
IJSART - Volume 4 Issue 8 – AUGUST  2018                                                                                  ISSN [ONLINE]: 2395-1052 
 

Page | 646                                                                                                                                                                     www.ijsart.com 
 

A Robust Active Contour Segmentation Based On 
Fractional-Order Differentiation And Fuzzy Energy 

 
M.Kanimozhi1, K.L.Prasanna2, K.Madhavi3 

1, 2, 3 Assistant Professor 
1, 2, 3 QISIT 

 
Abstract- This paper presents a novel fast model for 
activecontours to detect objects in an image, based on 
techniques of curve evolution. The proposed model can detect 
objects whose boundaries are not necessarily defined by 
gradient, based on the minimization of a fuzzy energy, which 
can be seen as a particular case of a minimal partition 
problem. This fuzzy energy is used as the model motivation 
power evolving the active contour, which will stop on the 
desired object boundary. However, the stopping term does not 
depend on the gradient of the image, as most of the classical 
active contours, but instead is related to the image color and 
spatial segments. The fuzziness of the energy provides a 
balanced technique with a strong ability to reject “weak” 
local minima. Moreover, this approach converges to the 
desired object boundary very fast, since it does not solve the 
Euler-Lagrange equations of the underlying problem, but, 
instead, calculates the fuzzy energy alterations directly. The 
theoretical properties and various experiments presented 
demonstrate that the proposed fuzzy energy-based active 
contour is better and more robust than classical snake 
methods based on the gradient or other kind of energies. 
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I. INTRODUCTION 
 
 Image segmentation is one of the first and most 
important tasks in image analysis and computer vision. 
Although various methods has been proposed in the literature, 
the design of robust and efficient segmentation algorithms is 
still a very challenging research topic, due to the variety and 
complexity of images [1]. Since the introduction of snakes [2], 
active contours have been applied to a variety of problems, 
such as image segmentation, feature extraction, image 
registration, etc. The original snake model and its variations, 
geodesic active contour models [3]−[8], are prone to getting 
“trapped” by extraneous edges. Cohen et al. [9], [10] has 
proposed the minimal path technique, which captures the 
global minimum of a contour energy between two fixed user-
defined end points. Other implementations have also been 
proposed for capturing more global minimizers by restricting 

the search space. Dual snakes, dual-band active contour  and 
similar methods restrict their search spaces exploiting normals 
lengths on the initial contour. Active contours have been also 
combined with the optimization tool of graph-cuts. All these 
classical snakes and active contour models are known as 
“edge-based” models, since they rely on edge functional to 
stop the curve evolution detecting only objects with edges 
defined by gradient. Thus, the performance of the purely edge-
based models is often inadequate. There has been much 
research into the design of complex region-based energy 
functionals that are less likely to yield undesirable local 
minima when compared to simpler edge-based energy 
functionals. In general, region-based models utilize image 
information not only near the evolving contour, but image 
statistics inside and outside the contour. Chan and Vese 
proposed an active contour based on a region-based energy 
functional inspired by Mumford-Shah functional. This energy 
can be seen as a particular case of the minimal partition 
problem, and in the level set formulation the active contour is 
evolved. This model, as well as most of the region-based 
energy functionals, can handle objects with boundaries not 
necessarily defined by gradient, but assume highly 
constrainedmodels for pixel intensities within each region 
having highcomputational cost.as well as other researchers in 
the literature, propose a number variations of the Chan and 
Vese method in order to overcome its limitations, especially 
the high computational cost. Some of them utilize the 
simplicity of the k-means algorithm,while others instead of 
solving the PDE equations of the underlying energy 
functionals; they directly calculate the energy alterations. 
However, their main drawback, is that they are more sensitive 
to noise and cannot handle objects with ill-defined boundaries. 
This paper deals with the above mentioned problems. It 
presents a novel fuzzy energy-based active contour, which can 
handle objects whose boundaries are not necessarily defined 
by gradient, objects with very smooth or even with 
discontinuous boundaries. The fuzzy logic is a tool that has 
been intensively used in data clustering, but not in active 
contour methods. Generally, fuzzy methods provide more 
accurate and robust data clustering, thus, we combine it with 
active contour methodology, introducing here a model as a 
fuzzy energy-based minimization. The fuzziness of the energy 
provides a balanced technique with a strong ability to reject 
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“weak” local minima. Furthermore, we formulate the model in 
terms of pseudo-level set functions, but instead of computing 
the associated Euler-Lagrange equations, we apply a direct 
method to solve the corresponding PDE without numerical 
stability constraints. This methodology improves very much 
the computational speed in relation to other methods 
exploiting Euler-Lagrange equations. Thus, the fuzziness of 
the energy and the fast “solution” of the PDE, provides us an 
attractive and easily implemented stable active contour with a 
desirable resistance to noise. The remainder of the paper is 
organized as follows. The description of the model, its fuzzy 
motivation energy and its properties are presented in Section 
II. Experimental results are presented in Section III and 
conclusions are drawn in Section IV. 
 

II. DESCRIPTION OF THE MODEL 
 
First, the basic idea of the model will be introduced. 

Let us define the evolving curve C in the image domain. Let 
us assume that the image I is formed by two regions of 
approximately piecewise-constant intensities, of distinct 
values Ii and Io. Assume that the object to be detected is 
represented by the region with the value Ii, and its boundary 
by C0. So, we have I ≈ Ii inside the object (inside C0) and I ≈ 
Io outside the object (outside C0). Now, let us consider the 
following functionals: 
 

 
 
Where c1 and c2 are constants depending on C, 

expressing the average prototypes of the image regions inside 
and outside respectively of C. The membership function u(x, 
y) 2 [0, 1] is the degree of membership of I(x, y) to the inside 
of C, and m is a weighting exponent on each fuzzy 
membership. In this simple case, it is obvious that the 
boundary of the object C0, is the minimizer of the “fitting” 
term: 

 

 
 
The five cases are illustrated in Figure 1. If the curve 

C is outside the object, then F1(C) > 0 and F2(C) ≈ 0 or F1(C) 
≈ 0 and F2(C) > 0 depending on object position (inside or 
outside the curve). If the curve C is inside the object, then 
F1(C) ≈ 0 and F2(C) > 0. If C is both inside and outside the 

object, then F1(C) > 0 and F2(C) > 0. Finally, the fitting term 
is minimized when C = C0, i.e., when the curve C is on the 
boundary of the object. That is, the fitting term is minimized 
when the curve C is converged to the object boundary C0. 

 
Fig. 1. All possible cases in the position of the curve C in 

relation to the object under consideration. 
 
The proposed active contour is based on the 

minimization of the above fitting term, taking into account the 
length term of the model C as a regularization term. Therefore, 
the energy functional F(C, c1, c2, u) is introduced as: 
 

 
 
A. Pseudo Level-Set Formulation 

 
Let us define a pseudo level set formulation, similar 

to the level set method [5], based on the membership values u, 
where C ⊂I is represented by the pseudo zero level set of 
Lipschitz similar function u : I → IR, such that: 
 

 
 
For more details, we refer the reader to [5]. Keeping 

u fixed and minimizing the energy F(C, c1, c2, u) (1) with 
respect to c1 and c2, it is easy to express these constants 
functions of u by:For more details, we refer the reader to [5]. 
Keeping u fixed and minimizing the energy F(C, c1, c2, u) 
 
(1) with respect to c1 and c2, it is easy to express these 
constants functions of u by: 
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B. Numerical Approximation 

 
In equation (1), the two fitting terms are easy to be 

computed directly. We can also, approximate the length term 
by: 
 

 
 
where Qi,j = H(u(i, j) − 0.5), u(i, j) is the value ofu at 

the (i, j) pixel and H(・) is the Heaviside function.The 
summand can only take the values 0, 1, or √2, dependingon 
whether the 3 distinct pair of points from theset {u(i, j), u(i + 
1, j), u(i, j + 1)} belong to the same ordifferent regions. Thus, 
the length term can be easily computedknowing only the H(u 
− 0.5), and there is no need to knowu. This computed value 
can be interpreted as the discretizedlength of the pseudo zero 
level set. Note, that to apply ouralgorithm, we do not need to 
differentiate F in (1), whichwould have necessitated _(u) in 
Euler-Lagrange equation of(1).The usual approach to solve a 
minimization problem as in(1) is to derive its Euler-Lagrange 
equation and then to useexplicit time marching or implicit 
iteration. In the proposedmethod, the time step is not restricted 
as in the explicit timemarching. The algorithm for the fuzzy 
energy model is: 
 
1) Give an initial partition of the image, set u > 0.5 for one 
part and u < 0.5 for the other. 
2) Compute c1 using (4) and c2 using (5). 
3) Assume that the value of the current pixel is Io and uo its 
corresponding degree of membership.  
 

 
 
C. Analysis of the Algorithm 

 
The model always converges in a finite number of 

sweeps (usually less than 10). If we do not consider the length 
term (μ = 0), it even converges in less than 5 sweeps. This 
leads us to analyze a simplified case of the algorithm that 
leaves out the regularization term of the initial model (1). 
Also, the parameters _1 and _2 are both thought equal to 1 (_1 
= _2 = 1). Let us consider a two phase image where the object 
is represented by A (multi-connected or not) and the 
background by B, and the corresponding value for A and B is 
a and b respectively. Consider also an initial position 
(partition) u > 0.5 and u < 0.5 of the model in the image, 
denoted by U1 and U2 respectively. Let c1 and c2 to be the 
constants of the model position, 0 ≤ ui ≤ 1 the degree of 
membership of image point Ii, (i = 1, 2, . . .), and F the 
corresponding model energy. Furthermore, let us assume a 
point P with value Io 2 {a, b} and degree of membership uo. If 
we calculate the new degree of membership un (6) for point P, 
let ˜ c1, ˜ c2 be the new model constants for U1 and U2, 
respectively, and ˜ Fbe the new model energy. Then we can 
easily calculate ((A.3), (A.4) and (A.8)): 
 

 
 

III. EXPERIMENTAL RESULTS 
 
In this Section, we show the performance of the 

proposed method by presenting numerical results using the 
fuzzy energy model on various synthetic and real images, with 
different types of contours and shapes. We show the active 
contour evolving in the original image, and the associated 
piecewise constantapproximation of  (given by constants c1 
and c2). In our numerical experiments, we generally choose 
the parameters to be _1 = _2 = 1. Only the length parameter μ, 
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which has a scaling role, is not the same in all experiments. If 
we have to detect all or as many objects as possible and of any 
size, then μ should be small. If we have to detect only large 
objects and not to detect small objects (like points, dueto 
noise), then μ has to be larger. 

 

 
Fig. 3. Segmentation of a two-phase image. (a), (b), (c), (d) 
and (e) are five different initial conditions, which have the 
same result after one sweep. (f)the result segmented image. 

The interior contour is automatically detected. In this 
experiment, the length parameter was omitted (μ = 0). 

 
First, the segmentation results on a two-phase image 

(Figure 3) are presented. The length term is omitted (μ = 0) 
since there is no noise. Five different initial conditions were 
used and all of them converged to the correct solution in one 
sweep. Even, the interior contour was automatically detected 
without considering a second initial model, something that 
shows the robustness of the algorithm. Thus, we can 
generalize that when the length term is omitted (μ = 0), then 
the algorithm is completely independent to the model’s initial 
condition. When the length term is taken into account, then the 
algorithm is dependent to the initial condition. This is 
occurred due to the fact that the lengthterm when increases, 
the model tends to behave as a rigid one, which in practice 
means that the model can be spatially moved without any 
deformation. So, one could claim that the length term localizes 
the proposed model. But, this is also the property that enforces 
the model to have a remarkable resistance to image noise, as it 
is shown below. 
 

 
Fig. 4. Detection of different objects from a noisy image, with 
variousshapes and with interior contour (uniform noise). The 
model converges fromthe initial (a) to the final position (d) 

with two intermediate steps (b) and (c). The length parameter 
was set equal to μ = 0.150. 

 
Figure 4 shows how the model works on a noisy 

syntheticimage, with various shapes and an interior contour. 
All thecontours are automatically detected, without 
considering a second initial curve. Jacobi iteration, as well as, 
the natureof the model allows the automatical change of the 
topology. 
 

 
 

Finally, another advantage of the proposed algorithm 
is its easy extension to segmentation of images with multiple 
regions. In order to achieve that, one should add to the 
initialenergy equation (1) as much centers ci as he wants, and 
then to analyze the new equation as it is presented in this 
paper. 
 

IV. CONCLUSION 
 
In this paper, a novel fast and robust model for active 

contours to detect objects in an image was introduced. The 
model can detect objects whose boundaries are not necessarily 
defined by gradient, due to the fact that it is based on an 
energy minimization algorithm and not on an edge-function as 
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the most classical active contour models. This energy is based 
on fuzzy logic, which can be seen as a particular case of a 
minimal partition problem, and is used as the model 
motivation power evolving the active contour until to catch the 
desired object boundary. Furthermore, the stopping term of the 
model evolution does not depend on the gradient of the image, 
as most of the classical active contours, but instead is related 
to the image color and spatial segments. The fuzziness of the 
energy provides a balanced technique with a strong ability to 
reject “weak” local minima. Also, it is not needed to smooth 
the initial images, even if they are very noisy, since the model 
very well detect and preserve the locations of the boundaries. 
The interior contours of the objects can be automatically 
detected, starting only with the initial curve (model). The 
initial position of the model can be anywhere in the image, 
and it does not necessarily surrounds the objects to be 
detected. Finally, the small computation time of the evolution 
of the model renders the proposed method as a very promising 
tool even for real time applications. This lies in the fact that, 
the introduced method does not solve the Euler-Lagrange 
equation of the underlying problem. 
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