Characterizations of Secondary Idempotent Matrices

Govindarasu.A¹, Ilakkiya.S²

¹Associate professor Dept of Mathematics ²M.Sc Student, Dept of Mathematics ^{1, 2} A.V.C. College (Autonomous), Mannampandal-609 305,India

Abstract- The concept of secondary idempotent matrices is introduced. Characterization of secondary idempotent matrices are obtained and derived some theorems.

Keywords- Transpose of a matrix, conjugate transpose of a matrix, Secondary transpose of a matrix, idempotent matrix, secondary idempotent matrix

I. INTRODUCTION

Anna Lee [1] has initiated the study of secondary symmetric matrices. Also she has shown that for a complex matrix A, the usual transpose A^{T} and secondary transpose A^{S} are related as $A^{S}=VA^{T}V$ [2] where 'V' is the permutation matrix with units in its secondary diagonal. Alaa A.Hammodat, Ali A.Bilal, Akram S.Mohammed has given some basic properties of idempotent matrices in [3]. Statistical inference econometric analysis and matrix algebra was given by Festschrift in Honour of Gotz Trenkler in [4]. Some properties of polynomial idempotent matrices are discussed and characterization of polynomial idempotent matrices are obtained by Ramesh.G,Sudha P.N [5].

In this paper the s-idempotent matrices is defined and its characterizations are discussed. Some theorems relating to s-idempotent matrices are derived.

II. PRELIMINARIES AND NOTATIONS

Let C_{nxn} be the space of nxn complex matrices of

order n. For $A \in C_{nxn}$. Let A^T , A, A^* , A^S , A^{θ} denote transpose, conjugate, conjugate transpose, secondary transpose, secondary transpose of a matrix A respectively. Let 'V' be the associated permutation matrix whose elements on the secondary diagonal are 1, other elements are zero. Also 'V' satisfies the following properties .Also V satisfies the following properties $V^T = \overline{V} = V^* = V^{-1} = V, V^2 = I$ and $VV^* = V^*V = I$ A matrix $A \in C_{nxn}$ is called Hermitian if $A = A^*$

III. SECONDARY IDEMPOTENT MATRICES

Definition 3.1:

A is a s-idempotent matrix if AVA = A

PROPERTIES OF S-IDEMPOTENT MATRICES

Theorem 3.1.1:

Let $A \in C_{n \times n}$. If A is a s-idempotent matrix then A^T is also s-idempotent matrix.

Proof:

We know that if A is a s-idempotent matrix then AVA =A. Taking transpose on both sides

$$(AVA)^{T} = A^{T}$$

$$\Rightarrow A^{T}V^{T}A^{T} = A^{T}$$

$$\Rightarrow A^{T}VA^{T} = A^{T} \qquad \because V^{T} = V]$$

i.e., $A^{T}VA^{T} = A^{T}$

Therefore A^{T} is a s-idempotent matrix.

Theorem 3.1.2:

Let $A \in C_{n \times n}$. If A is a s-idempotent theorem then A is also s-idempotent matrix.

Proof:

We know that if A is a s-idempotent matrix then AVA=A. Taking conjugate on both sides

$$(\overline{AVA}) = \overline{A}$$

$$\Rightarrow \overline{AVA} = \overline{A}$$

$$\Rightarrow \overline{A} \vee \overline{A} = \overline{A}$$

$$[\because \overline{V} = V]$$

Therefore A is a s-idempotent matrix.

Theorem 3.1.3:

Let $A \in C_{n \times n}$. If A is a s-idempotent matrix then A^* is s-idempotent matrix.

Proof:

we know that if A is a s-idempotent matrix then AVA=A Taking conjugate transpose on both sides

 $(AVA)^* = A^*$ $\Rightarrow A^*V^*A^* = A^*$ $\Rightarrow A^*VA^* = A^* [V^* = V]$

∴ A* is a s-idempotent matrix. **Theorem 3.1.4:**

Let $A \in C_{n \times n}$. If A is a s-idempotent matrix then A^{-1} is also s-idempotent.

Proof:

We know that if A is a s-idempotent matrix then AVA=A. Taking inverse on both sides

 $(AVA)^{-1} = A^{-1}$ $\Rightarrow A^{-1}V^{-1}A^{-1} = A^{-1}$ $\Rightarrow A^{-1}VA^{-1} = A^{-1}$ [::V^{-1} = V]

Therefore A^{-1} is a s-idempotent matrix.

Theorem 3.1.5:

Let $A \in C_{n \times n}$. If A is a s-idempotent matrix, then A^{S} is s-idempotent matrix.

Proof:

We know that if A is a s-idempotent matrix, then AVA=A.

Claim: A^SVA^S=A^S

We know that AVA=A Taking secondary transpose on both sides $(AVA)^{s}=A^{s}$ $A^{s}V^{s}A^{s}=A^{s}$ $\therefore A^{s}VA^{s}=A^{s}$ [$\because V^{s}=V$]

Therefore A^s is s-idempotent matrix.

Theorem 3.1.6:

Page | 186

Let $A \in C_{n \times n}$. If A and B are s-idempotent matrices then A+B is s-idempotent matrix if

AVB = -BVA

Proof:

We know that if A and B are s-idempotent matrices, then AVA=A and BVB=B

Claim: (A+B)V(A+B)=A+B (AV+BV)(A+B)=AVA+AVB+BVA+BVB =A+AVB+BVA+B

=A+B [\therefore AVB=-BVA]

Therefore (A+B)V(A+B)=A+B. Hence A+B is a s-idempotent matrix.

Theorem 3.1.7:

If A and B are s-idempotent matrices and AB = BA, A is idempotent then AB is s-idempotent matrix.

Proof:

We know that if A is s-idempotent matrix, then AVA=A. We know that if B is s-idempotent matrix, then BVB=B.

Claim: ABVAB=AB

ABVAB = ABVBA	[:: AB = BA]
= ABA	[` BVB =B]
= AAB	[∵ BA=AB]
$= A^2 B$	$[: A^2 = A]$
= AB	
$\therefore ABVAB = AB$	

: AB is s-idempotent matrix.

Theorem 3.1.8:

If A and B are s-idempotent matrix and BA=AB, B is idempotent then BA is s-idempotent matrix.

Proof:

We know that if A is s-idempotent matrix, then AVA = A. and if B is s-idempotent matrix, then BVB = B.

Claim: BAVBA = BA

BAVBA = BAVAB [$\therefore BA = AB$]

www.ijsart.com

= BAB	[∵AVA=A]
= BBA	[:: AB = BA]
$= B^2 A$	$[: B^2 = B]$
= BA	

 \therefore BAVBA = BA

 \therefore BA is s-idempotent matrix.

IV. CONCLUSION

In this paper the concept of s-idempotent matrices was defined and theorem relating to characterizations of s-idempotent matrices were derived.

REFERENCES

- Anna Lee., "Secondary symmetric, secondary skew symmetric Secondary orthogonal matrices", period. Math. Hungary 7, pp.63-70 (1976).
- [2] Anna Lee., "On s-symmetric, s-skew symmetric and sorthogonal matrices", period. Math. Hungary 7, pp.71-76 1976).
- [3] Alaa A.Hammadat, Ali A.Bilal, Akram S.Mohammed, "Some basic properties of

Idempotent matrices", J.Edu. & Sci., vol.21, No.4(2008).

- [4] Festschrift in Honour of Gotz Trenkler, "Statistical Inference Econometric Analysis and Matrix Algebra", physica-Veriag Heidelberg, Springer, (2009).
- [5] Ramesh .G.,Sudha P.N., "On the Determinant of a product of Two polynomial matrices" IOSR Journal of Mathematics IOSR –JM vol.10,Issue 6,Ver.II,pp10-13,Nov-Dec(2014).