Separation Axioms on Neutrosophic Generalized Regular Topological Spaces

Blessie Rebecca.S¹, A.Francina Shalini²

¹Dept of Mathematics ²Assistant Professor, Dept of Mathematics ^{1, 2} Nirmala College for women,Coimbatore, Tamilnadu, India

Abstract- In this paper, we introduce the concept of separation axiom on Neutrosophic generalized regular topological spaces. Some characterizations of separation axioms T_1 and T_2 in NGR topological spaces will be introduced

Keywords- Neutrosophic generalized regular T_1 space and Neutrosophic generalized regular T_2 space

I. INTRODUCTION

C.L.Chang[6] introduced and developed fuzzy topological space by using L.A. Zadeh[16] fuzzy sets. Coker[7] introduced the notion of Intuitionistic fuzzy topological spaces by using Atanassov[2] intuitionistic fuzzy set . Neutrality the degree of indeterminacy, as an independent concept, was introduced by Smarandache[9] He also defined the Neutrosophic set on three component Neutrosophic topological spaces(t,f,i)=(Truth,Falsehood,Indeterminacy).The Neutrosophic crisp set concept was converted to Neutrosophic topological spaces by A.A.Salama[14]. R.Dhavaseelan[8] introduced Neutrosophic generalized closed sets. S.Bayhan[5] developed the concepts On fuzzy separation axioms in intuitionistic fuzzy topological spaces .

II. PRELIMINARIES

Definition 2.1 [3]

Let X be a non-empty fixed set. A Neutrosophic set A has the form

$$A = \{ (x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X \}$$

where $\mu_A(x)$, $\sigma_A(x)$, $\gamma_A(x)$ are topological spaces and

 $\mu_A(x)$ is the degree of membership function, $\sigma_A(x)$ is the degree of indeterminacy and

 $\gamma_A(x)$ is the degree of non-membership function respectively of each $x \in X$ to the set *A*.

Remark 2.2 [3]

A Neutrosophic set $A = \{(x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X\}$ can be identified to an ordered triple($\mu_A, \sigma_A, \gamma_A$) in $]0^-$, 1^+ [on X.

Example 2.3 [3]

Since our main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic topology, we must introduce the Neutrosophic set

We must introduce the Neutrosophic set 0_N and 1_N in X as follows: $0_N = \{(x, 0, 0, 1) : x \in X\}$ $1_N = \{(x, 1, 0, 0) : x \in X\}$

Definition 2.4[3]

Let X be a non-empty set and A and B are Neutrosophic sets of the form

$$A = \{(x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X\} \text{ and}$$
$$B = \{(x, \mu_B(x), \sigma_B(x), \gamma_B(x)) : x \in X\}$$

then we consider the definition of subset ($A \subseteq B$) is defined as $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x), \sigma_A(x) \le \sigma_B(x), \gamma_A(x) \ge \gamma_B(x)$, for all $x \in X$.

Theorem 2.5[3]

For any Neutrosophic set A the following condition holds

(i) $0_N \subseteq A$, $0_N \subseteq 0_N$, (ii) $A \subseteq 1_N$, $1_N \subseteq 1_N$.

Definition 2.6[3,4]

Let *X* be a non-empty set and

 $A = \{x, \mu_A(x), \sigma_A(x), \gamma_A(x)\} \text{ and}$ $B = \{x, \mu_B(x), \sigma_B(x), \gamma_B(x)\} \text{ are Neutrosophic sets then } A \cap B \text{ is defined as}$

 $A \cap B = \{x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x)\}$ then $A \cup B$ is defined as

 $A \cup B = \{x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \gamma_A(x) \land \gamma_B(x)\}.$

Definition 2.7[1,3]

A Neutrosophic topology is a non-empty set X is an family τ_N of Neutrosophic subsets in X satisfying the axioms :

(i) 0_N , $1_N \in \tau_N$ (ii) $G_1 \cap G_2 \in \tau_N$ for any G_1 , $G_2 \in \tau_N$ (iii) $\cup G_i \in \tau_N$ for every $\{G_j: j \in J\} \subseteq \tau_N$

the pair (X, τ_N) is called Neutrosophic topological space. The element in Neutrosophic topological space (X, τ_N) are called Neutrosophic open sets.

A Neutrosophic set F is closed if and only if $(F)^{C}$ is Neutrosophic open.

Definition 2.8[3]

Let (X, τ_N) Neutrosophic topological spaces and

 $A = \{(x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X\}$ be Neutrosophic set in *X*.

Then the

Neutrosophic closure and *Neutrosophic interior* are defined as $Ncl(A) = \cap \{K:K \text{ is Neutrosophic closed set in } X \text{ and } A \subseteq K\},$ *Nint*(A) = $\cup \{G:G \text{ is Neutrosophic open set in } X \text{ and } G \subseteq A\}.$

Definition 2.9[3]

A is Neutrosophic open set if and only if A=*N int*(*A*), *A* is Neutrosophic closed set if and only if A=*N*cl(*A*).

Definition 2.10[1,3]

A subset *A* of Neutrosophic space (X, τ_N) is called Neutrosophic regular open (in short *NR open*) if *A* = *Nint*(*Ncl*(*A*)) .The Complement of *NR open* set is called *NRclosed*.

Definition 2.11[3]

A subset *A* of Neutrosophic space (X, τ_N) is called Neutrosophic generalized closed (in short *NG closed*) if $Ncl(A) \subseteq U$, whenever $A \subseteq U$ and *U* is Neutrosophic open. The Complement of a *NG closed* set is called *NG open* set.

Definition 2.12[3]

Let *A* be a subset of Neutrosophic space (X, τ_N) is called Neutrosophic generalized regular closed (*NGR closed*) if *Neutrosophic Regular cl*(*A*) $\subseteq U$ (in short *NRcl*(*A*) $\subseteq U$), whenever $A \subseteq U$ and *U* is Neutrosophic open.

The Complement of a NGR closed set is called NGR open set.

Definition 2.13[4]

Let (X, T) and (Y, S) be any two Neutrosophic topological space.

(i) A map $f : (X, T) \rightarrow (Y, S)$ is said to be *Neutrosophic* generalized regular continuous (in short NGR continuous) if the inverse image of every *Neutrosophic closed* set in (Y, S) is NGR closed set in (X, T).

Definition 2.14[1]

Let X be a non-empty set and $x \in X$ be a fixed element in X. If r, t, s are fixed real numbers of $]0^-, 1^+$ [,suchthat $r+t+s \le 3$. Then the $\langle x, r, t, s \rangle$ is called Neutrosophic points in X. where,

 $x_{r,t,s}$

 x_{t} denote the degree of in determinancy of $x_{r,t,s}$ and

 x_s denote the degree of non-membership of $x_{r,t,s}$ and $x \in X$ the support of $x_{r,t,s}$.

The point $\mathcal{X}_{r,t,s}$ is said to be contained in Neutrosophic set *A* if and only if $r < \mu_A(x)$, $t < \sigma_A(x)$ and $s > \gamma_A(x)$.

III. SEPARATION AXIOMS ON NEUTROSOPHIC GENERALIZED REGULAR TOPOLOGICAL SPACES

Definition 3.1

Let (X, τ) be an Neutrosophic topological space .

1. (X,τ) is called anNGR $T_1(i)$ space if and only if for each pair of distinct

Neutrosophic points $\mathcal{X}_{r,t,s}$ and $\mathcal{Y}_{a,c,b}$ in X, there exist NGR open sets U, V in τ

Such that $x_{r,t,s \in U}$, $y_{a,c,b} \notin_{U \text{ and }} y_{a,c,b \in V}$, $x_{r,t,s} \notin_{V}$.

2. (X,τ) is called an *NGRT*₁(*ii*) space if and only if for all $x, y \in X$,

 $x^{\neq}y$, there exist *NGR open* sets *U*, *V* in τ such that $U(x) = 1_N$, $U(y) = 0_N$ and $V(y) = 1_N$, $V(x) = 0_N$.

- (X, τ) is called an NGR T₁(iii) space if and only if for each pair of distinct Neutrosophic points^Xr,t,s and Y_{a,c,b}in X, there exist NGRopen sets U, V in τ such that x_{r,t,s}⊆U⊆Y_{a,c,b} and Y_{a,c,b}⊆V⊆^Xr,t,s.
- 4. (X, τ) is called an *NGR* $T_1(iv)$ space if and only if for each pair of distinct Neutrosophic points $\mathcal{X}_{r,t,s}$ and $\mathcal{Y}_{a,c,b}$ in X, there exist *NGRopen* sets U, V intsuch that $\mathcal{X}_{r,t,s} \subseteq U$,

 $U \cap \mathcal{Y}_{a,c,b} = 0_N$. (i.e., $U(y) = 0_N$) and $\mathcal{Y}_{a,c,b} \subseteq V$, $V \cap \mathcal{X}_{r,t,s} = 0_N$. (i.e., $V(x) = 0_N$).

Theorem3.2

Let (X, τ) and (Y, σ) be any two Neutrosophic topological space and $f: X \to Y$ be an *NGR continuous* mapping. Then (X, τ) is an *NGR* $T_1(i)$ space if (Y, σ) is an Neutrosophic T_1 space.

Proof:

Let $\mathcal{X}_{r,t,s}$ and $\mathcal{Y}_{a,c,b}$ be any two distinct Neutrosophic points in (Y, σ)

Then there exist *Neutrosophic open* sets U, V in σ

such that $x_{r,t,s} \subseteq U$, $y_{a,c,b} \not\subset U$ and $y_{a,c,b} \subseteq V$, $x_{r,t,s} \not\subset V$. Since fis NGR continuous mapping.

By definition 2.13(i) $f^{-1}(U)$ and $f^{-1}(V)$ are *NGR open* sets in *X*.

Such that $\mathbf{x}_{r,t,s} \in f^{-1}(U)$, $\mathbf{y}_{a,c,b} \notin f^{-1}(U)$ and $\mathbf{y}_{a,c,b} \in f^{-1}(V)$, $\mathbf{x}_{r,t,s} \notin f^{-1}(V)$ Hence by definition 3.1(1), (X, τ) is an *NGR* $T_1(i)$ space.

Theorem3.3

Let (X, τ) be an Neutrosophic topological space and if X is an NGR $T_1(i)$ space then it is an NGR $T_1(i)$ space.

Proof :

Let $x \neq y$ and Let $x_{r,t,s}$ and $y_{a,c,b}$ be any two distinct Neutrosophic points in X.

Then by definition 3.1(2), there exist *NGR open* sets *U*, *V* $in\tau = U(x) = 1_N$, $U(y) = 0_N$ and $V(y) = 1_N$, $V(x) = 0_N$.

By definition 2.14, We have

$$\begin{array}{l} \langle \boldsymbol{r}, \boldsymbol{t}, \boldsymbol{s} \rangle \leq 3 = U(x) \text{ implies } \boldsymbol{\mathcal{X}}_{\boldsymbol{r}, \boldsymbol{t}, \boldsymbol{s}} \subseteq U \text{ and} \\ \langle \boldsymbol{a}, \boldsymbol{c}, \boldsymbol{b} \rangle \leq 3 = V(y) \text{ implies } \boldsymbol{\mathcal{Y}}_{\boldsymbol{a}, \boldsymbol{c}, \boldsymbol{b}} \subseteq V \\ U(y) = 0_N \Rightarrow \mu_U(y) = 0_N, \sigma_U(y) = 0_N, \gamma_U(y) = 1_N \Rightarrow \boldsymbol{\mathcal{Y}}_{\boldsymbol{a}, \boldsymbol{c}, \boldsymbol{b}} \not\subset U \text{ and} \\ V(x) = 0_N \Rightarrow \mu_V(x) = 0_N, \sigma_V(x) = 0_N, \gamma_V(x) = 1_N \Rightarrow \boldsymbol{\mathcal{X}}_{\boldsymbol{r}, \boldsymbol{t}, \boldsymbol{s}} \not\subset V \end{array}$$

Therefore $x_{r,t,s} \subseteq U$, $y_{a,c,b} \notin U$ and $y_{a,c,b} \subseteq V$, $x_{r,t,s} \notin V$. Therefore By definition 3.1(1), (X, τ) is an $NGRT_1(i)$ space.

Theorem3.4

Let (X, τ) be an Neutrosophic topological space and Then X is an NGR $T_1(iv)$ space if and only if it is an NGR $T_1(ii)$ space.

Proof:

Let x and y be any two points in X with $x \neq y$ and $x_{r,t,s}$ and $y_{a,c,b}$ be any two distinct Neutrosophic points in X,

Then by definition 3.1(4), there exist *NGR open* sets *U*, *V* in τ such that $\mathcal{X}_{r,t,s} \subseteq U$, $U \cap \mathcal{Y}_{a,c,b} \equiv 0_N$. (i.e., $U(y) = 0_N$) and $\mathcal{Y}_{a,c,b} \subseteq V$, $V \cap \mathcal{X}_{r,t,s} \equiv 0_N$. (i.e., $V(x) = 0_N$).

Since $\mathcal{X}_{r,t,s} \subseteq U$ and $\mathcal{Y}_{a,c,b} \subseteq V$ We have $U(x) = 1_N$ and $V(y) = 1_N$ On the other hand $U \cap \mathcal{Y}_{a,c,b} = 0_N$, $V \cap \mathcal{X}_{r,t,s} = 0_N$ $\Rightarrow U(y) = 0_N$, $V(x) = 0_N$

Therefore By definition 3.1(2), *X* is an NGR $T_1(ii)$ space.

Conversely, Let $x \neq y$ and $x_{r,t,s}$ and $y_{a,c,b}$ be any two distinct Neutrosophic points in X.

By definition 3.1(2), there exist *NGR open* sets *U*, *V* in τ such that

 $U(x) = 1_N$, $U(y) = 0_N$ and $V(y) = 1_N$, $V(x) = 0_N$.

Then by definition 2.14, we have

 $\langle r, t, s \rangle \leq 3 = U(x)$ implies $x_{r,t,s} \subseteq U$ and

$$(a, c, b) \leq 3 = V(y)$$
 implies $\mathcal{Y}_{a,c,b} \subseteq V$

Now $U \cap \mathcal{Y}_{a,c,b} = 0_N$ (Since $U(y) = 0_N$) and Also $V \cap \mathcal{X}_{r,t,s} = 0_N$ (Since $V(x) = 0_N$). By definition 3.1(4), X is an NGR $T_1(iv)$ space.

Definiton 3.5

Let (X, τ) be an Neutrosophic topological space .

(i)(X, τ)iscalledan $NGRT_2(i)$ space if and only if for all $x, y \in X$,

 $x \neq y$, there exist *NGR open* sets *U*, *V* in *r*such that *U* (*x*) = 1_N and *V* (*y*) = 1_N and

 $U \cap V = 0_N$.

(ii) (X,τ) is called an $NGRT_2$ (*ii*) space if and only if for each pair of distinct Neutrosophic

points $\mathcal{X}_{r,t,s}$ and $\mathcal{Y}_{a,c,b}$ in X, there exist NGR open sets U, V in τ such that $\mathcal{X}_{r,t,s} \subseteq U$,

 $\mathcal{Y}_{a,c,b} \subseteq V \text{ and } U \cap V = 0_N.$

(iii) (X,τ) is called an *NGRT*₂ (*iii*) space if and only if for each pair of distinct Neutrosophic

points $\mathcal{X}_{\tau,t,s}$ and $\mathcal{Y}_{a,c,b}$ in X, there exist NGR open sets U, V in τ such that

 $\begin{array}{l} \mathbf{x}_{\boldsymbol{r},\boldsymbol{t},\boldsymbol{s}} \subseteq U \subseteq \overline{\mathbf{y}_{\boldsymbol{a},\boldsymbol{c},\boldsymbol{b}}} \text{ and } \mathbf{y}_{\boldsymbol{a},\boldsymbol{c},\boldsymbol{b}} \subseteq V \subseteq \overline{\mathbf{x}_{\boldsymbol{r},\boldsymbol{t},\boldsymbol{s}}} \text{ and } U \subseteq \overline{V}. \\ (\text{iv}) (X, \tau) \text{ is called an } NGR \ T_2(iv) \text{ space if and only if for all} \\ x, y \in X, \ x \neq y \text{ ,there} \\ \text{exist } NGR \ open \ \text{sets } U, V \text{ in } \tau \text{ such that } U(x) = 1_N = V(y) \text{ and} \\ U(y) = 0_N = V(x) \text{ and} \\ U \subseteq \overline{V}. \end{array}$

Theorem3.6

Let (X, τ) and (Y,σ) be any two Neutrosophic topological space and $f: X \to Y$ be an *NGR continuous* mapping. Then (X, τ) is an *NGR* $T_2(i)$ space if (Y, σ) is an Neutrosophic T_2 space.

Proof :

Let *x*, *y*

 $\in Y$, $x \neq y$, Then there exist *Neutrosophic open* sets *U*, *V* in σ such that $U(x) = 1_N$, $V(y) = 1_N$ and $U \cap V = 0_N$. Since fix *NCP* continuous mapping

Since *f* is *NGR continuous* mapping.

By definition 2.13(i) , $f^{-1}(x)$, $f^{-1}(y) \in X$, Such that $f^{-1}(x) \neq f^{-1}(y)$.

Then there exist *NGR open* sets $f^{-1}(U), f^{-1}(V) \in \tau$ in *X*, Such that $f^{-1}(U(x)) = f^{-1}(1_N) = 1_N$ and $f^{-1}(V(y)) = f^{-1}(1_N) = 1_N$

Therefore $f^{-1}(U) \cap f^{-1}(V) = 0_N$ Hence By definition 3.5(i), (X, τ) is called an NGR $T_2(i)$ space.

Theorem3.7

Let (X, τ) be an Neutrosophic topological space and Then X is an NGR $T_2(i)$ space if and only if it is an NGR $T_2(ii)$ space. Proof :

Let $x_{r,t,s}$ and $y_{a,c,b}$ be any two distinct Neutrosophic points in X and $x \neq y$,

By definition 3.5(i), there exist *NGR open* sets *U*, *V* in $\tau \ni U$ (*x*) = 1_N, *V*(*y*) = 1_N and $U \cap V = 0_N$

Then We have, $\langle \boldsymbol{r}, \boldsymbol{t}, \boldsymbol{s} \rangle \leq 3 = U(\boldsymbol{x}) \Rightarrow^{\boldsymbol{\chi}} \boldsymbol{r}, \boldsymbol{t}, \boldsymbol{s} \subseteq U$ $\langle \boldsymbol{a}, \boldsymbol{c}, \boldsymbol{b} \rangle \leq 3 = V(\boldsymbol{y}) \Rightarrow^{\boldsymbol{y}} \boldsymbol{a}, \boldsymbol{c}, \boldsymbol{b} \subseteq V$ and $U \cap V = 0_N$. Hence by definition 3.5(ii), X is an NGR $T_2(ii)$ space.

Theorem3.8

Let (X, τ) be Neutrosophic topological space . Then every NGR $T_2(i)$ is anNGR $T_2(i\nu)$ space. Proof:

Let $x, y \in X$ and $x \neq y$,

By definition 3.5(i) there exist *NGR open* sets *U*, *V* in τ such that U (x) = $1_N = V$ (y). Similarly U (y) = $0_N = V(x)$

Therefore, $U \subseteq \overline{V}$. Hence By definition 3.5(iv), Every NGR $T_2(i)$ is an NGR $T_2(iv)$ space.

REFERENCE

- I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, "On Some New Notions and Functions in Neutrosophic Topological Spaces", Neutrosophic Sets and Systems, Vol. 16,(2017).
- [2] K. Atanassov "Intuitionistic fuzzy sets", Fuzzy Sets and Systems 87-94, 20(1986).
- [3] Blessie Rebecca.S, A.Francina Shalini, "NEUTROSOPHIC GENERALIZED REGULAR SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES", IJRAR February 2019, Volume 6, Issue 1, 2019.
- [4] Blessie Rebecca.S, A.Francina Shalini, "NEUTROSOPHIC GENERALIZEDREGULAR CONTINUOUS FUNCTION IN NEUTROSOPHIC TOPOLOGICAL SPACES", IJRAR February 2019, Volume 6, Issue 1,2019
- [5] S. Bayhan and D. Coker, "On fuzzy separation axioms in intuitionistic fuzzy topological spaces", BUSEFAL,77-87,67(1996).

- [6] C.L. Chang, "Fuzzy Topological Spaces", J.Math. Anal ,Appl, 182-190,24(1968).
- [7] Coker, D., "An introduction to intuitionistic fuzzy topological spaces", Fuzzy sets and systems, 81– 89,88(1997).
- [8] R.Dhavaseelan ans S.Jafari, "Generalized Neutrosophic closed sets", New trends in neutrosophic theory and applications VolumeII, 261-273,(2018).
- [9] Florentin Smarandache , "Neutrosophic and Neutrosophic Logic", First International Conference on Neutrosophic , Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM87301, USA(2002).
- [10] Florentin Smarandache, "Neutrosophic Set A Generalization of the Intuitionistic Fuzzy Set", University of New Mexico, Gallup, NM 87301, USA.
- [11]C. S. Gowri ,D. Kalamani and R. Dhavaseelan , "Separation Axioms via Generalized Alpha Intuitionistic Fuzzy Topological Spaces", The Journal ofFuzzyMathematicsVol.23,No.3,LosAngeles(2015).
- [12] R. Narmada Devi, R. Dhavaseelan, S. Jafari, "On Separation Axioms in an Ordered Neutrosophic Bitopological Space", Neutrosophic Sets and Systems, Vol.18, (2017).
- [13] A.A. Salama and S.A. Alblowi, "Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces", Journal computer Sci. Engineering, Vol.(2)No.(7)(2012).
- [14] A.A.Salama and S.A.Alblowi, "Neutrosophic set and Neutrosophic topological space", SOR. mathematics, Vol. (3), Issue (4), pp-31-35, (2012).
- [15] A. A. Salama, Florentin Smarandache and Valeri Kromov, "Neutrosophic Closed Set and Neutrosophic Continuous Functions", Neutrosophic Sets and Systems, Vol.4,(2014).
- [16] L.A.Zadeh, "FuzzySets", InformandControl8,338-353,(1965).