IJSART - *Volume 5 Issue 3 – MARCH 2019 ISSN* **[ONLINE]: 2395-1052**

Separation Axioms on Neutrosophic Generalized Regular Topological Spaces

Blessie Rebecca.S¹ , A.Francina Shalini²

¹Dept of Mathematics ²Assistant Professor, Dept of Mathematics ^{1, 2} Nirmala College for women, Coimbatore, Tamilnadu, India

Abstract- In this paper, we introduce the concept of separation axiom on Neutrosophic generalized regular topological spaces. Some characterizations of separation axioms T1 and T2in NGR topological spaces will be introduced

Keywords- Neutrosophic generalized regular T_1 space and Neutrosophic generalized regular T_2 space

I. INTRODUCTION

C.L.Chang[6] introduced and developed fuzzy topological space by using L.A. Zadeh[16] fuzzy sets. Coker[7] introduced the notion of Intuitionistic fuzzy topological spaces by using Atanassov[2] intuitionistic fuzzy set . Neutrality the degree of indeterminacy, as an independent concept, was introduced by Smarandache[9] He also defined the Neutrosophic set on three component Neutrosophic topological spaces(t,f,i)=(Truth,Falsehood,Indeterminacy).The Neutrosophic crisp set concept was converted to Neutrosophic topological spaces by A.A.Salama[14]. R.Dhavaseelan[8] introduced Neutrosophic generalized closed sets. S.Bayhan[5] developed the concepts On fuzzy separation axioms in intuitionistic fuzzy topological spaces .

II. PRELIMINARIES

Definition 2.1 [3]

Let *X* be a non-empty fixed set. A Neutrosophic set *A* has the form

$$
A = \{(x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X\}
$$

where $\mu_A(x)$, $\sigma_A(x)$, $\gamma_A(x)$ are topological spaces and $\mu_A(x)$ is the degree of membership function, $\sigma_A(x)$ is the degree of indeterminacy and

 $\gamma_A(x)$ is the degree of non-membership function respectively of each *x* ∈*X* to the set *A*.

Remark 2.2 [3]

A Neutrosophic set $A = \{(x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X\}$ can be identified to an ordered triple(μ_A , σ_A , γ_A) in]0⁻, 1⁺[on *X*.

Example 2.3 [3]

Since our main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic topology, we must introduce the Neutrosophic set

We must introduce the Neutrosophic set 0_N and 1_N in *X* as follows: 0*N*={(*x,*0*,*0*,*1):*x*∈*X*} $1_N = \{(x, 1, 0, 0): x \in X\}$

Definition 2.4[3]

Let *X* be a non-empty set and *A* and *B* are Neutrosophic sets of the form

$$
A = \{ (x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X \} \text{and}
$$

$$
B = \{ (x, \mu_B(x), \sigma_B(x), \gamma_B(x)) : x \in X \}
$$

then we consider the definition of subset $(A \subseteq B)$ is defined as $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \sigma_A(x) \leq \sigma_B(x), \gamma_A(x) \geq \gamma_B(x)$, for all $x \in X$.

Theorem 2.5[3]

For any Neutrosophic set *A* the following condition holds

(i) 0_N ⊆ $A, 0_N$ ⊆ 0_N , $(ii) A ⊆ 1_N, 1_N ⊆ 1_N.$

Definition 2.6[3,4]

Let *X* be a non-empty set and

A = {*x, μ_A*(*x*)*, σ_A*(*x*)*, γ_A*(*x*)} and *B* = {*x,* $\mu_B(x)$ *,* $\sigma_B(x)$ *,* $\gamma_B(x)$ *} are Neutrosophic sets then <i>A* ∩ *B* is defined as

 $A \cap B = \{x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x)\}\$ then *A* ∪*B* is defined as

A \cup *B* = {*x, μ_A*(*x*) \vee *μ_B*(*x*)*, σ_A*(*x*) \vee *σ_B*(*x*)*, γ_A*(*x*) \wedge *γ_B*(*x*)}.

Definition 2.7[1,3]

A Neutrosophic topology is a non-empty set *X* is an family *τ^N* of Neutrosophic subsets in *X* satisfying the axioms :

 $(i)0_N$, $1_N \in \tau_N$ (ii) $G_1 \cap G_2 \in \tau_N$ for any G_1 , $G_2 \in \tau_N$ (iii) ∪*G*^{*i*∈*τ*^{*N*}</sub>for every { *G*^{*j*}:*j*∈*J*} ⊆*τ*^{*N*}}

the pair (X, τ_N) is called Neutrosophic topological space. The element in Neutrosophic topological space (X, τ_N) are called Neutrosophic open sets.

A Neutrosophic set *F* is closed if and only if (F) ^C is Neutrosophic open.

Definition 2.8[3]

Let (X, τ_N) Neutrosophic topological spaces and

 $A = \{(x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X\}$ be Neutrosophic set in *X*.

Then the

Neutrosophic closure and *Neutrosophic interior* are defined as *Ncl*(*A*) = ∩ {K:K is Neutrosophic closed set in *X* and *A* ⊆*K*}, *Nint(A)* = \cup {G:G is Neutrosophic open set in *X* and *G* ⊆*A*}.

Definition 2.9[3]

A is Neutrosophic open set if and only if A=*N int(A)*, *A* is Neutrosophic closed set if and only if A=*Ncl(A)*.

Definition 2.10[1,3]

A subset *A* of Neutrosophic space (X, τ_N) is called Neutrosophic regular open (in short *NR open*) if *A* = *Nint(Ncl(A))* .The Complement of *NR open* set is called *NRclosed*.

Definition 2.11[3]

A subset *A* of Neutrosophic space (X, τ_N) is called Neutrosophic generalized closed (in short *NG closed*) if *Ncl(A)*⊆*U*, whenever *A* ⊆*U*and *U* is Neutrosophic open. The Complement of a *NG closed* set is called *NG open* set.

Definition 2.12[3]

Let *A* be a subset of Neutrosophic space (X, τ_N) is called Neutrosophic generalized regular closed *(NGR closed)* if *Neutrosophic Regular cl*(*A*) ⊆*U* (in short *NRcl(A)*⊆*U*), whenever $A \subseteq U$ and U is Neutrosophic open.

The Complement of a *NGR closed* set is called *NGR open* set.

Definition 2.13[4]

Let (X, T) and (Y, S) be any two Neutrosophic topological space.

(i) A map $f : (X, T) \rightarrow (Y, S)$ is said to be *Neutrosophic generalized regular continuous* (in short *NGR continuous*)if the inverse image of every *Neutrosophic closed* set in (*Y, S*) is *NGR closed* set in (*X, T*).

Definition 2.14[1]

Let *X* be a non-empty set and $x \in X$ be a fixed element in *X*. If *r, t, s* are fixed real numbers of $]0^{\circ}, 1^{\circ}$ [, such that $r + t + s \leq 3$. Then the $\langle x, r, t, s \rangle$ is called Neutrosophic points in *X*. where,

 $x_{r,\text{denote}}$ the degree of membership of $x_{r,\text{tr,s}}$

 x_{t denote the degree of in determinancy of $x_{r,t,s}$ and

 x_s denote the degree of non-membership of $x_{r,t,s}$ and $x \in X$ the support of $x_{r,t,s}$.

The point $x_{r,t,s}$ is said to be contained in Neutrosophic set *A* if and only if $r < \mu_A(x)$, $t < \sigma_A(x)$ and $s > \gamma_A(x)$.

III. SEPARATION AXIOMS ON NEUTROSOPHIC GENERALIZED REGULAR TOPOLOGICAL SPACES

Definition 3.1

Let (X, τ) be an Neutrosophic topological space.

1. (X,τ) is called an NGR $T_1(i)$ space if and only if for each pair of distinct

Neutrosophic points $x_{r,t,s}$ and $y_{a,c,b}$ in X, there exist *NGR open* sets *U, V* in *τ*

Such that $x_{r,t,s \in U}$, $y_{a,c,b} \notin_{U \text{ and }} y_{a,c,b \in V}$, $x_{r,t,s} \notin_{V}$

2. (X, τ) is called an *NGRT*₁(*ii*) space if and only if for all $x, y \in X$,

 x^{\neq} *y*, there exist *NGR open* sets *U*, *V* in τ

such that $U(x) = 1_N$, $U(y) = 0_N$ and $V(y) = 1_N$, $V(x) = 0_N$.

- 3. (X, τ) is called an *NGR T*₁(*iii*) space if and only if for each pair of distinct Neutrosophic points $x_{r,t,s}$ and $\mathbf{y}_{a,c,b}$ in X, there exist *NGRopen* sets *U*, *V* in τ such that $x_{r,t,s\subset U} \subset \overline{y_{a,c,b}}$ and $y_{a,c,b\subset V} \subset \overline{x_{r,t,s}}$
- 4. (*X, τ*) is called an *NGR T₁(iv)* space if and only if for each pair of distinct Neutrosophic points $x_{r,t,s}$ and $y_{a,c,b}$ in X, there exist *NGRopen* sets *U*, *V* in *t*such that $x_{r,t,s} \subseteq U$,

 $U \bigcap \mathcal{Y}_{a,c,b} = 0_{N}$. (i.e., $U(y) = 0_{N}$) and $\mathcal{Y}_{a,c,b} \subseteq V$, $V \bigcap \mathcal{X}_{r,t,s} =$ 0_N . (i.e., $V(x) = 0_N$).

Theorem3.2

Let (X, τ) and (Y, σ) be any two Neutrosophic topological space and $f: X \to Y$ be an *NGR continuous* mapping. Then (*X, τ*) is an *NGR T*1(*i*) space if (*Y, σ*) is an Neutrosophic *T*1space.

Proof :

Let $x_{r,t,sand}y_{a,c,b}$ be any two distinct Neutrosophic points in (*Y, σ*)

Then there exist *Neutrosophic open* sets *U, V* in *σ*

such that $x_{r,t,s \subseteq U}$ $y_{a,c,b} \notin U$ and $y_{a,c,b \subseteq V}$ $x_{r,t,s} \notin V$. Since*f*is *NGR continuous* mapping ,

By definition 2.13(i) $f^{-1}(U)$ and $f^{-1}(V)$ are *NGR open* sets in *X*.

Such that $x_{r,t,s \in f^{-1}(U)}$, $y_{a,c,b} \notin f^{-1}(U)$ and $y_{a,c,b}$ ∈ $f^{-1}(V)$, $x_{r,t,s}$ ∉ $f^{-1}(V)$ Hence by definition 3.1(1), (X, τ) is an *NGR T*₁(*i*) space.

Theorem3.3

Let (X, τ) be an Neutrosophic topological space and if *X* is an *NGR T*₁(*ii*) space then it is an *NGR T*₁(*i*) space.

Proof :

Let $x \neq y$ and Let $x_{r,t,s}$ and $y_{a,c,b}$ be any two distinct Neutrosophic points in*X*.

Then by definition 3.1(2) , there exist *NGR open* sets *U, V* $\int \ln \tau^{\frac{1}{2}} U(x) = 1_N$ *, U (y)* = 0*_N*and $V(y) = 1_N$ *,* $V(x) = 0_N$.

By definition 2.14 , We have

$$
\langle r, t, s \rangle \le 3 = U(x) \text{ implies } \mathcal{X}_{r,t,s} \subseteq U \text{ and}
$$

\n
$$
\langle a, c, b \rangle \le 3 = V(y) \text{ implies } \mathcal{Y}_{a,c,b} \subseteq V
$$

\n
$$
U(y) = 0_N \Rightarrow \mu_U(y) = 0_N, \sigma_U(y) = 0_N, \gamma_U(y) = 1_N \Rightarrow \mathcal{Y}_{a,c,b} \subseteq U \text{ and}
$$

\n
$$
V(x) = 0_N \Rightarrow \mu_V(x) = 0_N, \sigma_V(x) = 0_N, \gamma_V(x) = 1_N \Rightarrow \mathcal{X}_{r,t,s} \subseteq V
$$

Therefore $x_{r,t,s\subseteq U}$ $y_{a,c,b} \notin U$ and $y_{a,c,b\subseteq V}$ $x_{r,t,s} \notin V$. ThereforeBydefinition3.1(1),(*X,τ*)isan*NGRT*1(*i*)space.

Theorem3.4

Let (X, τ) be an Neutrosophic topological space and Then *X* is an*NGR* $T_1(iv)$ space if and only if it is an *NGR* $T_1(ii)$ space.

Proof:

Let *x* and *y* be any two points in *X* with $x \neq y$ and $x_{r,t,s}$ and $y_{a,c,b}$ be any two distinct Neutrosophic points in *X*,

Then by definition 3.1(4) , there exist *NGR open* sets *U, V* in *τ* such that $x_{r,t,s} \subseteq U$, $U \cap y_{a,c,b} = 0_N$. (i.e., $U(y) = 0_N$) and $y_{a,c,b \subseteq V}$, $V \cap x_{r,t,s=0_N}$. (i.e., $V(x) = 0_N$).

Since $x_{r,t,s\subseteq U}$ and $y_{a,c,b\subseteq V}$ We have $U(x) = 1_{N}$ and $V(y) = 1_{N}$ On the other hand $U \cap Y_{a,c,b} = 0_N$, $V \cap X_{r,t,s} = 0_N$ \Rightarrow *U* (*y*) = 0_{*N*}, *V* (*x*) = 0_{*N*}

Therefore By definition 3.1(2),*X* is an *NGR* $T_1(ii)$ space.

Conversely, Let $x \neq y$ and $x_{r,t,s}$ and $y_{a,c,b}$ be any two distinct Neutrosophic points in *X*.

By definition 3.1(2), there exist *NGR open* sets *U, V* in *τ* such that

 $U(x) = 1_N$, $U(y) = 0_N$ and $V(y) = 1_N$, $V(x) = 0_N$.

Then by definition 2.14 , we have $\langle r, t, s \rangle \leq 3 = U(x)$ implies $x_{r,t,s \subseteq U}$ and $\langle a, c, b \rangle$ < 3 = *V*(*y*) implies $y_{a, c, b \subseteq V}$

Now *U*∩ $\mathcal{Y}_{a,c,b} = 0$ _{*N*}(Since *U*(*y*)=0_{*N*})and Also *V* ∩ $\mathcal{X}_{r,t,s}$ 0_N (Since *V* (*x*) = 0_N). By definition 3.1(4), *X* is an *NGR* $T_1(iv)$ space.

Definiton 3.5

Let (X, τ) be an Neutrosophic topological space.

 $(i)(X,\tau)$ iscalledan*NGRT*₂(*i*)space if and only if for all $x, y \in X$,

 $\hat{x} \neq y$, there exist *NGR open* sets *U*, *V* in *τ*such that *U* (*x*) = 1_N and *V* (*y*) = 1_N and

 $U \cap V = 0_N$.

(ii) (X,τ) is called an *NGRT*₂ (*ii*) space if and only if for each pair of distinct Neutrosophic

points $x_{r,t,s}$ and $y_{a,c,b}$ in X, there exist *NGR open* sets *U, V* in *τ* such that $x_{r,t,s \subseteq U}$.

 $y_{a,c,b}$ ⊆*V* and *U* ∩ *V* = 0_{*N*}.

(iii) (X,τ) is called an *NGRT*₂ (*iii*) space if and only if for each pair of distinct Neutrosophic

points $x_{r,t,s}$ and $y_{a,c,b}$ in *X*, there exist *NGR open* sets *U, V* in *τ* such that

 $x_{r,t,s} \subseteq U \subseteq \overline{y_{a,c,b}}$ and $y_{a,c,b} \subseteq V \subseteq \overline{x_{r,t,s}}$ and $U \subseteq \overline{V}$. (iv) (X, τ) is called an *NGR* $T_2(iv)$ space if and only if for all *x*, *y* ∈*X*, x^{\neq} *y*, there exist *NGR* open sets *U*, *V* in τ such that $U(x) = 1$ _N= $V(y)$ and $U(y) = 0_N = V(x)$ and *U* ∈ \bar{V} .

Theorem3.6

Let (X, τ) and (Y, σ) be any two Neutrosophic topological space and $f: X \to Y$ be an *NGR continuous* mapping. Then (*X, τ*) is an *NGR T*₂(*i*) space if (*Y, σ*) is an Neutrosophic *T*2space.

Proof :

Let x, y

 \in *Y*, $x \neq y$, Then there exist *Neutrosophic open sets U, V* in σ such that $U(x) = 1_N$, $V(y) = 1_N$ and $U \cap V = 0_N$.

Since *f* is *NGR continuous* mapping.

By definition 2.13(i), $f^{-1}(x)$, $f^{-1}(y) \in X$, Such that $f^{-1}(x)$ $f^{-1}(y)$.

Then there exist *NGR open* sets $f^{-1}(U)$, $f^{-1}(V) \in \tau$ in X , Such that $f^{-1}(U(x)) = f^{-1}(1_N) = 1_N$ and $f^{-1}(V(y)) = f^{-1}(1_N) = 1_N$ 1*N*

Therefore $f^{-1}(U) \cap f^{-1}(V) = 0_N$ Hence By definition 3.5(i), (X, τ) is called an *NGR* $T_2(i)$ space .

Theorem3.7

Let (X, τ) be an Neutrosophic topological space and Then *X* is an*NGR* $T_2(i)$ space if and only if it is an *NGR* $T_2(ii)$ space. Proof :

Let $x_{r,t,s}$ and $y_{a,c,b}$ be any two distinct Neutrosophic points in *X* and $x \neq y$,

By definition 3.5(i), there exist *NGR open* sets *U*, *V* in $\tau \mathbf{B}_U$ $(x) = 1_N, V(y) = 1_N$ and $U \cap V = 0_N$

Then We have $\langle r, t, s \rangle < 3 = U(r) \Rightarrow x_{r,t,s \subseteq U}$ $\langle a, c, b \rangle$ < 3 = *V*(*y*) \Rightarrow *P*_a,c,b⊆*V*and *U* ∩ *V* = 0_{*N*} Hence by definition 3.5(ii) \overline{X} is an *NGR T*₂(*ii*) space.

Theorem3.8

Let (X, τ) be Neutrosophic topological space. Then every *NGR* $T_2(i)$ is an*NGR* $T_2(iv)$ space. Proof:

Let *x*, $y \in X$ and $x \neq y$,

By definition 3.5(i) there exist *NGR open* sets *U, V* in *τ* such that $U(x) = 1_N = V(y)$. Similarly $U(y) = 0_N = V(x)$

Therefore , $U \subseteq \overline{V}$. Hence By definition3.5(iv), Every *NGR* $T_2(i)$ is an *NGR* $T_2(iv)$ space.

REFERENCE

- [1] I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala , *"On Some New Notions and Functions in Neutrosophic Topological Spaces"*, Neutrosophic Sets and Systems, Vol. 16,(2017).
- [2] K. Atanassov *"Intuitionistic fuzzy sets"*, Fuzzy Sets and Systems 87-94, 20(1986).
- [3] Blessie Rebecca.S, A.Francina Shalini, *"NEUTROSOPHIC GENERALIZED REGULAR SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES",* IJRAR February 2019, Volume 6, Issue 1, 2019.
- [4] Blessie Rebecca.S, A.Francina Shalini,"*NEUTROSOPHIC GENERALIZEDREGULAR CONTINUOUS FUNCTION IN NEUTROSOPHIC TOPOLOGICAL SPACES*",IJRAR February 2019, Volume 6, Issue 1,2019
- [5] S. Bayhan and D. Coker, *"On fuzzy separation axioms in intuitionistic fuzzy topological spaces"*, BUSEFAL,77- 87,67(1996).
- [6] C.L. Chang, *"Fuzzy Topological Spaces"*, J.Math. Anal ,Appl , 182-190,24(1968).
- [7] Coker, D., *"An introduction to intuitionistic fuzzy topological spaces"*, Fuzzy sets and systems, 81– 89,88(1997).
- [8] R.Dhavaseelan ans S.Jafari, *"Generalized Neutrosophic closed sets"*, New trends in neutrosophic theory and applications VolumeII, 261-273,(2018).
- [9] Florentin Smarandache , *"Neutrosophic and Neutrosophic Logic"* ,First International Conference on Neutrosophic , Neutrosophic Logic, Set, Probability,andStatisticsUniversityofNewMexico,Gallup, NM87301, USA(2002).
- [10]Florentin Smarandache, *"Neutrosophic Set – A Generalization of the Intuitionistic Fuzzy Set"*, University of New Mexico, Gallup, NM 87301, USA.
- [11]C. S. Gowri ,D. Kalamani and R. Dhavaseelan , *"Separation Axioms via Generalized Alpha Intuitionistic Fuzzy Topological Spaces"* ,The Journal ofFuzzyMathematicsVol.23,No.3,LosAngeles(2015).
- [12]R. Narmada Devi, R. Dhavaseelan, S. Jafari , *"On Separation Axioms in an Ordered Neutrosophic Bitopological Space"* , Neutrosophic Sets and Systems,Vol.18 ,(2017).
- [13]A.A. Salama and S.A. Alblowi, *"Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces"*, Journal computer Sci. Engineering, Vol.(2)No.(7)(2012).
- [14]A.A.Salama and S.A.Alblowi, *"Neutrosophic set and Neutrosophic topological space"*,SOR. mathematics,Vol.(3),Issue(4),pp-31-35,(2012).
- [15]A. A. Salama, Florentin Smarandache and Valeri Kromov, *"Neutrosophic Closed Set and Neutrosophic Continuous Functions"*,Neutrosophic Sets and Systems, Vol.4,(2014).
- [16]L.A.Zadeh,*"FuzzySets"*,InformandControl8,338- 353,(1965).