIST
test pattern generators for delay testing,” IEEE Trans. on
CAD, vol. 15, no. 12, pp. 1568– 1575, Dec. 1996.

[11] S. Pilarski and A. Pierzynska, “BIST and delay fault
detection,” in IEEE Int. Test Conf., Baltimore, MD, Oct.
1993, pp. 236–242.

[12] A. Krasniewski, “Application-dependent testing of FPGA
delay faults,” in Euromicro Conf., Milan, Italy, Sept.
1999, pp. 260–267.

